СООБЩЕНИन
 ОБЪЕАИНЕННОГО
 ИНСТИТУТА
 ЯАЕРНЫX ИСС^ЕАОВАНИЙ

АУБНА

$951 / 2-74$
B.Westwanski

STANDARD-BASIS OPERATOR METHOD
IN THE GREEN-FUNCTION DIAGRAM
TECHNIQUE OF MANY BODY SYSTEMS. I

$197-3$

ААБОРАТОРИА ТЕОРЕТИЧЕСНОЙ

B. Westwański*

STANDARD-BASIS OPERATOR METHOD

IN THE GREEN-FUNCTION DIAGRAM TECHNIQUE OF MANY BODY SYSTEMS. I

* Permanerit addr.: Instytut Fizyki, Uniwersytet Śiąsi, Katowice, roland.

1. Introduction

The importance of crystal field effects in wacnetic averials has long been recognized. For entain rare-earth compounds, puch as those of NaCl structure with eroup-V anlons,it is possible for the cryatal ficld to be compared to or even doninant ovcr the exchance interaction between the rare-earth ions. Thus, the cryatal field is expected to play a very important role in the nature of the macroacoptc magnetic properties in such moterials $/ 1 /$. Theory of these substances 1s given and quoted in $/ 2 /$. Lore complicated nechanisus, e.ge,orbital efiects on exchange $/ 3 /$, biquadratic exchance $/ 4 /$ can be as larke as, or even larger than the exchance interaction.

Isotropic biquadratic interactions of the form $K\left(S_{x} \zeta_{x}\right)^{2}$, in eddition to the usual Heisenbere bilinear anes $] \boldsymbol{S}_{x} \cdot \mathcal{S}_{x}$. have been of current theoretical interest ${ }^{/ 5 /}$, since Harris wid owen, Rodbell et al.,Bertaut and Fubinghtein $/ 6 /$ poited out that they could
hbve simpiricant effects on the magnetic properties of antiferromegneto, Iike ho, α - 1 ins, EuSe, and ferrimagnets.

The authors of $/ 7 /$ noted that since two order parameters et least are to be considered for auch syatems / that is $\left\langle S^{2}\right\rangle=m$ and $\left\langle 5^{2}\right\rangle-\frac{1}{3} S(S+1)=Q \quad /$, ordering in the quadrupolar uniaxial parameter Q fisht occur as a separate phase transition.

Quadrupoler ordering in magnetic crystals hss been investigeted theoretically $/ 8-9 /$ in connection with experimental reaults on magnetic and orystallographic/multiple, separate / phase transitions in some reare-earth componnde such as $/ 10 / \mathrm{DyVO}_{4}$. A general purely quediupolar system may have up to $21+1=5$ independent, nanzero order parameters /9/, though this number may often be reciuced by a judtcious chotee of exes,when the system possesges appreciable sydmetry.The asymuetry biaxiel parameter $P=\left\langle 5^{2}+5^{2}\right\rangle=\left\langle 5^{\frac{2}{n}}-5^{2}\right\rangle$ doeo not, in gom neral, vanioh and both P and Q nay well be necesaary /9/ to describe states of quadrupolar onder in lowmsymetry megnetic crystals such as the raremearth vanadatea, phoaphatea, and areenatea.

The mathematicel methods employing in the theoreticel papers cited above and in $/ 11-16 /$ are those of the double-time temparature dependent Green functions /17/ or Bogoliubov variational principled $18 /$. The diegramatic method of Vaks et al. $/ 19 /$ was applied to the invegtigation of Helsenberg /Anti-/ Ferromagnet with singlemion auisutropy in /20-22/: Solyom conaldarg ainglemion enisotropy as a perturbation, Ginzburg has been celculated correlation function $\left\langle 5^{\prime \prime} ; S^{+}\right\rangle$in molecular field approximation taking into eccount the andsotropy term exactly and matrix form for the operatore $5^{*} 5^{2}$. Koschenko et al. /22/ have also considered this term eza ctily und analyzed collective excitatians and their dampiog. However they state that the inclusion of the singlemion anieotropy term into
zero order Hemiltonien given riac to the absence of ar: anslog of Wick theorem and in order to calculate blocks, containing the tranaverse components of spin operstors it is required to use the definition of T-ordered product of operators:

$$
T\left(S^{\alpha_{1}}\left(t_{1}\right) \cdots S^{x_{n}}\left(i_{m}\right)\right)=\sum_{p} \theta\left(t_{1}-t_{1}\right) \cdots \theta\left(t_{n-n}-t_{n}\right) S^{\alpha_{1}}\left|t_{1}\right| \cdots S^{\alpha_{n}}\left|t_{n}\right|
$$

where sumaing runs over all possible permutatians of the "times " \dagger_{j} and $\theta\left(t_{i}-t_{j}\right)$ is Heaviside's function.

