





1. Introduction

In the preceding paper /1/_ (referred to as I hereafter)
we described the realization of the general statistical
Wick theorem (GSWT) for transverse operators /2/ in
the case when. unperturbed Hamiltonian contains the
Coulomb interaction of the Anderson /3/ and Hubbard /4
models. According to this realization the diagrammatic
representation of transverse and diagonal operators was
obtained.

In this paper in §2 we formulate an analog of GSWT
for diagonal operators. In §3 representatlon of the most
general interaction is presented. In § 4 the Anderson
interaction and Hubbard "’interaction’’ in diagonal repre-
sentation are discussed. Finally, in §5 the diagrams
leading ‘to the Scalapino result /5/are found; the first
order of the irreducible polarization part for the one-
particle ‘electron Green function is calculated within the
Hubbard model.

2. GSWT for Diagonal Operators

After‘applying multiply (1.25) the average on the
left-hand side of (1.25) becomes a sum of the products
of FGF’s and averages of products of diagonal operators
(1.21) only .
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The operators Qy are ‘of course ”t1me” 1ndependent
However, ’’times’ 't .in (1) should’ be léft to distinguish
the operators Q’S when all lattice site indices are
equal. Such a situationoccursin the Anderson model due to
(1.9) and (L.11). In the following (for simplicity) we omit

- 2times”’ in (1). If average (I.25)appears in linked cluster
expansion of any quantity then.it is simply so- -called

connected average correspondmg to connected diag-
rams / /. Such diagrams may ‘be built up from the follow-
ing _mutually connected - parts: 1) interaction lines,

2) transverse FGF’s (1.23) (corresponding to transverse--

operators (I.19a - 20a)), 3) diagonal FGF’ s(correspondmg
to diagonal operators (I.21)), which are analogous to
?’yertex blocks’’ in /17 and ’’semi- 1nvar1ants”em}>loy-
ed in the drone- fermion perturbation method”’ /8/ . The
first point is realized automatically, second one by
applying (1.25) (from now -on we - call it GSWT for

' transverse operators) and the third- by applymg GSWT .

for diagonal operators - (because it has a similar form
to (1.25)). The latter type parts-are produced if commu-

tators (or antlcommutators) of transverse operators‘

are not c -numbers.
‘To formulate GSWT for: d1agona1 operators (1.21) we

" .. have to know their averages. Denoting by Zg the part1t1on

functlon (1.1- 2) with'V=0we can write
7 - 0%, ;
0. x 0K '

Zg ~Tresl-BE Qe+ E 0, # U, 2otk @

“where E«+, Ux are the same parameters as in (1.4-5) ‘»
and indices are to be omitted after calculat1ons From

(1.15-17), (1. 21) and (2) it follows that:
7ok =>eXp[—,8(EK+'+ EK_;+UK )]+exp[—,5Ek_]+ ; .
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D M =(2) D13-D12.

Let us cons1der first s1mple examples of the reduct1on
of averages (1): '
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where the second term is the cumulant average,
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) Each of thegpossibilities_'(Sa) rep'r'esentsf then tl}e prodl.lct; i
of two Kronecker symbols and second-order dlfferentlal‘r
operator acting on the average of one operator. For

“example the first possibility in(8a) gives .
. 12, 13. 12 A ' :
Ske 8‘e'p D pD p <Qp >0‘ . RN . (8b)

- From these examples (63, 7a, 8a-b) we can conclude,
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that the differential operators (5) play a similar role -
- in the reduction as FGF’s (L:23), therefore due to this -
analogy we will call the above differential operators
diagonal FGF’s. Furthermore we can generalize the
results -(6-8b) -to an arbitrary type of the average a -
in the form (similar to (1.25)) of GSWT (for diagonal
- operators) ‘ : . B
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(and is equal to (6a) for Q} ‘=Q{(3,Q;=‘ Q &‘2) . What
the dots_in (9) mean we explain. by the example of the.

