СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

13/14-74

E4 - 7624

951/2-74 **B.Westwański**

C326 W-59

> STANDARD-BASIS OPERATOR METHOD IN THE GREEN-FUNCTION DIAGRAM TECHNIQUE OF MANY BODY SYSTEMS. I

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

E4 · 7624

.

B.Westwański*

STANDARD-BASIS OPERATOR METHOD IN THE GREEN-FUNCTION DIAGRAM TECHNIQUE OF MANY BODY SYSTEMS. I

Permanent addr.: Instytut Fizyki, Uniwersytet Śląski, Katowice, Poland.

1. Introduction

The importance of crystal field effects in magnetic materials has long been recognized. For cortain rare-certh compounds, such as those of NaCl structure with group-V anions, it is possible for the crystal field to be compared to or even dominant over the exchange interaction between the rare-earth ions. Thus, the crystal field is expected to play a very important role in the nature of the macroscopic magnetic properties in such materials $^{1/1}$. Theory of these substances is given and quoted in $^{1/2}$. Ever complicated mechanisms, e.g., orbital effects on exchange $^{3/1}$, biquedratic exchange $^{4/1}$ can be as large ac, or even larger than the exchange interaction.

Isotropic biquedrotic interactions of the form $\left(\left(\begin{array}{c} \zeta_{x} \\ \zeta_{x} \end{array} \right)^{2} \right)$, in eddition to the usual Heisenberg bilinear ones $\left[\begin{array}{c} J \\ \zeta_{x} \end{array} \right] \begin{array}{c} \tilde{J}_{x} \\ \tilde{J}_{x'} \end{array}$, have been of current theoretical interest $^{/5/}$, since Horris and Owen, Rodbell et al., Bertaut and Rubinshtein $^{/6/}$ poited out that they could

have significant effects on the magnetic properties of antiferromagnets,like MnO, & -MnS,EuSe, and ferrimagnets.

The authors of $^{\gamma\gamma}$ noted that since two order parameters at least are to be considered for such systems / that is $\langle 5^x \rangle = m$ and $\langle \tilde{5}^z \rangle - \frac{1}{3} S(5+M) = Q$ /, ordering in the quadrupolar uniaxial parameter Q might occur as a separate phase transition.

Quadrupolar ordering in magnetic crystals has been investigated theoretically $\sqrt{2r-9}$ in connection with experimental results on magnetic and crystallographic/multiple, separate / phase transitions in some rere-earth compounds such as $\sqrt{10}$ by VO₄ .A general purely quadrupolar system may have up to 21+1 = 5 independent, nonzero order parameters $\sqrt{9}$, though this number may often be reduced by a judicious choice of axes, when the system possesses appreciable symmetry. The esymmetry biaxiel parameter $P = \langle 5^2 + 5^2 \rangle = \langle 5^4 - 5^4 \rangle$ does not, in generol, vanish and both P and Q may well be necessary $\sqrt{9}$ to describe states of quadrupolar order in low-symmetry magnetic crystals such as the rare-earth vandates, phosphates, and areenates.

The mathematical methods employing in the theoretical papers cited above and in $/11 \sim 16/$ are those of the double-time temperature dependent Green functions /17/ or Bogoliubov variational principle /18/. The diagrammatic method of Vaks et al. /19/ was applied to the

investigation of Heisenberg /Anti-/ Ferromagnet with single-ion anisotropy in /20-22/ : Solyom considers single-ion anisotropy as a perturbation, Ginzburg has been calculated correlation function $\langle 5^{-}; 5^{+} \rangle$ in molecular field approximation taking into account the anisotropy term exactly and matrix form for the operators $5^{+}; 5^{-}$.

Keschenko et al. /2/ have also considered this term exactly and analyzed collective excitations and their damping. However they state that the inclusion of the single-ion anisotropy term into

zero order Hamiltonian gives rise to the absence of an analog of Wick theorem and in order to calculate blocks, containing the transverse components of spin operators it is required to use the definition of T-ordered product of operators:

$$T\left(\int_{p}^{d_{4}}(t_{1})\cdots\int_{p}^{d_{m}}(t_{m})\right) = \sum_{p} \Theta\left(t_{n}-t_{1}\right)\cdots\Theta\left(t_{n-k}-t_{m}\right)\int_{p}^{d_{m}}(t_{1})\cdots\int_{p}^{d_{m}}(t_{m}),$$
where summing runs over all possible permutations of the "times" t_{j} .
and $\Theta(t_{j}-t_{j})$ is Heaviside's function.