Kitaev et al. $/ 2 \$ /$ hove celculated irreducible polarization part
\sum in zero order and obtained excitation spectrum, when zero order Hemiltonien conteins $-\varepsilon \sum_{f}\left(S_{f}^{2}-5_{f}^{2}\right)$ In addition to that in $/ 22 /$: they diagonalize this zero onder Hariltonian and then epply the procedure of $/ 22 /$.

In this paper we present the perturbation theory for arbitrary spin Hamiltonians with $S=1$ on the basis of general statistical Wick theorem / GSWT / /24/ and its application to apin Hamiltonians for $s=1^{/ 25 /}$.According to $/ 24-25 /$ the statement of the authors of $/ 22 /$ on the nonexistence of an analog of wick theorem is not valid.

Detailed discuasion of GSHT $/ 24 /$ for transverse and diaganal operators is given by the exgmple of the Hamiltonians of Andersan and Hubbard type in /26-27/: this case may be conaldered as a jenerel ane in such a aense, that the aet of the tronsverae operatora consiata of the Fermi and apin type operators, that has an influence on the character of realizetion of GSNT.

This orticle is organized as follows: In sec. 2 and 3 we decompose the Hemiltonien into the unperturbed and interaction parte and represent the laat term by the otandard-basia operatora /15,24-25/, reapectively.In sec. 4 the realization of GSWT for trapaverse and dis-
goal operators is commented. Finally, in Appendix B the rules for draw w ing of the graphs, holding for arbitrary interantim, are obtained.
2. Decomposition of Hamiltonian

Let us consider a system of ions, an translationglly invariant lattice in uniaxial D and biaxial E crystal fields,interaacting in pairs according to the following Hamiltonian

$$
\begin{aligned}
& \bar{H}=\sum_{\alpha}\left[-h s_{x}^{2}-0 \sum_{S_{\alpha}^{2}}^{2}-\frac{1}{2}\left[\left(s_{\alpha}^{2}+\xi_{\alpha}^{2}\right)\right]+\right. \\
& \left.-\frac{1}{2} \sum_{x+x^{\prime}}[]_{x \times 1} \xi_{x_{x}} \cdot \xi_{x^{\prime}}+k_{x=1}\left(j_{x} \cdot \xi_{x}\right)^{2}\right] \text {, }
\end{aligned}
$$

ware h to en external nematicic feed, $]_{x x^{\prime}}$ end $K_{x} x^{\prime}$ arc usual Heisenberg and biquadratic exchange interactions,respectively.The above Hamiltonian represents and contains the cases of conaiderable physical interest $/ 2-9,11-16,20-22,23 /$. Therefore it seems very required to construct a systematic perturbation theory for asch Hamiltonian, due to which a part of Hamiltonian /1/ as large as possable could be included into zero order Handltonian.This becomes possable because of the formulation of GSHT in /24/. According to $/ 24 /$ by unperturbed hamiltonian we can mean an arbitrary part of Hamiltosian, which has the form

$$
\begin{equation*}
\bar{H}_{0}=\sum_{x} \bar{H}_{0 x} \tag{1}
\end{equation*}
$$

where \vec{H} or is one-lon Healltonien and can be a linear selt-Exijoint combination of nan matrices, or that of spin operators. Cf course
 some order parameters. For example, the mean field $\left.\sum_{x^{\prime}}\right]_{x} x^{\prime}\left\langle S^{2}\right\rangle_{0}$ in $/ 19 /$ corresponds to the order parameter $\left\langle 5^{2}\right\rangle^{x^{\prime}}$.

