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Introduction

Assuming the fundamental processes to be polariton
scatterings, in some papers ° 2 “we have been dealing
with special problems of the 'stimulated Raman effect in
crystals and have presented appropriate theoretical Te-
sults. Especially in - % on the basis of an easy model '
we have investigated the stationary behaviour of an anti-
Stokes Raman oscillator. So we could calculate in detail
the threshold value, the frequency shifts, and the steady
state photon (polariton) numbers of the several modes in
dependence on detuning, damping, and coupling. Further-
more, from these calculations predictions with regard to
useful ratios I\'|/KMI for experiments are possible .

Kool o+ A - damping parameters of Stokes and
anti-Stokes modes). As it was mentioned in 2 suchan
anti-Stokes Raman oscillator is very suitable for realizing
lasers with more than one-tunable frequency. .. .

In this paper we will complete our results with some
investigations on.the behaviour of the linewidths of the.
" Stokes mode and anti-Stokes mode. Thereby. we. will be -
interested in the detailed dependence of the linewidths
on detuning, damping, and pumping. o

It is known 3!  that in such a laser-like oscillator
the phase fluctuations of the incident laser flux as well
as - the spontaneous noise of all modes . involved in the
‘scattering processes contribute to the linewidths consi-
dered here. On the other hand, in real situations the in-
fluence of the phase fluctuations of the incident laser
pump wave will be dominant in comparison with. that of
the spontaneous one’3:3/ . In this sense we will neglect
“all the spontaneous noise contributions to the linewidths.
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"It sould be emphasized that the results found in this”

way are also valid for all other laser-like oscillators
- that can be described by a nonlinear quasi-resonant in-
teraction (of the lowest order) of four light waves.

Theory '

Let us begin with some theoretical aspects that are
important for the following. The behaviour of an anti-
-Stokes Raman oscillator can be described mathematically
by a set of four nonlinear coupled differential equations
of first order '!* for the polariton creation (respectively,

annihilation) operators B *, Bfl B .Bf referring to in-

frared, Stokes, laser, and anti-Stokes modes in the given
order. These equations are supposed to be quantum mecha-
nical Langevin equations (therefore they contain dissipa-
tion .and fluctuation terms in a quantum- mechanically
consistent manner). Furthermore, the pump term in the
equation  for the laser mode is assumed to be

_F; exp {i(opt  + ¢, (t N with the appropriate corl_'iela—\

tion function -
<f0(tl)»F0 (t2) >=|~F0 I exP{ ——2 A'B‘.l'tl_t2[+";a?0(tl_t 2) } (1)

(*Ap  is the linewidth ~of the incident pump wave).
For solving this set of equations above threshold

Haken’s ansatz is shown to be useful - 3:5/: . Such an ansatz

means with Ijesp'e'ct to the operator B_, ' T

+ . - . ‘; - o
B—l(t)=(‘r_1+a..1(t),)?’,‘?{i(ﬂ_»l t+g g D) (@)

(for the other modes the situation is quite analogous). In
Eq. 2 Tf_, is the squareroot of the steady, state photon
number N_,  (calculatedin 2/ S l=(N : Y4 -

(alsoi?calculated; in,/?'/ ) and ¢ _i are> frequéncy, and
phase of‘the Stokes mode under stationary conditions.

a () and “ Q) " mean the amplitude and phase de<’

4

viations from their steady state values. From /1/ the .

, sta"tionary phases are easily seen to be

_ \ 280, SN
A e - - —_— , - 3
Bo _:'(é-l ¢> 8‘1 arc;/tanr < - ( )

) : 20w, : ’

; ~ L 4
¢,1_¢,0 -¢ Mn+82+ arctan . > - @
o - rg r 2 . .
F ._A = K y—L 5 : —-:—l+ r : (5)

2| fFOi' COS(¢P ¢>0) Ker +OK_g T %' S

(with the notation of the indices as mentioned above; -
T1'-=—i [T, |exp(~idy) - -coupling constant betweenlaser,
Stokes, and infrared modes, T,=—i|Ts|exp(=idy)- coup-
ling constant between anti-Stokes, laser,fand’,in,frared
modes; . Aw_; =w_-Q_;Aw =0 -Qywhere o_; , o
are the unperturbed frequencies). ‘ - - N
By quantum mechanical qUasi-liriearizatiOn’(we are
only interested in a small deviation from the steady state
behaviour) the ansatz (2).finally leaves us with a set of
coupled linear differential equations for the amplitude
and phase deviations (that are assumed to be small) only.
After calculating -the solution .that can be obtained by
standard methods we get the mean squares-<y2;(t)>
<$¥(t)> * inan easy manner, From these mean squa-
res the linewidths considered here are defined by those
contributions. that are proportional to time t/3:5/ These
contributions (to the above mean squares) divided by .t
directly lead to the linewidths of Stokes and anti-Stokes
modes.. - - :

Results

. . : R oy , ‘
m /2 (for the most important case [T | ;l:[z 1" we
will restrict ourselves.to) the region0.4<x_y/x; <V0.9 was -
shown to be useful with respect to experiments. Therefore
we will only present results for this region (in accordance. .
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Fig. 1. The Stokes and anti-Stokes. linewidths (relative
... to the linewidth of the pump wave) are shown for the two
"~ infrared damping parameters K=K_]" ‘and k= 10x_;

" (P=Ll,p~10, 8~1-0.7) ‘as functions of Aw/« |

with  the notation introduced in /2/ we will again use

the abbreviation: 87 =«_/« P

- -For a “first orientation with" regard -to the general .
properties of -the linewidths it is sufficient to'look at -

Fig. 1. There the behaviour of Stokes and anti-Stokes. line-
widths (relative to the linewidths Ap  of the incident pump
wave)-is shown for a-middle value "B~1=0.7 -and the two
assumed ’’boundary’’ dampings of the infrared. mode,
- k=x_; and k=10x_;, asa functionof Aw /x_;

(@ -wy ~0=Aw is the detuning’). The other parameters
that enter in the theory are assumed to be; P=1.1 (the
pump parameter P isdefined by P=(4|F, |‘3/ K%-;)/NO
above threshold it must begreater than 1)and p=«g/ k_;=1.