Kiteev et al. $\binom{23}{4}$ hove calculated irreducible polarization part $\overline{\Sigma}$ in zero order and obtained excitation spectrum, when zero order Hemiltonian contains $- \varepsilon \sum_{t} (\overline{s}_{t}^{*} - \overline{s}_{t}^{*})$ in addition to that in $\binom{22}{2}$: they diagonalize this zero order Hemiltonian and then apply the procedure of $\binom{22}{2}$.

In this paper we present the perturbation theory for arbitrary spin Hamiltonians with S=1 on the basis of general statistical Wick theorem / GSWT / ^{/24/} and its application to spin Hamiltonians for S = 1 ^{/25/}. According to ^{/24-25/} the statement of the authors of ^{/22/} on the nonexistence of an analog of Wick theorem is not volid.

Detailed discussion of GSWT $^{24/}$ for transverse and diagonal operators is given by the example of the Hamiltonians of Anderson and Hubberl type in $^{26-27/}$: this case may be considered as a general one in such a sense, that the set of the transverse operators consists of the Fermi and spin type operators, that has an influence on the character of realization of GSWT.

This orticle is organized as follows: In sec.2 and 3 we decompose the Hamiltonian into the unperturbed and interaction parts and represent the last term by the standard-basis operators /15,24-25/, respectively.In sec.4 the realization of GSWT for transverse and dis-

gonal operators is commented.Finally, in Appendix B the rules for drawing of the graphs, holding for arbitrary interaction, are obtained.

2. Decomposition of Hamiltonian

Let us consider a system of ions, on translationally invariant lattice in uniexial D and blaxial E crystal fields, interacting in pairs according to the following Hamiltonian

$$\begin{split} \widetilde{H} &= \sum_{n=1}^{\infty} \left[-h S_{n}^{*} - D S_{n}^{*} - \frac{1}{2} E(S_{n}^{*} + S_{n}^{*}) \right] + \\ &- \frac{1}{2} \sum_{n+n'} \left[\left[\right]_{n+n'} S_{n'} S_{n'} + K_{n+n'} \left(\tilde{S}_{n'} \cdot \tilde{S}_{n'} \right)^{2} \right], \qquad (4/.) \end{split}$$

where h is on external magnetic field, $\int_{X\times X'}$ and $K_{X\times X'}$ are usual Meisenberg and biquodratic exchange interactions, respectively. The above Hamiltonian represents and contains the cases of considerable physical interest /2-9, 11-16, 20-22, 23/. Therefore it seems very required to construct a systematic perturbation theory for such Hamiltonians, due to which a part of Hemiltonian /1/ as large as possible could be included into zero order Hamiltonian. This becomes possible because of the formulation of GSWT in /24/. According to /24/ by unperturbed Hamiltonian we can mean an arbitrary part of Hamiltonian, which has the form

$$\vec{H}_{o} = \sum_{\mathbf{x}} \vec{H}_{ox} , \qquad /2/$$

where $H_{\sigma_{\infty}}$ is one-ion Hamiltonian and can be a linear self-adjoint combination of num matrices, or that of spin operators. Of course

 \overline{H}_{ox} can contain, frequently, some mean fields corresponding to some order parameters. For example, the mean field $\overline{\sum}_{x'} \int_{xx'} \langle S^z \rangle_{ox'}$ in $\frac{19}{\sqrt{2}}$ corresponds to the order parameter $\langle S^z \rangle_{ox'}^2$.

From the mathematical point of view one may considered the more general single-system operator $^{15/}$ than that in $^{1/}$. But then, as it was pointed out in $^{25/}$, we can always find a unitary transformation

 U_{2c} and constant C so that $U_{2c}^{\dagger} \overline{H}_{22c} U_{2c} + C$ becomes of the type / for S = 1 /

$$H_{02} = -\Delta S_{2}^{2} - \overline{D} S_{2}^{2} . \qquad (3)$$

Expressing the scelar product S_{2^*} , S_{2^*} in terms of components S^* , S^* we can rewrite the Hamiltonian /:/ in the form

$$\vec{H} = \vec{H}_o + \vec{v} + C, \qquad /4/$$

where zero-order Hamiltonian H_o is given by /2/ with

$$\tilde{H}_{ox} = -\tilde{h} \tilde{S}_{x} - \tilde{D} \tilde{\tilde{S}}_{x} - \frac{1}{2} \tilde{E} \left(\tilde{\tilde{S}}_{x} + \tilde{\tilde{S}}_{x} \right), \qquad /5/$$

the interaction term :