From the mathematical point of view one may considered the more peneral single-syaten operator $/ 15 /$ than that in $/ 1 /$. Fut then, as It was pointed out in $125 /$, we can always find e unitary transformation U_{x} and constant C so that $U_{x}^{+} \overline{H o s e}_{x} U_{x} C$ becomes of the type / for $S=1 /$

$$
\begin{equation*}
H_{0 x}=-\Delta s_{x}^{2}-\bar{D} s_{x}^{2} . \tag{131}
\end{equation*}
$$

Expresedre the scalar product ζ_{x}. ζ_{x} in terns of component $S^{ \pm}, S^{z}$ we con rewrite the Hamiltonian /:/ in the form

$$
\bar{H}=\bar{H}_{0}+\bar{V}+C
$$

where zero-order Hamiltonian \vec{H}_{e} is given by $/ 2 /$ with

$$
\vec{H}_{0 x}=-\bar{h} S_{x}^{2}-\vec{D} S_{x}^{2}-\frac{1}{2} \vec{E}\left(S_{x}^{2}+S_{x}^{2}\right)
$$

the interaction term :

$$
\begin{aligned}
& \bar{V}=-\frac{1}{2} \sum_{x \neq x^{\prime}}\left\{\frac{3}{2} K_{x x^{\prime}} \hat{b_{x}^{2}} \hat{S}_{x^{\prime}}+\left(\eta_{x x^{\prime}}-\frac{1}{2} K_{x x^{\prime}}\right) \hat{S}_{x,}^{2} \hat{S}_{x^{\prime}}^{2}+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(J_{x x^{\prime}}-K_{x x^{\prime}}\right)\left[5_{x}^{-} 5_{x}^{2}\left(-S_{x^{\prime}}^{2}>_{x^{\prime}}\right)^{+}+\left(-S_{x}^{2} 5_{x}\right)\left(S_{x^{\prime}}^{-} 5_{x^{\prime}}^{2}\right)^{+}\right]\right\}
\end{align*}
$$ and constant \bar{C} is equal to

$$
\begin{aligned}
& \left.+\frac{1}{4} K_{x x^{\prime}}\left\langle j_{x}^{2}\right\rangle_{0}\left\langle S^{2}+\right\rangle_{0}-\frac{1}{4} s(S+1) K_{x x x^{1}}\right\} .
\end{aligned}
$$

In the following this constant in /4/ will be dropped. The effective. parameters $\bar{h}, \bar{D}, \vec{E}$ depend on the mean fields (Jo $-\frac{1}{2} K_{0}$) m_{0} $\frac{3}{1} K_{0} Q_{0}, \frac{1}{4} K_{0} P_{0}$, correapanding to the order parameters

$$
\left.m=\left\langle s^{2}\right\rangle, Q=\left\langle s^{2}-\frac{1}{3} s(s+1)\right\rangle, P=\left\langle 5^{2}+5^{2}\right\rangle=\left\langle 5^{2} x-5^{\frac{1}{5}}\right\rangle\right\rangle|7|
$$

In the following way :

$$
\bar{h}=h+\left(J_{0}-\frac{1}{2} k_{0}\right) m_{0}, \bar{D}=D+\frac{2}{2} k_{0} Q_{0}, \quad E=E+\frac{1}{4} K_{0} P_{0} \quad / 8 /
$$

Here m_{0}, Q_{0}, P_{0} are the averages / denoted by $\langle\cdots\rangle$, / /7/ over the unperturbed Hamiltonian $/ 2,5 /$ and $J_{0}=\sum_{x^{4}} J_{x} x^{1}$,

$$
K_{0}=\sum_{x^{1}} K_{x x} \quad \text {.The operators } \hat{S}_{x}^{2}, \hat{s}_{x}^{2}, \hat{S}_{x}^{2}, \hat{S}_{x}^{+} \text {in } / 6 i
$$

are of the type

$$
\hat{A}_{x}=A_{x}-\langle A\rangle_{0} .
$$

/9/

Such a procedure has been done for operators, which have the nonzero diaconal part in the representation, where Haw in $/ 5 /$ is iagonil /from now on all further considerations will be valid for $\mathrm{S}=1 /$
3. Interaction in the standard-basis operators/ in diagonal reprosentation /
The unitary transformation U_{x} diagonalizing the aubsyatem Homiltonian /5/ has the form of the 3×3 matrix

$$
U_{x}=\left|\begin{array}{ccc}
a & 0 & -b \\
0 & 1 & 0 \\
b & 0 & a
\end{array}\right|
$$

where $\quad a^{2}=(a+\vec{h}) / 2 d, b^{2}=(\Delta-\vec{h}) / 2 \Delta, \Delta^{2}=\bar{h}^{2}+\vec{E}^{2}, a^{2}-b^{2} \equiv c$.

