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1. Introductwn

o Imc two recent works / L2/ it has been reported on
a method proposed for the calculation of the so-called
Weinberg functions. These functions- are eigenfunctions
of the integral kernel of the Lippmann-Schwinger equatlon
and have been first thoroughly examined by Weinberg/3
They are the solutions of the following integral equatlon ‘

N, =-G(E) Vy,, » ((RY)

where G(E) is the two-body Green functmh and-V stands -
for the interaction potential, which will be assumed in
what follows to be attractive for -all r. In terms of the’
supplementary function, whlch is defined by

6. =V 5y, L 1.2)

n
equation (1) reads o

An¢n‘=-v G(EYV ¢, 1.3)
and the orthonormality conditions are

(¢-n’¢n') = (¢nsv ¢n') =0 oo’ "’ | | (1.4) '

For positive energies E> 0 the integral kernelofeq. (1.3)
is a complex and nonhermitian- one, however, instead
of egs. (1.1) and (1.3) we can consider those whlch have real
kernels and are defined by
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A ¥, ==G(E) Vy_ ,
Agbo==V TGE) V Ty, a.6) -

where E(E) denotes the principal value of the Green

function. The latter equations have real eigenvalues and -~

real eigenfunctions, satisfying the orthonormality con-
dition (1.4). From the fact that the kernel of eq. (1.5) at
E > 0 is not of one sign it follows that in any expansions
in terms of the real Weinberg functions the terms
corresponding to positive and negative eigenvalues must

_ be taken into account. This has been shown in previous .

works /1.2/ using the square well, the Hulthen and the
Yukawa potentials and calculating the . K -matrix.

Potentials of the Saxon-Woods form have been widely

employed especially in nuclear structural calculations.

Therefore, it seems to be very useful tohave a manageable,i,i’?
method in- calculating the Weinberg functions for such

types of potentials. Then, for example these functions can =

be applied to describe the continuous part of the ordinary = -

shell model spectrum and, e.g., form factors for strip-.

ping reactions to unbound states can be calculated in.

a rather simple manner ar. : S
As an application of the real Weinberg function in sec.4

we will consider the low-energy scattering of neutrons -

and calculate the neutron strength function. Before we

will present our method in sec. 2 and perform methodical - :
" calculations in sec. 3. Concluding remarks can be found .

in sec. 5. '

2. The Saxon-Woods Potential and the Calculation
of the Weinberg Function

The method proposed for the calculation of the Weinberg 2,';.
functions using an ordinary:Saxon-Woods potential of the.:

form
-V(r) =

2m

'HZ'

r- R -1 ' .
) 2.1y

Up(1l + exp (

iy o 2 3

_ x’je(k'xR)x‘?dx+ —}2:!-“-2- an

- - ) _ n‘ : . . . 1,2 . . E
"is- close to that employed-in the previous work§ / _/ . The’
' Fourier transform for the £-th partizl wave is given by

Vv, (k) = {)L'ﬂd; V(r) jzr(lkcr) jp (k'1)e @.2)

Our aim .is to find for (2.2) a separable representation

of the same kind as in -refs. /1:2/.This means that we

envisage for (2.2) an expression of the form .

- N . N " . ) . .

Ve (k, k) =2 Vijg(kxi)jg(k x.) - (2.3)
i=1 . , :

where the quantities V; and X;-zre respectively the

"weights and knot points of soine quadrature polynomials.

In so doing we. decompose the integral in (2.2) into two
par.ts ) ' .