P

$$\begin{split} \overline{V} &= -\frac{1}{2} \sum_{X \neq x'} \left\{ \frac{3}{2} K_{X,x'} \frac{5}{5x} \frac{5}{5x'} + \left\{ J_{X,X'} - \frac{1}{2} K_{X,x'} \right\} \frac{5}{5x} \frac{5}{5x'} + \\ &+ \frac{1}{2} K_{X,x'} \frac{5}{5x} \frac{5}{5x'} + J_{X,X'} \left[5_{5x} 5_{5x}^{2} (5_{5x'} 5_{5x'}^{2})^{\dagger} + (5_{5x}^{2} 5_{5x}) (-5_{5x}^{2} 5_{5x'})^{\dagger} \right] + \\ &+ (J_{X,X'} - K_{X,X'}) \left[5_{5x} 5_{5x}^{2} (-5_{5x'}^{2} 5_{5x'})^{\dagger} + (-5_{5x}^{2} 5_{5x}^{2}) (5_{5x'}^{2} 5_{5x'}^{2})^{\dagger} \right] \right\} /6/ \\ &\text{nd constant} \quad \overline{C} \qquad \text{is equal to} \end{split}$$

$$\begin{split} \widetilde{C} &= \sum_{x \neq x'} \left\{ \frac{3}{4} K_{x x x'} \setminus \frac{5}{2} \lambda_{0} < \frac{5}{2} \lambda_{1} \rangle_{c} + \frac{1}{2} \left(J_{x x x'} - \frac{4}{3} K_{x x x'} \right) < \frac{5}{2} \lambda_{0} < \frac{5}{2} \lambda_{1} \rangle_{c} + \frac{1}{4} \left(K_{x x x'} < \frac{2}{2} \lambda_{0} \right)_{c} - \frac{4}{4} \left(5 + 4 \right) K_{x x x'} \right\} . \end{split}$$

In the following this constant in /4/ will be dropped. The effective permuters \vec{n} , \vec{D} , \vec{E} depend on the mean fields $(3_{\sigma}-\frac{1}{2}K_{\sigma})m_{\sigma}$ $\frac{3}{2}K_{\sigma}R_{\sigma}$, $\frac{1}{4}K_{\sigma}P_{\sigma}$, corresponding to the order parameters $m = \sqrt{s^{2}}$, $R = \sqrt{s^{2}-\frac{1}{2}}S(s+0)$, $P = \langle \vec{s}^{2} + \vec{s}^{2} \rangle = \langle \vec{s}^{4} - \vec{s}^{4} \rangle$ /4/

in the following way :

$$\begin{split} \bar{h} &= h + (]_o - \frac{4}{5} K_o) \mathcal{M}_o, \ \bar{D} = D + \frac{3}{2} K_o Q_o, \ \bar{E} &= E + \frac{4}{5} K_o P_o \quad /8/ \end{split}$$
Here m_o , Q_o , P_o are the averages / denoted by $\langle \cdots \rangle_o / /7/$ over the unperturbed Hamiltonian /2,5/end $]_o = \sum_{n=1}^{\infty} |_{n \to \infty} / |$

$$\hat{A}_{\mu} = A_{\mu} - \langle A \rangle_{o}$$
. /3/

Such a procedure has been done for operators, which have the non-zero diagonal part in the representation, where \overline{H}_{OM} in /5/ is diagonal /from now on all further considerations will be valid for S = 1/

 Interaction in the standard-basis operators/ in diagonal representation /

The unitary transformation \bigcup_{∞} diagonalizing the subsystem Hamiltonian /5/ has the form of the 3x3 matrix

$$U_{\infty} = \begin{pmatrix} \alpha & o & -b \\ o & 4 & o \\ b & o & \alpha \end{pmatrix}$$

where

 $\alpha^2 = (\Delta + \bar{h})\hbar \beta \ , \ \vec{b} = (\Delta - \bar{h})/2 \delta \ , \ \vec{\Delta}^2 = \ \vec{h}^2 + \vec{\tilde{e}} \ , \ \vec{a}^2 - \vec{b} \equiv c \ .$ Then

$$U_{x}^{+} \overline{H}_{0x} U_{x} \equiv H_{0x} = -\Delta Q^{3} - \overline{D} Q_{x}^{13}, \qquad A0$$

$$U_{x}^{+} S_{x}^{2} U_{x} = C Q_{x}^{13} - ab(S_{x}^{2} + S_{x}^{2}), \quad U_{x}^{+} S_{x}^{2} U_{x} = Q_{x}^{13}, \qquad U_{x}^{+} S_{x}^{2} U_{x} = Q_{x}^{13}, \qquad U_{x}^{+} S_{x}^{2} U_{x} = 2ab Q_{x}^{13} + a^{2} S_{x}^{13} - b^{2} S^{13},$$