$$
\begin{gathered}
U_{x}^{+} H_{a x} U_{x} \equiv H_{o x}=-\Delta Q^{13}-\bar{D} Q_{x}^{13}, \\
U_{x}^{+} S_{x}^{2} U_{x}=C Q_{x}^{13}-a b\left(S_{x}^{13}+S_{x}^{+13}\right), U_{x}^{+} S_{x}^{2} U_{x}=Q_{x}^{13} \\
U_{x}^{+} S_{x}^{2} U_{x}=2 a b Q_{x}^{13}+a^{2} s_{x}^{13}-b^{2} s^{+13} \\
U_{x}^{+} S_{x}^{-} S_{x}^{2} U_{x}=a S_{x}^{12}-b S_{x}^{+23}, U_{x}^{+}\left(-S_{x}^{2} s_{x}^{-}\right) U_{x}=b s^{+12}+a s_{x}^{23},
\end{gathered}
$$

where the operators $Q^{13}, Q^{\sqrt{3}}, S^{13}, S^{12}, S^{23}$ are the spin ane operators $S^{2}, S^{2}, S^{2}, 5^{2},-5^{2} 5^{2}$, respectively, in the new representation. The role of the operators $S^{12}, 5^{23}, 5^{13}$ as the transition ones between energy levels

$$
H_{0 x}^{\prime \prime}=-(\Delta+5), \quad H_{0 x}^{\prime 2}=0, \quad H_{8 x}^{13}=\Delta-5
$$

of $\mathrm{H}_{\text {ox }}$ in /10/ was stressed in /15,16,24-25/.
The operator /4/, under the unitary trangormetion $U \equiv \prod_{x} U_{x}$, takes the form

$$
\begin{equation*}
H=H_{0}+V, \tag{122}
\end{equation*}
$$

where H_{0} io the sum as in $/ 2 /$, when $H_{o x c} \rightarrow H_{o x}$, given by/10/ and the interaction \vec{V} in $/ 4 /$ according to $/ 11 f$ is equal to

$$
\begin{aligned}
V=- & \sum_{x+2 x^{2}} V_{i j, p q}^{+}\left(x^{1}, x\right) I_{x}^{p q} I_{x^{\prime}}^{+} \\
& \left.\dot{4}, p q=\left\{1,9,13,13_{13}^{+}, 41,45,23,2^{+}\right\}\right\}
\end{aligned}
$$

$$
I^{3}=\hat{Q}^{13} \equiv\left[13, I^{2}=\hat{Q}^{13} \equiv \sqrt{13}, \quad I^{i j}=S^{i j} \equiv \text {. } 3 .\right.
$$

The non-zero pair interactions in/13/ are :

$$
\begin{aligned}
& V_{12,-12}^{+}\left(x^{\prime}, x\right)=V_{23,23}^{+}\left(x^{\prime}, x\right)=\frac{1}{2} J_{x,} x^{\prime}, V_{1,1}^{+}\left(x_{1}^{\prime}, x\right)=\frac{3}{4} K_{x x_{1}^{\prime}},
\end{aligned}
$$

$$
\begin{aligned}
& V_{: 2,23}^{+-}\left(x^{\prime}, x\right)=V_{23,4}^{+}\left(x^{\prime}, x\right)=\frac{1}{2}, c\left(J_{x x^{\prime}}-K_{x, x^{\prime}}\right), \\
& \dot{W}_{1}^{+}{ }_{2}^{-}\left(x^{2} \cdot x:=\frac{1}{2} L^{-} c^{2}\left(y_{x x^{\prime}}-\frac{1}{2} K_{x x 1}\right)+2(a \cdot b)^{2} K_{x x^{\prime}}\right] \text {, } \\
& \left.\left.V_{13,13}^{+}-\overrightarrow{x_{1}^{\prime}, x^{\prime}}=\frac{1^{-}}{2}-9(u v)^{2}\right]_{x x^{\prime}}+\frac{1}{2} C^{2} K_{x x^{\prime}}\right], \\
& V_{13}^{+}, A_{3}^{+}\left(x^{1}, x\right)=V_{13}^{+},-\frac{13}{}\left(x^{1}, x\right)=\frac{1}{2}(a b)^{2}\left(J_{x, x^{\prime}}-\left(x_{x} x^{\prime}\right),\right. \\
& V_{2}^{+}, \overline{a_{3}}\left(x^{\prime}, x\right)=V_{13,2}^{*}\left(x^{\prime}, x\right)=-a b c\left(J_{x x^{\prime}}-k_{x x^{\prime}}\right), \quad \text { 价 }
\end{aligned}
$$

