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A series of problems do exist in nuclearophysics;with phy-

sloal systems having no central symmetry. In these oases £inding

solution to Schrodinger equation for the wave function ¥ or

-the Lippmann-Schwinger equation for the t-matrix as_a series over

eigenfunctions of angular momentum may'appear to be,noneffective.V
vExamplesAare: motion of a particle in the noncentral potential',
as well as the scattering oharacterized notAby orbital momentum
but definite momentum value,.i. e.,the soattering at rather high

energies. In the latter oase at a . fixed energy the convergence

~of partial wave expansion is “defined 1in general by range of forees“

At lon energies and for short-range interaction potential we may
restrict ourselves,as 1s well known,to a small amount of. partial

waves and so deal with solving small number of the one-dimensio—'

,nal‘equatione; At very high energies ‘and small scattering angles,

when the eikonal approximation works, the partial wave expansion
may be avoided, However the region of intermediate angles and
energies does . exist where none of -the above approximations doee>
In this note we propoee a method for solving three—dimeneio—
nal Lippmann-Sohwinger equation, without the partial wave expan-
sion and therefore suitable for the situations ‘1ndicated above.

Coneider the soattering ot two spinless particles interacting
via a potential V(z) « The t-patrix is the solution of the.
Lippmann—Sohwinger equation whioh in’ momentum representation
has the form: '
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" where Z 1s energy of the eystem, G.(q%2) the Green function

of noninteracting particles.

Let us now introduce a set of M 1inearly independent functi— h

'ons Xt %, q; )),

od; - a set of parameters which will be fixed below.
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“We shall consider the following matrix elements of the po—
tential V(Z)

t'-v L =% K% ‘ : ‘ o S
@iy =e) ZJA»‘,:@“ NCY ARG @

By means of these quantities we construct an approximate po- E

tential/l/'W1th the following matrix elementsx/ R

<KV fZ'>= z;_ ‘<z’|\‘, u;>£a'Jgp_<xd-;v|z/> ) o) -

" Where S .
A= <Livigg> -

.‘There”parametere d; can be fixed minimizing the functional

(4) with respect to these parameters.
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X/ p
iscussion on the possibility of the separafle ex
for a two-body potential can be found also in wgiksyi 7 paneion

P

Subetitutinén(J) into (1) we obtain for the approximate;t:matrix:v'”

g gis=7 >y A YA 2 G-
ékﬁml,KD %:,e7.-(n)[Arz)J‘y7J(a)“ B 220

"?j, where tne_compleX'matrix /4ﬁ(2)is_ofhthe forms . : ‘l?;r o

“-f«"*« - ye= oLd Sv( IR >7 mpu _d.d—r . ®

Thus,. egs. (5) and (6) define in quadratures the Solution:«.
to the three-dimensional Lippmann—Schwinger equation with an

arbitrary short-range potential ‘as the series in the known fun— ?
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"The short range character of a potential is required for the - .
U practical use, of the expansion (3) The point is that. the,nnmber
" : . of terms in this expansion cannot be smaller than thst ol bound: -

R ‘;states in the potential- V(Q.) . Therefore if we would

i

: -try to apply this expansion, 8By to the Coulomb attractive
RS :
'é ) . 45potentia1 ve should involve, generally speaking, infinite number

AP

ol terms.«

H L : : _’
) 4 . ’ . Now, we introduce N various vectors o; on the scattering
'-,plane,Vi e.,on the plane formed by vectors K and K' N and as ::;5

«JC o ‘1inearly independent functions X (@) we take the plane waves, i e.,'

Cial L - S ‘,_‘=f .; ST “JJT(%).f.
L,’L :

1 (@) (zw)- ﬂe | e e




In this case the eipansion 3 represents. the special inter-—
polvation formula for the Fourier trsnsform of the potential (1).
Indeed from (3) it follows. that if at 1east one of the vectors
h ¥’ coincides with one. of the veotors o(l 5 then the approxi- .
mate potential (&) coincides with the exact one. Hence, the ex—
pansion (3) with the functions "X (2) (eq.(7)) 1s the three—
dimensional generalization of the known Batemen expansion/z/ -

Considezr now the. concrete case of the Gaussian potential
V@Y=V, Q ., and we investigate properties of the approximate |
t-matrix given by (5).

For the Fourier transform of the potential we have

k3
Zivigs = —Ye > (F-2Yn
N = o
<k Y|k> 5 Cray% © ,
Vo —(l?-o(‘-)/%z_

L= saay= © e

In this case the matrix Aj (2) has the form:

(9)

‘("‘ +j V’m.[ «4. /{fa, Ve jamé?h{aild 4 )C("I)'f‘y

{2)" oy
Fmya © " Vi Jaied]

~; Hd)/%l.
The factor e in (9) and the analogous factor

in the product vl‘.(i) Z’-(y.') in (5) cancel ‘out.

Making use of the expression (5) we find the forward scatter—

ing on-mass-shell amplitude for the potential (8). To this end

we choose auxiliary vectors o{ along the scattering direction.