$$U_{x}^{+} S_{x}^{-} S_{x}^{z} U_{n} = a S_{x}^{42} - b S_{x}^{23} , \quad U_{x}^{+} (-S_{x}^{2} S_{x}^{-}) U_{4c} = b S^{12} + a S_{x}^{33}, \quad A / A$$

where the operators Q^{13} , $Q^{\overline{13}}$, S^{13} , S^{12} , S^{13} ere the spin one operators S^2 , \tilde{S}^2 , \tilde{S}^2 , S^-S^2 , $-S^2S^-$, respectively, in the new representation. The role of the operators 512, 513, 543 as the transition ones between energy levels

$$\begin{aligned} H_{\sigma\alpha}^{\prime\prime} &= -\left(\Delta + \bar{b}\right), \quad H_{\sigma\alpha}^{\prime\prime} &= 0, \quad H_{\sigma\alpha}^{\prime\prime} &= \Delta - \bar{b} \qquad \qquad \text{A4}' \\ \text{of } H_{\sigma\alpha} &= \ln / 10/ \text{ wes stressed in } / 15, 16, 24-25/. \end{aligned}$$

The operator /4/, under the unitary transformation $U \equiv \prod U_{\mathbf{x}}$, takes the form

> $H = H_o + V$. A2/

is the sum as in /2/, when $\overline{H}_{OXC} \rightarrow H_{OXC}$, given by/10/ where Ho and the interaction \overline{V} in /4/ according to /11/ is equal to

$$V = - \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{w}\\ij,pq}} V_{ij}^{*}, \overline{pq}_{ij}^{*}(\mathbf{x}',\mathbf{w}) \mathbf{I}_{\mathbf{x}}^{pq} \mathbf{I}_{\mathbf{x}'}^{ij},$$

$$ij,pq = \{1, 2, 33, 45, 13, 45, 13, 45, 23, 25\}$$

$$I^{i} = \hat{\mathcal{U}}^{\overline{i}\overline{5}} \equiv \overline{[5]}, \quad I^{2} = \hat{\mathcal{U}}^{\overline{i}\overline{5}} \equiv \overline{[5]}, \quad I^{\overline{i}\overline{j}} = 5^{\overline{i}\overline{j}} \equiv \widehat{[9]}. \qquad /n/$$

The non-zero pair interactions in /13/ are :

$$\begin{array}{l} \bigvee_{12, 12}^{+} (x_{1}'x) &= \bigvee_{23, 23}^{+} (x_{1}'x) = \frac{4}{2} \int_{\infty x_{1}'} , \bigvee_{4, 4}^{+} (x_{1}'x) = \frac{3}{4} K_{xx_{1}'} , \\ \bigvee_{12, 12}^{+} (x_{1}'x) &= \bigvee_{123, 23}^{+} (x_{1}'x) = (\frac{1}{2}) \frac{4}{2} \alpha b \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ \bigvee_{12, 12}^{+} (x_{1}'x) &= \bigvee_{23, 12}^{+} (x_{1}'x) = \frac{4}{2} c \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ \bigvee_{12, 12}^{+} (x_{1}'x) &= \bigvee_{23, 12}^{+} (x_{1}'x) = \frac{4}{2} c \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ \bigvee_{12, 12}^{+} (x_{1}'x) &= \frac{1}{2} \sum_{1} C^{2} \left(\int_{\infty x_{1}'} - \frac{4}{2} K_{xx_{1}} \right) + 2 \left(\alpha b \right)^{2} K_{\infty x_{1}'} \right] , \\ \bigvee_{13, 13}^{+} (x_{1}'x) &= \frac{1}{2} \sum_{1} 2 (u b)^{2} \int_{\infty x_{1}'} + \frac{4}{2} C^{2} K_{xx_{1}'} \right] , \\ \bigvee_{13, 13}^{+} (x_{1}'x) &= \bigvee_{13, 13}^{+} (x_{1}'x) = -\frac{4}{2} \left(\alpha b \right)^{2} \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ \bigvee_{2, 13}^{+} (x_{1}'x) &= \bigvee_{13, 13}^{+} (x_{1}'x) = -\frac{4}{2} \left(\alpha b \right)^{2} \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ \bigvee_{2, 13}^{+} (x_{1}'x) &= \bigvee_{13, 13}^{+} (x_{1}'x) = -a b c \left(\int_{\infty x_{1}'} - K_{xx_{1}'} \right) , \\ & \text{Using the (prophics) convention presented in } 1^{27/} , \bigvee_{13} (x) 13/2$$

be rewritten as follows

4. Realization of GSWT for transverse and diagonal operators

From the form of the interaction in /15/ it follows that we have to use in the reduction $^{25/}$ six /maximal possible number / free Green functions G^{ii} of Bose type, corresponding to six transverse spin operators 5^{ii} /24-25,27/;