Uaing the craphical convention presented in /27/, V in/13/may be rewritten as follows
$V=$ (1)

+ (1) \sim моn $(4)+$ (1)

+ (13)

4. Realization of GSHI for transverse and diagonal operators

From the fomp of the interaction in /15/ it follows that we have to use in the reduction /25/ six /maximal poesible number / free Green functions $G^{\prime!1}$ of Bose type, correaponding to aix traraverse spin operators $S^{\ddot{\text { ug }}} \quad / 24-25,27 /$:

$$
\begin{aligned}
& G^{\ddot{j}}\left(\tau-\tau^{\prime}\right)=\exp \left[\left(\tau-\tau^{\prime}\right) H_{o x}^{\prime} i_{i}^{j}\right]\left[\eta(i j) \theta\left(\tau-\tau^{\prime}\right)+\left(\eta\left(i_{j}^{j}\right)+1\right) \theta\left(\tau^{\prime}-\tau\right)\right]= \\
& =\beta^{-4} \sum_{i+\infty} \exp \left[-i \lambda_{\mu}\left(\tau-\tau^{\prime}\right)\right] G^{\dot{d}}\left(i \lambda_{\operatorname{man}}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
& G^{i j}\left(i \lambda_{m}\right) \equiv\left(i \lambda_{m}+H_{o x}^{i j}\right)^{-1} \\
& \text { 17/ }
\end{aligned}
$$

and $i \lambda_{\text {us }}$ is the imeginary Bose frequency.According to the realization of GSVF /24/ in the case $S=1 / 25 /$ and to the definition of the reduction procedure $/ 27 /$ we obtain the diagremmetic representa tion of trancyerse operators $\quad \boldsymbol{y}^{\ddot{q}}$ given in Appendix B : two casesparticle and hole - are introduced here / as in ${ }^{\text {/27/ / for conve- }}$ nience.Analogonsly as it was done in $/ 27 /$ we cet all possible repreaentations for diogonal operators /25/

$$
Q^{12} \equiv L^{12} \equiv 12, \quad Q^{23} \equiv L^{23} \equiv 23, \quad \hat{Q}^{43} \equiv \frac{1}{4} \hat{L}^{13} \equiv 13
$$

replacing $\rightarrow i+(\mathbb{i} \rightarrow$ on the figures with two incoming and one outgoing directed lines in the particle case of appen dix B.The hole case / $Q \ddot{d}=-Q^{j i} /$ of repreaentation may be cansidered in a similar way. From the table of producta in App.A and the comutation relations in $/ 25 /$ eccording to $/ 13 /$ we obtain the dia-
gramatic representations of $\hat{Q}^{\overline{13}}$ /diagonal operator/ in terns of [园 with ane incoming and one outgoing line

where $1 k=12,32$.
There it should be noted, that the above described diagrammatic representation of both the tranavierge and diagonal operators may be employed in the case of more ceneral interaction than that in / $13,15 /$.