1 xR-R__.-1

f 1+ exp(——)1 (kxR x

[ (ax + R)2 eJ;p(fx) (1+exp (~x) )_lx
0 ‘ o
| - (24)

“x jz‘(’k‘(ax+ H)) jg(‘k'(ax-i‘- B‘)V) dx -

and can approximate each integral with ‘high accu?acy_
-making use again.of .the Gauss quadrature polynomials.
~The weights for both intervals [0 ,11 and [0,x] can be
exprassed analytically through Legendre or, respectlve}y,
Laguerre polynomials. On-the accuracy. of-the expansion
(2.3) it -will be reported in the next section.. G
*  Inserting (2.3) into (1.5) one gets for the Weinberg
functions o
- Ny (n) .
1 1 t n
= V.. ke, e, (E).(a:
¥, (e E) C AL(E) A"’E—k2=i§1 Vi dglkry) ey (E)-(2.5)

The coefficients c{™are defined as follows
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V 1 . DL
% -
2V 2 P ’ :
L(m) ik dkje(kri)mjln(k,E)=Vi/21/1n(ri',E)(2.6)_
0 ’ ' S

1 g

and satisfy the homogeneous syStem of 'line'ar equations -

N y - .
S [AL(E) 6., +(V.V.) G(r,,r
j=1 U v vl

(n)

wheAre the Greeo function is defined by
j g (k) jp(km)

— 2 o0 2 .
Clr.esE) -2 1
(e E) =5 Ox ol —— | (2.8)

and can be evaluated analytically.

From egs. (2.7) it becomes evident why our method is
so profitable. Namely, the approximation (2.3) makes
it possible to obtain the eigenvalues and eigenfunctions

. after  diagonalizing the real symmetrix matrix

(Vi Vi) * G (ry, rj,E) and no problems arise evaluating
the Green function.
Another advantage of the method proposedis connected -
with the fact that for higher partial waves the approxima-
tion (2.3) converges not worse than for the s -waves,
because the factor r 2 can be taken away from the
Bessel functions and included into the weights /1.2/ The-
refore, it is sufficient in the following to investigate the
accuracy of the approximation (2.3)for the case =0, only.

This fact facilitates the subsequent discussions because, - -

for instance, for s -waves the K -matrix can be calcu-
lated in an exact way and compared with the approximated

one. In so doing the accuracy of the expansion (2.3) can:
be checked rather well. o

3. The K -Matrix

The on-shell K -matrix is defined by

1 :
T tan 3, = K(E) = X (jp(kr) V(r) ¢n(r,E))2,(3-l)

v 1-2A

n

j3E)e =0, @7

Replacing in (3.1).the Weinberg function by the appro‘ximg_r

ted ones 7 ’ , 7

N % - @y
V./2 G(r,ri;E),Cli1 (E)-

A (E) i;] 1 : ] ’ o

n

g, (e, E) == @.2)

and taking into account eq. (2.6) one gets for the approgi—
mated on-shell K -matrix a rather simple expression

=~ N u (n)ﬁ- . ‘
Ky (E) = E (.Elje(kri)-vi . )y /(1 - -A“,) ©o (3.3)
1= .
. . " .' 5 .
The exact result for the K -matrix is given by 75/ _
| -R)a]
Ko(E) =+ tanl arg Fliale +k),=iale =R, 1+2iak, - )N,

S (3.4)

: . RN . o K2=k2+£m—U0
where F 1s,thehypergeometrlcfunc ion, K ThZ

and m is the reduced mass. L. S i

"To criticize the approximation (2.3) it seemS'toh be
rather instructive to investigate the case, when ‘the
diffuseness parameter of the poteatial, a,.is equal to
zero.- This means that we get an ordinary square we.ll
potential”and“ can again exactly determine the K -matrix

and the Weinberg functions (see f.i. refs. /1,27 ). In

table 1 the corresponding results are shown. We see that

_ ‘the -method proposed yields eigenvalues and ‘scattering

phases, which: for various energies differ from the exact

ones only by about few percents at the worst. This_result
demonstrates the accuracy of the above introduced ap -
proximation rather evidently. Now we turn to the calcu-
lation of the K -matrix elements employing the_§axon—
Woods potential. In table 2 the values of the approximated
and exact K -matrix are compared to each other for