First of all, a relative deéep and narrow minimum: in
the region of:small -detuning E_'};,,/K"_»_, - isseentobe cha-
racteristic of the linewidth. " of the ‘Stokes. ‘mode. In this

connection we note that.all minima appearing inour. curves °

’

- g -

L e, e T e T

_areindicated by short dotted lines because “the density
of Aw/«k_j points chosen in the numerical calculations
did- not allow an exact localization of the minima. On the

. other hand, a more exact calculation-does not pay for it is
clear that in the case of such deep minima (for example,
the relative decrease of the Stokes' linewidth may be of the -
order 10” —10° ) the spontaneous noise (of the phases)
of all modes will contribute to the linewidths ‘essentially.
This means, in practice, ‘the minima will be expected to
be not so deep as it is shown in Fig. 1, for example, and _
their values will be limited by the spontaneous noise. For
our:investigations it seems only remarkable that the Stokes
linewidth (for specially chosen B~ ) can be very small in .
the region 0'<Aw/:<_1‘ £20.

~Secondly, with respect to the linewidth of the anti-
Stokes ‘mode two minima were found. From Fig. 1 the

0 o2 0% 05 o8 R

Fig. 2. The Stoke linewidth. (relative to the linewidth of

-the . pump wayelz))' is_shown for the two pump gé}rameters_ N

P=11 ‘and ' P=L5 and for variousratios:f
“ (p=1.0, « ‘6"_1 ). asa functionfof‘,Aw/K_l' .
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second ‘minimum  at the end of the  Aw/k-1 ax1s is
expected to be not so a narrow one. Further, it is seen

that the anti-Stokes linewidth (in dependence on Aw/K_l )

can be greater as well as smaller than the 11new1dth of the
Stokes mode. In a first approximation one could say that
the anti-Stokes linewidth will be greater than the Stokes
linewidth only in the region of small Aw/k_, “values
with the mean position of the minima (this relates to the
first minimum -of the ant1 Stokes mode) of both modes as
the upper limit. .

Last not least the results represented in Fig. 1 show

an increase of the linewidths with the infrared damping’

parameter «/x_; .

The linewidths of the Stokes and anti-Stokes. modes esti-
mated in / ‘17" are noted to be not correct.

In Figs.2-5 the dependence of the linewidths on other
phys1ca1 quantities entering in the theory is explaned. The

o 02 0'4 o6 08  Awj%.
Fig. 3. The Stokes 11new1dth (relatlve to the 11new1dth of
the pump wave) is shown for the two values x¢:

and «_,/kg =0.7 and for various ratios B~ =« 1/K (P 1 1

k=6« l) asafunctlon of Aw/k

=k /r (p=1.0,k=6x ) asafunctionof Aw/x
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Fig. 4. The anti-Stokes linewidth (relat1ve ‘to the line-
width of the pump wave} is shown for.the two pump para-
meters P =1. and P=1.5 and for various ratios B-=1=

-1

results refer to a mlddle mfrared dampmg parameter;

K-6K .
-1 .
So in Fig. 2 for two pump parameters P the depen— :
dence of. the Stokes linewidth on the parameter B~ . is

shown (p is assumed to be 1). From the plotted curves
the position of the minimum is found to shift up to larger
Aa)/K._l values if the .parameter - /3“ decreases.
Simultaneously the relative decrease of the’ 11new1dth '
becomes smaller. Tt does not exist in the case of very
small. B"l(B =1 £0.1). Now let us look at curves with .
equal 87! but different P . Roughly speakmg, above the
mean position of the minima (with respect to dlfferent
P values) the Stokes linewidth decreases with increasing ’
P . Below this point it increases with P . It is to be ™
noted that in the limit Ao/« -1 0 the 11new1dth does not ‘

_ depend on the pump parameter.

By investigating the dependence of the Stokes 11new1dth'

‘on the damplng parameter P (appropr1ate curves are plot—
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Fig. 5. The anti-Stokes linewidth (relative to the line-
width of the pump wave) is shown for the two values « VK 1=
-07 and «_; ~, —-0.7 and for various ratios p7° =
-h " | (P _1,5‘,(.,3,\- l)as a function of ~u '« . ‘

ted in Fig. 3 for P=1.1 ) the behaviour was found to
be completely similar to that illustrated in Fig. 2 (with
p instead of P). : '

With regard to the,ar.lti—Stokes mode the situation’is

similar but more complicated because of the existence of -

two minima. This is shown in Figs. 4-5. Contrary to the
results presented in Figs. 2-3 for B~! <0.4 ~minima do
not appear and in the limit Aw/x_; -0 the linewidth'is
always found to be decreasing with g8~! (below p~! =0.2

~ the Stokes linewidth slowly increases with decreasing -

Bt ). »

As it was mentioned abdve all’re'sult’sy préseﬁted in

Figs. 1-5 refer to the region 0.9 >3 ~'-0.4. Generally the

anti-Stokes oscillator was found to be "stable for any

value B~ '<1(x_; <« ). In the other case (x_, >«j)the

oscillator is stable only for AQ'/R_,' '2_0.05,’ This fact
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could be connected with the necessity to )'in';

: nected lude higher -
order interactions into the calculations (cf . /% ). S
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