$$G^{ij}(\tau - \tau') = \exp[(\tau - \tau') H_{oir}^{ij}] [\Pi(ij) \Theta(\tau - \tau') + (\Pi(ij) + A) \Theta(\tau' - \tau)] =$$

$$= \beta^{-A} \sum_{i=1}^{A} \exp[-i\lambda_{ini}(\tau - \tau')] G^{ij}(i\lambda_{ini}) , /16/$$

where

$$\begin{aligned} H_{osc}^{'ij} &= H_{osc}^{'j} - H_{osc}^{'ij}, \quad \Pi(i_j) \equiv \left(\exp\left[\frac{1}{2} + H_{osc}^{'ij} \right] - 4 \right)^{-1}, \\ G_{ij}^{'ij}(i,\lambda_m) &\equiv \left(i_j \lambda_m + H_{osc}^{'ij} \right)^{-1} \end{aligned}$$

and i λ_{uc} is the imaginary Bose frequency.According to the realization of GSWT ^{/24/} in the case S = 1 ^{/25/} and to the definition of the reduction procedure ^{/27/} we obtain the diagrammatic representation of transverse operators Σ^{ij} given in Appendix B : two cases-

particle and hole - are introduced here / as in $^{/27/}$ / for convenience.Analogously as it was done in $^{/27/}$ we get all possible representations for diagonal operators $^{/25/}$

 $Q^{42} \equiv L^{42} \equiv \overline{\{2\}}$, $Q^{23} \equiv L^{23} \equiv \overline{\{2\}}$, $Q^{43} \equiv 4 L^{43} \equiv \overline{\{2\}}$ replacing $\overline{\{4\}}$ by $\overline{\{4\}}$ on the figures with two incoming and one outgoing directed lines in the particle case of Appen dix B.The hole case / $Q^{4} = -Q^{4^2}$ / of representation may be considered in a similar way .From the table of products in App.A and the commutation relations in /25/ seconding to /13/ we obtain the dia-

grammetic representations of $\hat{Q}^{\bar{n_3}}$ /diagonal operator/ in terms of $\bar{(3)}$ with one incomming and one outgoing line

$$\frac{\binom{1}{1}}{\binom{1}{1}} \xrightarrow{(1)} (\frac{1}{1}) \xrightarrow{(1)} ,$$

where 1k = 12,32 .

There it should be noted, that the above described diagrammatic representation of both the transverse and diagonal operators may be employed in the case of more general interaction than that in /13,15/.

The process of the reduction of everages consists of two stages $\binom{277}{}$. At the first one we are using the transverse operators for the reduction. When they are exhausted, i.e., the only diagonal operators remain under the symbol of average, then we employ the analog of GSWT for diagonal operators / for all definitions and notations we refer the reader to $\binom{277}{}$ and here we point out the new aspects for this case/

where the operators Q's run over the set

$$Q_{x}^{(\frac{13}{2})} = -Q_{x}^{(\frac{13}{2})} = Q_{x}^{13} + (\pm) 3 Q_{x}^{5} + (\pm) 2 \qquad //9/$$

The zero-order result for the averages of operators /19/ takes the form :

$$\langle \mathcal{Q}_{\mathbf{x}}^{\left(\overline{\mathbf{x}}\right)} \rangle_{o} = Z_{o}^{-4} \mathcal{D}_{\mathbf{x}}^{\left(\overline{\mathbf{x}}\right)} Z_{o} = Z_{o\mathbf{x}}^{-4} \left\{ \exp\left[\beta(\mathbf{d}_{\mathbf{x}} + \overline{\mathbf{b}}_{\mathbf{x}})\right] + (\pm) \exp\left[\beta(\mathbf{d}_{\mathbf{x}} - \overline{\mathbf{b}}_{\mathbf{x}})\right] \right\}$$

$$\langle \mathcal{Q}_{\mathbf{x}}^{\left(\overline{\mathbf{x}}\right)} \rangle_{o} = Z_{o\mathbf{x}}^{-4} \left\{ \exp\left[\beta(\mathbf{d}_{\mathbf{x}} + \overline{\mathbf{b}}_{\mathbf{x}})\right] + (\pm) \exp\left[\beta(\mathbf{d}_{\mathbf{x}} + \overline{\mathbf{b}}_{\mathbf{x}})\right] - 4 \right\}$$