Remembering of the interpolation character of (J) for -the poten—
tial, such a choice of the vectors a( "'seems to be natu.ral.
I.engths of the vectors a{ can be-chosen as usual by the conditi—

on (4). However, in our oalcula.tions lc( - were taken in such

" a way that the approxima.te potential coincides with the exact

one at points of the, interval_ 0 = _O.‘ZC—— < - 400 MeV. And

'vsrying the positionq of inner points o; - proved _to influence R

not strongly the magnitude of “the forward scattering amplitﬁde .
fN(iZE‘) (N=6) . The pa.ra.meters \," and (1" of the potential
(8) were taken to be: .. . ‘ T '

N = —67.97 MeV; & = 0.424 fm 2,

Such a potential_desoribes the triplet S —wave scattering
at low energies. e . B '

. The real and 'imaginary parts of the;forward on-mass;shell
scattering amplitude (in the spproxiination N=6 )‘ are drawn in
Figs. 1 and 2. For uomparisan the Born and eikonal amplitudes as’
energy functions are presented. It 1s interesting that beginning‘ e

- from energy 100 MeV sz(E o) becomes rather clese to the -

Born'amplitude. The eikonal a.mplitude for the potentiai ,under

consideration 1s of the form:

(znu)(Zn-u)'

h-l) S
fee)=% 4_+z_‘ O i ——Sﬂ()’"%, c | J ‘7 .

where; K ¢ .:-V-V"."aI.V‘m S



. .and Rog(b 9) as the forward scattering amplitude is close.hg

" .appears to be the best,is shown. It 1s seen that at low energies

‘As it was to be expected, at sufficiently high energies it becomes {

~ded that no range of application does exist for the eikonal appro— e

: the“Figures, the. intérpolation parameter of the potential depen—
- ding on;energy governs essentially the behaviour of the amplitude

:,of Rﬂ.{- (5,6) . and l‘w.}{EB) at 9=-‘T- (the convergence of the -

*forward scattering amplitude in A 1s roughly the same). It is

' parameters d is shown in Fig.7.

1’3*‘ In Figs. 8 and 9 the sensitivity of the approximate poten—

slightly different from the approximate amplitude (5) If the . ‘ vl

amplitude (5) is treated as "exact" one then it should be conclu—’

ximation.

approximate amplitude (5) has a pole at the negative energy not

;
/
)
}

Note should be' taken that unlike, e.g.,eikonal amplitude the Ta ,q ;
very. different from the deuteron binding energy. ﬂ
§

V I{n»-b‘vigs 3 and 4 QSZ)('/E o) and _Lw-f (z,0) are pi‘ctured

for two cases: 1) N=4 and 2) N=5 with ds=VE . As is seen from
at high energies/j/. Figs. 5 and 6 illustrate the convergence

seen that through out the whole considered energy region the
expansion terms (eq 7) with N 7 ‘are practically not essential, :i*-

to- the Born value already at 100 MeV. It should be noted that™”
our choice of the parameters d is not the best one, therefore DT oy
‘one can expect that for optimal choice of these parameters the 4 '

number of essential terms in (5) becomes smaller. © .. 'Choilce of

tial (3) on the mass shell to small variations of angles and - ' o i

: (E‘E 50 MeV) these variations change slighly the potential value.

lengths of the vectors ‘ii with respect to some choice which

fixed 1engths shift simultaneously the whole curve

1.
2.

4.

‘5..

. change of the potential.
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Fig.l. The real part of the forward scattering dmplitude.
S0l1d line represents the Born approximation, dot—daqhed

line -the eikonal approximation, dashed 1line — the
Bateman method (N=6)(2q.5)
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Fig.2. The_imagi&arytbartvof the fbrward scattering amplitude., ., ,
Solid ‘1ine represents the eikonal approximation, dashed

line - the Bateman method (N=6).
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Fig.5. Dependence of the real part of scattering amplitude ;
on the number of separable -terms in the factorized
potential ( ©= /4 ). Solid line-Born approximation-
dot-dashed 1lins-N=7,10,13;dashed line - N=4.
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Fig.6. Dependence of the imaginary part pf the s'cattering
~amplitude on the number of separable terms in the facto—
rized potential (E=7/ ).
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Fig.7.

}(b),

The choice of the parameters d. (1n dimensionless
quantities, the parameter of passing to dimensionless -

quantities 1s. & =0. 3408 £m.). 0

a) the oase.eso. : .
1 l=050.2;0.5; 09,1 z,.5 .
b) the case: &= r/q )
dy= oy Sy S0 j oy Tds T = 0,75 ;

ol =d, = ' . o
r=oly o(, .94, ‘d'l‘d&:"l)a'5=0.'

: @l,zz_v(dlf‘"z ):—’.T;iQ,,}':' %’“’ e S
O, c=00.; e 47 :
R 7_:,6—§T;9,,;- 58,g=T;8 :é‘,')T,/
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Fig.8. Dependence of the Born approximation on the choice
of parameters of factorization. The second circls.
(see Fig.7) was rotated. -$0l1d line - V(i,8).
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Fig.9. Dependence of the Born approximation on the choioo
of parameters of potential factorization. Thse radius
of the second circle is under ohange.Solid line - V(E, GQ.
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