~ following term for n ='5:
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where
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3 ; is to be calculated in the manner (9a),
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is of the type of (8a) and is equal to it for Q] =Q 7,

c 13 e 12
Q;=Qp, Q=0
In general we define the contraction of “k -diagonal
operators in the manner

b b x—1 x
Q;Q 9% 3 ¢ Qkx= DaID 2...Dk_1 <Qk>0 =
] Lt _ r
b -1 (10)
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Thus it is a (k-1)-fold derivative of average <Q > Of
course (10) is invariant under the arbitrary permutatlon
of the 1nd1ces ‘

. b x-1 x
B (2.

Summarlzmg all the. process of the reduction consisting
of two stages (1.25) and (9) we cansay’ that every ”t1me”-

ordered average on’ the left-hand s1de of (I 25) at thet’

"end becomes a-sum of the- products of FGF’s (1. 23), (5)

and averages.(4); or, in. ‘other .words, the sum of the
products of transverse FGF’s (1.23). and the der1vat1ves

"(5) of averages (4). This "sum may be . sp11tted into. two

parts one of which corresponds to unconnected dlagrams r
and the second to connected ones. When the average
on the left-hand side of" (. 25) ‘dppears in “the linked
cluster ‘expansion of some. quantity ‘it is equal to the

" .- second part.

3 Representatlon of the ”Interachon”

There are a good deal of the 1nteractlons in (I 33)
as well as FGF’s (1.23), (5). on the’ one hand, and the
51mple product properties- (in Appendm LA) for ‘the
projection type operators in ® .,on the other hand.
In this situation it seems to be better to represent
all interactions (transverse and diagonal) (I. 33) with the
help of one wavy line A+~~~ in the manner:: :

T ,:iekKJ U @"""“’. o (”)

K ¥k’

= TK;. EI'WWI a2
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where thé} circle‘O refers to' the transverse operators,
(1.19-20)- and the::square.. . to 'diagonal. ones’ (I.21);
every transverse FGF’s (1. 2t) by means of:the: labeled

‘directed line’ as in(lL. 27), all dlagonal FGF s (5) - by .
: und1rected 11ne o

,-

ST -

where the dlagonal operators standmg at its ends w1th

»time’’ 7 -and . 7’ correspondmgly determme the k1ndf'

FGF (5) due to (9 10).



4. Representation of Anderson Interactlon
and Hubbard ”Interactlon”

As an example of the appllcatlon of above formalism
we consider the interaction (I.11) in Anderson Hamiltonian
(L.2), (1.8-11) and the ”mteractmn” (1.12) in Hubbard one.
From (I 19) we obtam

+;—‘.]12‘+ .].34 R
d .=J13+J24. 14)

Taking into account (11); (14) for d-electron operators
in the Anderson ‘model and representing in addition
k -electron operators in the following way

‘ck+(c:+) by @(@),
c () by [ CED

we can wrlte the transverse. 1nteract10n (I 11) as follows

{15)

V=V+V

.
,

ZW* (J’2+J34)c Vet (Jd‘zu“)u

@w@+ O O @D+ OB,

(16) .

The *’interaction’’ (I.12) takes similar form
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VH =VH++ VH_ y

. + . + .. | A'
VH+=_ z ’:'I;<'K 'r(JK +JK )f(’JK'+_JK',,)' = .
o K-‘,éK/ oL .- g ; . .