The process of the reduction of averages consists of two stages /27/. At the first ane we are using the transverse operators for the reduction. When they are exheusted,i,e., the only diagonal operators remain under the symbol of average, then we employ the analog of GSWI for diaconal operators for all definitions and notations we refer the reader to $/ 27 /$ and here we point out the now aspects for this case/

$$
\begin{aligned}
& \left\langle Q_{1,1}^{u} Q_{2}^{b} \cdots Q_{n}^{x}\right\rangle_{0}=\left\langle Q_{1}^{a} Q_{i}^{b} \cdots Q_{n}^{x}\right\rangle_{0}+ \\
& + \\
& \left\langle Q_{1}^{a} Q_{2}^{b} \cdots Q_{n}^{x}\right\rangle_{0}+\cdots+\left\langle Q_{1}^{a} Q_{2}^{b} \cdots Q_{\mu-1}^{n-1} Q_{n}^{x}\right\rangle_{0}+ \\
& \\
& +\left\langle Q_{1}^{a} Q_{2}^{b} \cdots Q_{n}^{x}\right\rangle_{0},
\end{aligned}
$$

where the operators Q 's run over the set

$$
\begin{gathered}
\mathcal{Q}_{x}^{13}, Q_{x}^{\overline{3}}, \\
Q_{x}^{(12)}=-Q_{x}^{\left(\frac{12}{23}\right)}=Q_{x}^{13}+(\pm) 3 Q_{x}^{\overline{3}}+(F) 2
\end{gathered}
$$

The zero-order result for the averages of operutors/19/ takes the form :
 201
$\left\langle G_{x}^{(6 i)}\right\rangle_{0}=\Sigma_{:}^{-1}\left(D_{x}^{(123)}+(\mp) 2\right) Z_{0}=Z_{0 x}^{-1} \cdot 2(\pm)\left\{\exp \left[3\left((\pm) \Delta_{x}+\bar{D}_{x}\right)\right]-1\right\}$ and

$$
\begin{aligned}
& Z_{0}=\prod_{x} Z_{0 x} ; \\
& Z_{0 x}= T_{r}\left\{\exp \left[p^{3}\left(\Delta_{x} Q_{x x}^{n 3}+\bar{D}_{x} Q_{x}^{\sqrt[13]{x}}\right)\right]\right\}= \\
&= 1+\exp \left[\beta\left(\Delta_{x}+\bar{D}_{x}\right)\right]+\exp \left[-\beta\left(\Delta_{x}-\bar{D}_{x}\right)\right] .
\end{aligned}
$$

The differential operators $D_{x}^{\text {in }}$ /diagonal reductors $/ 27 /$ / caresponging to diagonal operators /19/ are to be chosen in the folio wing way :

$$
\begin{gather*}
D_{x}^{i j} \equiv D\left(Q_{x}^{i j}\right) ; \\
D_{x}^{13} \equiv \partial / \partial(3 d x), \quad D_{x}^{\sqrt{3}} \equiv 0 / O\left(s \bar{D}_{x}\right), \\
D_{x}^{(12)} \equiv D_{x}^{13}+(\pm) 3 D_{x}^{\sqrt[13]{3}} . \tag{1221}
\end{gather*}
$$

The lattice site indices introduced in /19-22/are to be omitted $/ 27 /$ in /18/ after calculations.

In contrast to $127 /$ in the interaction /13,15/ there are the
operotors

$$
\hat{Q_{x}}\left(\frac{\sqrt{3}}{\sqrt[3]{3}}\right)=Q_{x}^{(\sqrt{\sqrt[3]{3}})}-\left\langle Q^{\frac{\sqrt{3}}{3}}\right\rangle_{0}
$$

averages of which vanish , but it is not so, when differential operators /22/ act on them,i.e., the sverages $\left.\left\langle Q^{(\overrightarrow{13}}{ }_{2}^{3}\right)\right\rangle_{0}$ in $/ 23 /$ are to be treated as conatents, and this is why the dilferential opertitors $D_{x}^{\left(\sqrt{n_{3}}\right)}$ correspond elso to aiegonal ones /23/.
5. Conclusions

This work hes firat of all the methodical meaning. Though the discussion is restricted to spin Hamlitonian constructed from spin one operators, the procedure described in the aecs,2-4 may be easily reformulated for the case of an arbitrary spin.

Then the uniaxial anibotropy appears in the Hamiltonian as the aiditional tern to that in $/ 19 /$, the operetore $S^{ \pm}, S^{2}, S^{2}$ do net form the closed alcebre with respect to the comutation relations. The way of getting the corresponding closed algebra is demonotrated in /24-25/ and it is, in Eencral, a Lie algebre of Lie group $50 / \mathrm{n}^{1 / 28 /,}$ where $n=2 S+1.0 f$ course the operatore $S^{ \pm}, S^{2}$ can be taken es the generators for lie algebra of Lie group SU/2/ / $28 /$.

