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1. Introduction 

In the preceding paper /I I (referred to as I hereafter) 
we described the realization of the general statistical 
Wick theorem (GSWT) for transverse operators /2/ in 
the case when. unperturbed Hamiltonian contains the 
Coulomb interaction of the Anderson /3/ and Hubbard /4/ 
models. According to this realization the diagrammatic 
representation of transverse and diagonal operators was 
obtained. 

In this paper in § 2 we formulate an analog of GSWT 
for diagonal operators. In §3 representation of the most 
general interaction is presented. In § 4 the Anderson 
interaction and Hubbard "interaction" in diagonal repre­
sentation are discussed. Finally, in § 5 the diagrams 
leading to the Scalapino result /&/are found; the first 
order of the irreducible polarization part for the one­
particle electron Green function is calculated within the 
Hubbard model. 

2. GSWT for Diagonal Operators 

After applying multiply (I.25) the average on the 
left-hand side of (1.25) becomes a sum of the products 
of FGF's and averages of products of diagonal operators 
(I.21) only 

(1) 



The operators Q~ . are of course "tiJ:ne'' independent.' 
However, "times" tj . in (1) should. be left to distinguish 
the operators Q~s, when all lattice site indices are 
equal. Such a situation occurs in the Anderson model due to .. . 
(1. 9) and (1.11). In the ·following (for simplicity) we oinit 
''times" in (1). If average (1.25)appears in linked cluster .· 
expansion of any quantity then . it is . simply so-called · 
connected average corresponding to connected diag­
rams 16 1. Such diagrams maybe· built up from the follow­
ing . mutually connected · parts: 1) interaction lines, 
2) Jransverse FGF's (1.23) (corresponding to transverse.·. 
operators (l.l9a -·2oa)), 3) diagonal FGF's(corresponding 
to diagonal operators (1.21)), which are analogous to 
"vertex blocks" in 17 I and "semi-invariants" e~;nploy-
ed in the drone-fermion perturbation method" iB/. The 
first point is realized automatically, second one by 
applying (1.25) (frorri now on we call it GSWT for · 

. transverse operators) and the. third- by applying GSWT . 
for diagonal operators (because it has a similar form 
to (1.25)). The latter type parts are produced if commu­
tators (or anticommutators) of . transverse operators 
are not c -numbers. 

To formulate GSWT for diagonal operators (1.21) vie 
have toknow their averages:·n~noting by Z 0 thepartition 
function (1.1-2) withV=Owe can wr_ite 

Z 0 = nz ; 
·K OK 

. 13 . 12. 13 12 
ZOK-=Trexp[-/3(EK+ QK + EK:...QK ;t UK Q K QK )], ' (2) 

where E K ± , UK are the same parameters as in (1.4-5) 
and indices are to be omitted after· calculations. From 
(1.15-17), (1.21) and (2) it follows that: 

Z 0 K = exp [- ,8 ( E K + + EK _ + UK ) ] + exp [- j3 E ,( _] + 

(3) 

+ exp[ -,8 EK) + 1 ,. 

4 

.. 1 

I 
~ 
I ,,_ r, 

ri2) 
<Q 13 >" 

K 0 

. ( 12) ' 1 ·-1 3 - . . .. 
Z D 1 Z = Z ·1 exp {- ,8 ( E . + E + U ) ] + 

0 K 0 . OK . · K+ K- K 

+ exp[.:..,B EK <:t)l,. 
(4) 

( 34) -1 '( 34) -1 

<Q 
2
4 >=Zo 0+DK24 ) Z0 =Z0 lexp[-,8E (+)]+11, 

K 0 K K-

23 . -1 23 -1 . . l 
<Q >0 = Z 0 D Z0= Z0 lexn[-,8E ]-exp{-,8E ] , 

K K K ··r K+ K-

14 . -1 14 -1 . 
< Q K >0 = z 0 (1 + D K ) z 0 = z 0 K 11 - exp [ -,8 ( E K + + EK- + :UK) ]1, 

where 

D ij = D (Q!i) 
K 

( 12) 

D 13 =:a/a(-,8EK (':f)) 
K 

(34) . (12) 
, D 24 =- D 13 

K K 

( 23) 
D 14 = ( ±) D 13 _ D 12. 