= @—~~2+ D~ + G- ,\,.‘.,. . .’ I

+13 +24 | )
z"'m 1041 a1 - |
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5. Applications

The application of presented diagram method to -
calculation of the free energy I -in the Anderson model -
is- given in Appendix A. For example, first four
diagrams in second order. in V4 give the Scalapino
result (Eq. (7) in ref. /5/). The dominant fourth-order
free energy contribution given by Scalapino (Eq (12) in
ref. /5/) comes from diagrams indicated as C(ij, {k) and
.D(ij,...) in- App. A. .Infinite dlagram summatlon m the
Anderson model is continued. - s

In this section first order result w111 be derlved for

" the transverse Green function in the Hubbard model. The

(':alculatiyo'ns are conveniently carried out by ‘employing
a matrix representation and we therefore define a 2x2
matrix Green function G, (k,nA n) by

\"‘I

G122 ,L(k")‘ m) -G12,34f(k’",‘ m) |
, o 13,13 B G L7 B
: G(+_)(k,1Am)= S ] ;(18)‘
G 34,12 (keid ) Gaq gy ("'?’*m

(2413) - (24,28)
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where the elements of the matrix are causal ‘Green
functions of the transverse Fermi type operators (1. 193)
and are defined by

: Gij,"fp (kyid ) = <<J Jk > (19)
with -
+ . fo . 1 B ]
<<J11: . JIkp >~>=_§_2 [ ds expt-ik(RK—RK,) +i)\mr] *

-8
® (o) 1 () >
+<TJ Y (0) JU (1>,
. ok K L

'The corresponding matrix for the t'r'z'ih‘s'verse' interaction
V(K ;,V(Hv(]l )

V k ? v-t(k _ — | . — )' ". ':w .- e / - !,y‘fj» :
,() ’ v), -(‘kv“‘ . \ | (21);_
t(k)ls the Fourier transform of TK K “in (17) and
descrlbes the unperturbed band structure /4/ .

. Denoting by X /1,9~12/ the irreducible polarlzatlon
part of G ‘we can wr1te the graphlcal equatlon

= V(k) G i (k,ix ,
it - 2(+)*2+, 0 Gl a2

-

(20

where

~

where I is the 2x2 matrlx
From (14), (18 19) we have

<<d -d. >
k+7 k +:77-
(=) (=)

i

m

G +i'k,i)\‘ ) =
(=)

= G12',12" (k:,i:)ym)_+ Ie, 24 (km m) *
©(13,13) ' (13,24

12

+G gt (i) + Ggyay (kidy ) .
(24,13) (24,24)

According to (20), (22) the solution for Green function
(23) takes the form

- -4 a R 2)
G, = (E+ -V{k) , : :
() (=) T .
where . _ -
12,12 12,34 34,12 34,34
S § 424)
s, = s 18) 5 (13)28) E(24 13) , s(2
(=) : .

The components of ¥ , are given in Appendix B up to .

first order (i.e., they "involve one internal momentum,

summation only) The diagrams for the components of
5 (31313 31328 52413 5 2424 ) can beobtainedaccord-
1ng to Appendix’ IB from- those in App. B by substltutlon
12-» 13, 34 — 24.

The zeroth- order result for 2‘.
the form .13/, i.e.,

32 - 042——>, ’ +.4#———>? Y s

» tole-l 34 L+ 34 -1
- <Q!Z>; (i +H'1) +<Q¥5 Gn  HH T

due to App. B takes

(25)

in (24) is - equal_t to 2 ,then we obtain, as

When z, /
in /13/, Hubbard I result for 'G , = o
Effectlve (transverse) 1nteract10n V + (kX ). i8 .
defined 51m11ar1y as 1n /7 9 ~12/ 1 e.,” N v )
Vo, (kiv ) = V(K ) ce, v , o (28)
> . (—) A ,
where o :

13



12,12 12,34
=(13,13) . =(13,24)
L ) Y _
V = '
-t 1 34,12 34,34
() ~(23,13). <(24,24)
v , V ; .
It is easy to see that all components of ’V,r are equal /13/,
_i.e., =) o
-1
- 2° V(k . :
v vm( ! 1)(1 ' z( )()_) @

These components are represented in the App. B and
~ App. C with the aid of the directed wavy llne ~eenin

the manner (i< j, Q\k). l

The renormahzed spectrum. 6+( y e =y =8, 'is ob- :