$$\langle \mathcal{Q}_{\mathbf{x}}^{\left(\overline{\mathbf{x}}\right)} \rangle_{o} = Z_{o\mathbf{x}}^{-4} 2 (\pm) \left\{ \exp\left[\beta(\mathbf{d}_{\mathbf{x}} + \overline{\mathbf{b}}_{\mathbf{x}})\right] - 4 \right\}$$

and

$$Z_{0} = \prod Z_{0x} ;$$

$$Z_{0x} = T_{r} \left\{ e_{xp} \left[\frac{1}{\beta} \left(\Delta_{x} Q_{x}^{*} + \bar{p}_{x} Q_{x}^{*} \right) \right] \right\} = \frac{1}{\beta}$$

$$= 1 + e_{xp} \left[\beta \left(\Delta_{x} + \bar{p}_{x} \right) \right] + e_{xp} \left[\frac{1}{\beta} \left(\Delta_{x} - \bar{p}_{x} \right) \right].$$

The differential operators $D_{\mathbf{x}}^{ij}$ /diagonal reductors /27/ / corresponding to diagonal operators /19/ are to be chosen in the follo-wing way :

$$D_{\infty}^{ij} \equiv \mathcal{D}(Q_{\infty}^{ij}) ;$$

$$D_{\infty}^{i3} \equiv \partial/\partial(\beta J_{\infty}), \quad D_{\infty}^{i3} \equiv \partial/\partial(\beta \bar{p}_{\infty}),$$

$$D_{\infty}^{(i2)} \equiv D_{\infty}^{i3} + (\pm)3D_{\infty}^{\overline{i3}}. \qquad /22/$$

The lattice site indices introduced in /19-22/ are to be cmitted $^{/27/}$ in /18/ after celculations.

In contrast to $^{/27/}$ in the interaction /13, 15/ there are the

operators

$$\hat{Q}_{(3)}^{(3)} = Q_{(3)}^{(3)} - \langle Q^{\frac{1}{2}} \rangle_{o}$$
 (23)

averages of which vanish ,but it is not so,when differential operators /22/ act on them,i.e., the averages $\langle Q^{\{\ell_{3}\}} \rangle_{\lambda}$ in /23/ are to be treated as constants, and this is why the differential operators $p_{\chi^{(3)}}^{\{\ell_{3}\}}$ correspond elso to diagonal ones /23/.

5. Conclusions

This work has first of all the methodical meaning. Though the discussion is restricted to spin Hamiltonian constructed from spin one operators, the procedure described in the sec2.2-4 may be easily reformulated for the case of an arbitrary spin.

Then the uniaxial anisotropy appears in the Hamiltonian as the additional term to that in $^{19/}$, the operators 5^{\pm} , 5^{2} , 5^{2} do not form the closed algebra with respect to the commutation relations. The way of getting the corresponding closed algebra is demonstrated in $^{/24-25/}$ and it is, in general, a Lie algebra of Lie group SU/ $^{/28/}$, where n = 25 + 1.0f course the operators 5^{\pm} , 5^{z} can be taken as the generators for Lie algebra of Lie group SU/ $^{/28/}$.

In contrast to /22-23/ presented here diagrammatic method allows us to construct the diagramma for arbitrary interactions and to arbitrary interaction order according to the rules listed in Appendix B.

In conclusion we would like to point out that in the second part of this paper / reffered to as II / we shall use the presented approach to study the Heiseberg Ferromagnet with uniaxial crystal field. In the limit of the anisotropy constant $D \rightarrow 0$, the correlation functions- transverse and longitudinal-obtained in IT to or -

der $\left({t/z}\right)^2$, where Z is the number of spins interacting with any given spin, take the form of those in $^{/19/}$.

Acknowledgements

The author would like to express his sincere thanks to N.M. Plakids for critical reading of the manuscript and valuable comments.He is also indebted to A.I.Lerkin and A.Pawlikowski for useful discussions. References