In contrest to $/ 22-23 /$ presented here diagramstic method allowe us to construct the diourams for arbitrary interactions and to arbitrary intersction order according to the rules listed in Appendix B.

In conclusion we would like to point out that in the second part of thia paper / reffered to as II / we shall uae the presented approach to study the Heiaeberg Ferromagnet with uniexial cryatal field. In the limit of the andsotropy constant $D \rightarrow 0$, the correlation functions- transverse and langitudinal-obtained in IT to or -
der $(1 / 2)^{2}$, where Z is the number of opins interacting with any given spin, take the form of those in $/ 19 /$.

Acknowledeements
The author would like to express his sincere thanks to
N.M. Plakida for aritical readins of the manuscript and valuable comments.He ts also Indebted to A.I.Larkin and A.Pawlikowsti for useful discussions.

Heferonces

1. H. K, Child, K,K. Wilkinson, J.W. Cable, W.C.Kaebler, E.O.Hollen, Phys. 1ev.131,922/1953/;G.T.TTamell, Phys.Rev.131,932/1963/, J.Appl. Phys. 31, $3625 / 1960 / ; G$ Buach, F'.Junod, O. Voct, F. Hullider, Fhys. Lett, E,79/1963/;G.Eusch, r_{s} Schurb, O,Vogt, F.lluiliger,Fhys.Lett. 11,100 /1964/;G.Busch, J. App1. Fhys.38, 1386/1967/;B. R. Cooper, I.S.Jacoba, R.C.Fedder,J.S.Kouvel,D.F.Schumacker,J.Appl.27,1384/1956/; O.Voct, H.R.Cocper, J. Appl.Fhys. 39, 1202/1968/.
2. Y.Y.Haleh, his Blume, rhya, Kev.B 6, 26 R4 /1972/.
3. R.J.Elllot, i.,F.Thorpe, J.Appl.Phys. $39,002 / 1968 /$.
A. F. H, Anderoan, Phys.Rev. $115,2 / 1959 /$.
4. Li.E.Lines, E.D.Jones, Phya. Rev. 139, 1313/1965/; 141,525/1966/; R.I. Joseph, Fhys.Rev. 13R, A1441 /965/; H. A. Brown, Fhys.Rev.B 4, 115 /1971/;H.Nouciel-Bloch;G.Sarma, A.Castets,Fhys.Rev.B 5,4603/1972/; D.A.Fink,F.Tremblay, Canac.J.Fhys. 50, 1728 /1972/; V.M.Matveyev, Sh. Eksp.Tcor.Fiz.65,1626/1973/.
G. E.A.Harris, J.Owen, Thys. Fev.Letters 11,9/1963/;D.S.Rodbell et al., I'hys.Rev.lett.11, $10 / 1963 / ;$ E.F.Eertaut, Solid State Commun. 3, 1, /1965/;B.E. Fubinshtein, Fiz.Tverd.Tela 9, 1263/1967/,ibid., $12,3234 / 1970 /$.
5. Li. Blume, Y.Y.Hsieh, J.Appl. Phys. $40,1249 / 1969$,
E. J.Si vardière, hi.Blume, Phys. Rev.B 5, 1126 /1972/.
6. H.H.Chen, P.L..Levy, Phys.Rev.Lett. 27,1383/1971/;J.Sivardière, A.N. Berker, Li. ${ }^{\text {Wortis, Phys.Rev.B 7, } 343 / 1973 / ~}$
10.A.Cooke et al., Solid State Commur . 9,519/1971/.
11.T. ifurgo, T. hiatsubara,J. Fhya.Soc. Jepan 25,352/1968/.
12.1.N.Norkova, Fiz. Ketalov y Hetalloved, 27,375/1969/,1bid., 39,698, /1972/.
7. H.A.Potapkov, Theor, end Math. Phys. /in Kussian/ E,3R1/1971/. 14. J.F.Deviln, Fhys. Fev. 14 ; $136 / 1971 /$.
8. S.B.Haley, P.Ercós, Fhys,Rev.B5, $1106 / 1972 /$.