[y

tamed from the cond1t10n 1+ t( k) 2‘,° ? 0 and was glvenv
in /] 3/ .
In the approxxmatlon glven in App B for 3, we get

T . o
'y ) _—,%l A, - , 28)

where Aj is the sum of the diagrams (B.1)

+ 120 a1 R +
Ay =(A + B YN ?2<Qi2>0_n(‘13) —n(20) +
-t [ Z_, n(c;_l(q))+ Z_, nle_o(q ) 1 + (29)

- (@) UL (g (h=nle (A (@D, <Q "> 1.
The’r sum of diagrams (B.8) gives -

ALSGr 41371 N ‘
=G +H 34y N E!<Q ' +n(l3)+n(24) +

QD D2 nle (e Z_ynlcy(q )]s

14

- t(q) ﬁU[n(f+l(q)) n(e (q))]A (q)D <QK 0¥ '

The coeff1c1ents Z _(1yare equal to:
2!

_ 2)= () hBUZTi(q) DK13_<Q.1K2>0‘ +
o+ S1 -1
(g —H )(e (q) H' ) A (g +

—< Q1K3 >0'.( € _( )

-1y
2

—<Q2 > Ce (q) ﬁl:)(

- )(q) —11'24) "a Ny

-' V : —
nij) is given in (1.23) and n(‘cﬂ]))‘=,(exp[ﬁ(+(]»)]f1) g

Collecting the dlagrams (B. 2), (B. 4), (B.6) and (B 9) we
get : :

_ nla_n12)
A, =-D’, <QK2>

Zlb—'

. Ze(q) U (m +11"2) ‘(ixmﬁif(f’:)f],*
*(1)\ +e, (q)) (1)\ +e (q))

The diagrams (B 3), (B 5), (B. 7) and (B 10) give two A
types of contributions A, and Ag

=[(A H’ ) 1 —(ixm},’ ﬁ'o?:)fl-z] o
| S . | " (30)
« N -1 s t(q) ‘{Y;l n( E_I(ql) )’_Y-.Z' n (e ._27('(1) )} '

A ==l(r_+HIHT (i H'34) Ly2,. -
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N Ee X | WELGA be_ (-152)7 o

,14

( A+ H €_| q))‘—1] +

23 3 v + 123 "'1
+ X_2 [ W_2 (1)\ m+e__2( 9 -H o ) R

14

. + . 14 -
+W_, (h + B —e_ ()71

where

+
23 2323 _. 23 _.
W_(é)_<JK‘JK >0 + .<QK >0 n(f-«(lz)(q))-

14_+14 14 4
W_(I) <J I +,<QK >0 n(e_(lz)(q))

and averages of product of operators I, and J", can
be calculated according to App. IA and (1.15- 17) The
factors Y and X in (30) and (31) have the form

- -1
Y—il2) =(3) '<Q;13>0 Tf‘_a)(q) fH’oK 1a_(la oo
. ) 2 B B . -

| L
+() < >;, fr_(;)(tﬂ a1 AT (g

X_1) =(;)& 1 (q) Y 13][5 l(q)-n'“m .

Su{n of diagrams in Appendlx C. gives us average
of Q 3 in the first order. The diagrams for <Q}< > can
be obtamed from those (B.1) given in App B if we replace

by @ Their sum is given by the right-

@

o N

[=r N3]

hand side of eq.. (29) w1thout the factor (1>~ +H’(}i)“1 :
Replacing X . in (24? "3 SL” given in (28) we'k

get the Green function . G ,,_” in the first order. ”
Analysis of this function is being continued.
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- ~Appendix A. Free Energy Diagrams up to Fourth- '

~ Order in v for Anderson Model

SRaEete]
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: -Appéndlx B. Irreducible Polarization Part
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Appendix C. Diagram Representatlon of Average »
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