- 1. H.k. Child,K.K.Wilkinson,J.W.Cable,W.C.Koehler,E.O.Wollan, Phys. lev.131,922/1963/;G.T.Trammell, Phys.Rev.131,932 /1963/, J.Appl. Phys.31,3625 /1960/;G.Busch, P.Junod, O.Vogt, F.Hulliger, Phys.Lett. 6,79 /1963/;G.Busch, F.Schurb, O.Vogt, F.Hulliger, Phys.Lett. 11,100 /1064/;G.Busch, J.Appl.Phys.38,1386 /1967/;B.R.Cooper, I.S.Jacobs, R.C.Fedder, J.S.Kouvel, D.F.Schumacker, J.Appl.37,1384 /1966/; O.Vogt, R.R.Cooper, J.Appl.Phys.39,1202 /1968/.
- Y.Y.Haieh, L.Blume, Phys. Rev. B 6, 2684 /1972/.
- R.J.Elliot,L.F.Thorpe, J.Appl.Phys.39,802 /1968/.
- 4. F.W.Anderson, Phys. Rev. 115,2 /1959/.
- L.E.Lines, E.D.Jones, Phys. Rev. 139, 1313 / 1965/;141,525 / 1966/;
 R.I. Joseph, Phys. Rev. 138, A1441 / 1965/;H.A.Brown, Phys. Rev. B 4, 115 / 1971/;M.Nauciel-Bloch;G.Sarma, A.Gestets, Phys. Rev. B 5, 4603/1972/;
 D.A.Pink, P.Tremblay, Coned. J. Phys. 50, 1728 / 1972/;
 V.M.Metveyev, Ch.Eksp. Toor. Fiz.65, 1626 / 1973/.
- 6. E.A.Harris, J.Owen, Phys.Rev.Letters 11,9 /1963/; D.S.Rodbell et al., Phys.Rev.Lett.11,10 /1963/; E.F.Bertaut, Solid State Commun. 3,1, /1965/; B.E.Rubinshtein, Fiz.Tverd.Tels 9,1263 /1967/, ibid., 12,3234 /1970/.
- 7. L.Blome, Y.Y.Hsieh, J.Appl. Phys. 40, 1249 / 1969/,
- 8. J.Sivardière, L.Blume, Phys. Rev. B 5, 1126 /1972/.
- H.H.Chen, P.E.Levy, Phys. Rev. Lett. 27, 1363/1971/; J.Sivardière,
 A.N.Derker, E.Wortis, Phys. Rev. B 7, 343 /1973/
- 10.A.Cooke et al., Solid State Commun. 9,519 /1971/.
- 11.T.Lurso, T.Matsubara, J. Phys. Soc. Japan 25, 352 /1968/.
- 12.L.M.Noskova, Fiz.Letalov y Metalloved, 27, 375 /1969/, ibid., 33, 698,

/1972/.

- 13. N.A.Potepkov, Theor. and Math. Phys. /in Russian / 6, 381/1971/.
- 14. J.F.Devlin, Fhys. Rev. B4, 136 /1971/.
- 15. S.B.Haley, P.Erdős, Phys. Rev. B5, 1106 / 1972/.
- 15. M.Tanska.Y.Kondo, Prog. Theor. Fhys. 48, 1815 / 1972/.
- 17. D.N. 2ubarev. Hep. Fiz. Nauk 71, 71/1960/.
- 18. S.V.Tyablikov, Esthods in the Quantum Theory of Magnetism /Flenum, New York, 1967/
- 19. F.G. Vaks, A.T. Larkin, S.A. Pikin, Zh. Eksp. Theor. Fiz., 53, 281/1967/, ibid., 53, 1089 / 1967/.
- J.Solyon, Zh. Eksp. Teor. Fiz., 55, 2355 / 1968/.
- 21. S.L.Giszburg, Fiz. Tverd. Tele, 12, 1805 /1970/.
- M.P.Knachenko, N.F.Dalakhonov, L.V.Kurbatov, Zh.Eksp.Teor.Fiz. 64, 391/1973/.
- V.N.Kitsev, M.F.Kaschenko, L.V.Kurbetov, V.I.Kutiko, V.M.Nowcenko, A.I.Zvyagin, Preprint, FURT, Kharkov, April 1973.
- 24. B.Westwoński, A. Pawlikowski, Phys. Lett. A43, 201/19734
- 25. E.Westweniski, Phys.Lett.A44, 27/19734
- 26. B.Westweniski, JINR, E4-7315, Dubne/1973/. Thys.Lett.A (in print).
- B.Westwenski, JINR, E4-7486, Duns / 1973/, E4-7487, Dubna / 1973/,

Submitted to Acta Physics Polonica.

28 D.P.Gelchen'ko, Compact Lie Groups and Their Representations / in Russian / , Moscow 1970. Ju.B. Humer, A.I.Fet, Theory of Initary Symmetry / in Russian /, Moscow 1970. S.Okubo, Prog. Theor. Phys. 27,5 / 1962 / .

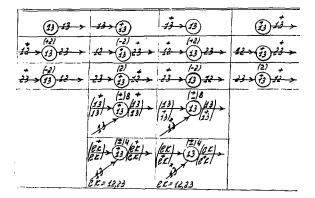
> Received by Publishing Department on December 21, 1973.