_ different energies. To obtain a good convergence after

a few terms is crucial in practical computations; From
the comparison of the exactly and approx1motely calculo-
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tved‘ K ¢ -matrix elements it becom_es evident that the
convergence of the expansion (3.3) is not so fast as ob-
served earlier, when using the Yukawa, Hulthen or square |
well potentials.Such an effect could be expect_ed pecause
the effective range of the Saxon-Woods potential is rela-
tively large in comparison with that of .the Yukz_lwa'po-
tential used earlier. However, for practical apphcatlons
the -convergence stated in table 2 seems to be satisfactory.
Note that without any difficulties the case I_B.—-O can be
considered replacing the Green function in (2.8) by

- : —-1— r <1’ , o
G (r,r’30) = { ; . (3.5)
r V N -
For the on-shell K -matrix ( s -waves) one gets
\ B 2 4 -1 .
: - lim -1 1 1 Lo 0kDT . =
E-0) = — = [-— + +.0(
K C ) k+0 k cot 8, ag 2 0. ,
Ny % (o), 2 | !
_s L (svie™y
D i y

n

1T =A -
in this way wé have found an expression to qét'g_rgnine;the
scattering lengths a_ and .effective radius T 0o vfor
relatively complicated potentials. . .

4. The Neutron Strength Fqnctiop

In order to.‘exémplifyftlie applicability of the formalism
developed in the first sections, ‘'we calcglate the s -wave
neutron strength function. The lattel: is determgled by
introducing a complex optical potentlgl, calcuéatu‘;g thf!i
corresponding- compound Cross section for t = a.nd
comparing with the low-energy neutron average compoun

cross section given by

10

g -

w2 T Tes
;’2 VE , <° >/D(1-r "7/D) . @

o}

c

" The quantity <2 >/ D is called the strength function,

where <I'$> is the average neutron width at1eV and
D is average level spacing. It is rather simple to
introduce the complex optical potential having a volume
absorption term into our method replacing only Uy in the
expression for the K -matrix by the complex quantity
Ug+ iWg o The Weinberg function remains then the
same as before, while the K -matrix becomes a complex:
quantity. Such a representation of the K -matrix is rather

- favourable investigating, for instance, its poles.  From

the expression
‘ 1 +ikK(E)

-8 = arctén (k-K(E)) = ——;.-;— N ———e e

1 - ik K(E) (4.2)

the complex scattering phases can be determin'ed.

. Figure 1 shows the neutron s ‘—Wave strength function
calculated for the energy E =1 eV by means of (4.1).
There can be seen the usual shape of the neutron s -wave
strength function depending on the mass number. -

Note, that also for larger mass numbers the exact
solution coincides with .the approximated one nearly

" completely. The differences are less than 19 at the worst

including 4 terms in the expansion (3.3).

| Note also, that ih 'caléulatin'g$tlle/strengt11 function it is
a ‘problem n'umerically to integrate the corresponding
Schrddinger .equation at small energies ( E << 1 MeV),

" because the results depend rather sensitively on the integ-

ration mass size. Moreover, we must numerically integ-

rate up to a very large {natching'radius Ry in order to
‘satisfy the condition kR >> 1. Therefore, usually first

o° is evaluated using the optical model at 1 keV neut-
ron energy and the strength function is deduced using
the above equation (4.1). From table 2'it can be seen that
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Fig. 1. The neutren strength function calculatedat E =leV
as depending on the mass number -A. The optical

parameters are U, = 52 MeV, Wo = 3.12 MeV, r,=

= 1.25 fm and a = 0.52 fm. For the number of knot
points see table 2. '
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the incident energy ofl keV is quite satlsfactory to evaluate '
the strength functlon with high accuracy. ‘

. 5. Conclusion

The method propo'sed for the calculation of the real .

" Weinberg function at positive energies using the Saxon-

Woods potential seems to be rather convenient for practi-

~cal Aalpplications, when calculating scattering phases or

resonance states belonging to not very high energies

" (E £ 50MeV). Because the K -matrix expandedin terms
~of the Weinberg functions takes a rather simple form it is

possible to study, for instance, resonance phenomena
arlsmg by using the complicated complex optical potential ..
in .a rather convenient manner.
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