9. D.N. ©ubarey, tiep. Fiz. Nauk $71,71 / 1960$.
10. S.Y.Tyabilkov, Lethode in the quantum Theory of Nagnetism /P1enum, New York, 1967/
11. FoG.Vaiks, A. T, Larkin, S.A.P1kin, Zh, Eksp.Theor. Piz., 53, 281/1967/, ibid.,53, $1089 / 1967 /$.
12. J.Solyom,Zh.Eksp.Teor.Fiz.,55,2355/196R/.

 391/1973.
 A.I.Zvyagin, Fraprint, FTMAT, Kharkov,Aprd1 197).

13. E*Hestwariski, Phys*Lett .Ad4, 27/19734
14. B.Westweriski, JINR,EA-73i5, Dubna/1973/.inys.Lett. Λ (Ln print).
15. E.Westwanski, JWH, E4-7486, Dunu / 1973/, E4-7487, Dubna/1973/, Submitted to atta Fhyice Polonica.

2B D.P.Gelobenl ko, Compact he Groupe and Their Repregentaif pho $/$ In Russien / , tioscow 1970. Ju. B.inumer, A.I.Fet, Theody of Initary Symatry / in Rusaimis /, Hobeow i970. S.Okubo, Prog. Theor, Mky $27,5 / 1962$,

Appendix 4 . Iroducts of tranevarge and diagonal operators

$$
\begin{aligned}
& S^{12} Q^{12}=-Q^{12} s^{12}=Q^{23} s^{12}=s^{23} s^{13}=2 s^{12} Q^{13}=2 s^{12} Q^{\overline{13}}=2 S^{12} \\
& s^{23} q^{23}=-Q^{23} s^{23}=-s^{23} Q^{12}=s^{13} s^{+12}=-2 q^{13} s^{23}=2 Q^{13} s^{23}=2 s^{23} \text {, } \\
& 2 s^{13} Q^{13}=-2 Q^{13} s^{13}=s^{13} Q^{12}=-Q^{23} s^{13}=2 s^{23} s^{12}= \\
& =2 s^{13} Q^{\sqrt{3}}=2 q^{\sqrt{3}} s^{13}-2 s^{13} . \\
& 2 \stackrel{+}{\mathrm{s}}^{12} \mathrm{~s}^{12}=\stackrel{+}{\mathrm{s}^{13}} \mathrm{~s}^{13}=4 \mathrm{r}^{1}, \mathrm{~s}^{12} \stackrel{+}{\mathrm{S}}^{12}=\stackrel{+}{\mathrm{s}^{23}} \mathrm{~s}^{23}=2 \mathrm{P}^{2}, \\
& 2 \mathrm{~s}^{23} \mathrm{~S}^{+} 23=\mathrm{s}^{13} \mathrm{~S}^{+13}=4 \mathrm{P}^{3} \text {, } \\
& \text { where } P^{1} \text { is the projection operator on the eigenstate } \\
& |i\rangle_{x} \text { of Hos . }
\end{aligned}
$$

Appendix B.Diegranmatic representution of transverse operatore

Particle case		Hole case	
$S^{i j}$ as the crestion operator of ${ }_{\mu}$ purticle ij ${ }^{\prime}$		$\begin{aligned} & s^{4 /} \text { as the anni- } \\ & \text { hilotion opera- } \\ & \text { tor of, hole } 1 j^{\prime \prime} \end{aligned}$	$\begin{aligned} & s^{+i} \text { as the cre- } \\ & \text { otion opera- } \\ & \text { tor of hole if } \end{aligned}$
(12) $12 \rightarrow$	$\xrightarrow{+2}$ (12)	$\underset{i x}{t}(12)$	
$-23 \rightarrow(12)+3 \rightarrow$	$\xrightarrow{63} \rightarrow-\left(\frac{61}{32}-63\right.$	$\xrightarrow[\rightarrow+(12)^{+}]{+3}$	$\xrightarrow[2]{4} \rightarrow\binom{4}{12} \rightarrow$
(23) 23	$\xrightarrow{23}$ (23)	$\xrightarrow{33}$ (23)	
$12 \rightarrow \text { (23) } 13 \rightarrow$	$\xrightarrow{13} \rightarrow\binom{182}{53}$	$\underset{13}{+}-(23)+12$	
	$\left(\begin{array}{ll} + \\ (23) \\ 23 \end{array}\right) \rightarrow\left(\frac{+14}{2}\right)\left(\frac{23}{23}\right) \rightarrow$		