Appendix A. Froducts of transverse and diagonal operators

$$s^{12} c^{12} = -q^{12} s^{12} = q^{23} s^{12} = s^{23} s^{13} = 2 s^{12} q^{13} = 2 s^{12} q^{\overline{13}} = 2 s^{12}$$

$$s^{23} q^{23} = -q^{23} s^{23} = -s^{23} q^{12} = s^{13} s^{12} = -2 q^{13} s^{23} = 2 q^{\overline{13}} s^{23} = 2 s^{23},$$

$$2 s^{13} q^{13} = -2q^{13} s^{13} = s^{13} q^{12} = -q^{23} s^{13} = 2 s^{23} s^{12} =$$


$$= 2 s^{13} q^{\overline{13}} = 2 q^{\overline{13}} s^{13} = 2 s^{13},$$

$$2 s^{12} s^{12} = s^{13} s^{13} = 4 p^{3},$$
where p^{4} is the projection operator on the eigenstate

$$|i\rangle_{\kappa} \text{ of } H_{oxc} .$$

·			
Particle case		Hole case	
S ^W as the cres-	S ⁴ as the enni-	S ^ÿ as the anni-	s∛ as the cre-
tion operator	hilation opera-	hilation opera-	ation opera-
of porticle ij"	tor of perticle if	tor of hole ij"	tor of hole it
(12) 12→	-+2->([*] ₁₂)	- 12->(12)	(¹ / ₁₂) ⁺ / ₁₂ →
-23→(12)-13-→	43→(12) +3→(12) +3→(12) +3→	+ (Ad) + 13 -> (12) 23 ->	$\begin{array}{c} \uparrow & \uparrow & \uparrow \\ 23 \rightarrow \uparrow & 12 \rightarrow \end{array}$
	$ \begin{array}{c} + & 1219 \\ 122 \\ 121 \\ 121 \end{array} \rightarrow \begin{array}{c} 12 \\ 12 \\ 121 \\ 121 \end{array} \rightarrow \begin{array}{c} 12 \\ 12 \\ 121 \\ 121 \end{array} \rightarrow \begin{array}{c} 12 \\ 12 \\ 121 \\ 121 \end{array} \rightarrow \begin{array}{c} 12 \\ 12 \\ 121 \\ 121 \\ 121 \end{array} \rightarrow \begin{array}{c} 12 \\ 12 \\ 121 $	$\begin{array}{c c} 12 & 72 & 0\\ 12 & 12 & 12\\ 12 & 12 & 12\\ 12 & 12 & $	
	$ \begin{array}{c} \left(\frac{e_{k}}{e_{k}}\right) & \left(\frac{1}{2}\right) \\ \left(\frac{e_{k}}{e_{k}}\right) & \left(\frac{1}{2}\right) \\ \left(\frac{e_{k}}{e_{k}}\right) & \left(\frac{1}{2}\right) \\ \left(\frac{e_{k}}{e_{k}}\right) \\ \left(\frac{1}{2}\right) \\ \left(\frac{e_{k}}{e_{k}}\right) & \left(\frac{1}{2}\right) \\ \left(\frac{1}{2}\right$	$ \begin{array}{c} \left(\frac{e\kappa}{e^{k}}\right) & \left(\frac{1}{2}\right)\frac{e^{k}}{e^{k}} \\ \left(\frac{e^{k}}{e^{k}}\right) & \left(\frac{1}{2}\right)\frac{e^{k}}{e^{k}} \\ \left(\frac{1}{2}\right)\frac{e^{k}}{e^{k$	
	ek= 23,20	ex=2:31	
(23) 23 >	<u>-23→(23)</u>	23 23	(23)-23->
$\begin{array}{c} \stackrel{(n)}{12} \rightarrow \stackrel{(n)}{23} 13 \rightarrow \end{array}$	421 43 → (23) 12 →	13 - 23 12 >	12 × 23 13 >
	$ \begin{pmatrix} +\\ 23\\ 23\\ 23 \end{pmatrix} \rightarrow \begin{pmatrix} +\\ 14\\ 23\\ 23\\ 23 \end{pmatrix} \rightarrow \begin{pmatrix} +\\ 14\\ 23\\ 23\\ 23 \end{pmatrix} \rightarrow \begin{pmatrix} +\\ 14\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$	$\frac{\binom{23}{23}}{\binom{23}{23}} \rightarrow \frac{\binom{2}{2}\binom{4}{23}}{\binom{23}{23}} \rightarrow \frac{\binom{23}{23}}{\binom{23}{23}} \rightarrow \frac{\binom{23}{23}}{\binom{23}{23}}$	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{ ec }{ec } \rightarrow \frac{(1)2}{(23) ec } \rightarrow \frac{(1)2}{(ec) } \rightarrow ($	
	928 EK = 12,31	98 e c = 12,31	

Appendix B. Disgragmatic representation of transverse operators