K · K K 

(5) 

Let us consider first simple examples of the reductiorl'' 
of averages {1): 

13 12 . . -1 13 1 2 .· 
<Q k Q £.>o =Zo Dk [~o <Qe _>ol~ . (6) .. 

;= < Q 13:>- < Q 12 > · + D 13 < Q12 > . , 
k o .· e o · .··k e o 

1~ 

where the second term is the cumulant average, 

13 12 . 13 12 . 12 13 . 
<Qk.Q£>oe:= 8 e.k: De<Qe>o.= 8k,e·D.k<Qk~>o • (6a) 

5 -~-



,_ 
.·· 

2. .13 34 -1. 13 - . 34 . 
< Q k Q e > o = z o n k [ z o <Q e > o J .~ 

=<Ql3> <Q34>· + D13<Q 34>. 
k o e .o k e o 

('i) 

. -~-

where the cumulanf average ·· 

. 13 34 .· 13 34 . 13. 34 . 
<Q k Q e > o c = ~k < Q e > o = 0k,£ n e < Q e > o -

=D34<Q13> = 0 D34<Q13> 
£ k 0 £,k:. k k 0 

(7a) 

3 12 13 12 12. 13 12 
• < Q k Q £ Q p >o = < Q k > 0 < Q e > 0 < Q p > 0 + 

(D 12<Q13 ) <QI2 . <Q I3 D 12<Q 12 
k e. >o p >o + f >o k p >o. + 

(8) 

<Q12., DI3<QI2> DI2DI3<Q12> 
+ k ·o e P o + k e P . o • 

where the last term is the cumulant average 

<Q12 0 13QI2> = DI2n13< 0 12> 
k £ p Oc k £ p 0 

(8a) 

D 1 2 D 12 < Q 13 _ D 13D 12 < Q 12 
p k e >o - £ p k > 0 • 

· Each of the,possibilities (8a) represents theri the product 
of two Kronecker symbols and second-order differential 
operator acting on the average of one operator. For 
example the first possibility in (Sa) gives · 

0 8 D 12D I3 <Q 12> • . ... 
k,£ f,p p p p 0 (8b) 

From these examp~es (6a, 7a·, Sa-b) we can conclude, 

6 

., 

·, 

) 

that the differential operators (5) play a similar role 
in the reduction as FGF's (L23), therefore due to this · 
analogy we will call the above differential operators 
diagonal FGF's. Furthermore we can generalize the 
results (6-8b) to an arbitrary type of the· average (1) 
in the form (similar to (1.25)) of GSWT (for diagonal 

· operators) 

Q a Q h · Q x-1 x a h x 
< 1· 2.... Q > = < Q Q ••• Q > + 

n-1 n 0 . 1 1 2 n 0 

+<QaQhQc ... Qx> +<QaQhQc ... Qx> + ... + 
~2 .3 nO ~ 3 n 0 

a h x-I x a h x-I x 
+<QIQ2 ••• Q 10 >o+<QIQ2 ••• Q 10 >o 

j . .n- n J n:- I n 

where 

Q~ = <o;>o , 
J 

QaQb ••• Qx-1Qx= QaQxQh ... Qx-1 

11 2- n-1 I" Un 2 n-1 

·with 

Q a Q x = 0 D a< Q x > . = 0 D x < Q a> U n I,n n n 0 n,I I 1 0 

(9) 

(9a) 

. ) Qa J 3 Q x Q I 2 ) (and IS equal to. (6a for 1 =Q k, n = . f . What 
the dots .. in .(9) mean we explain. by the example of the. 
'following. term 'for n ; 5: . . ; . .. . : .• 

< o' aQ hQ c Q d e '.a h c d e 
· 1 2 3 4Q 5>o = <QlQ2Q3Q4Q s>o+ 

J • 1 I · 
'( ·a h c- d _e a h c d. e 

Q 1Q 2 Q 3 Q 4 Q 5 > 0 + < Q 1 Q 2 Q 3 Q 4 Q 5 > 0 . I . 1 . ~- ' 1 .. I l . 

7 



where 

a b c d e a -c b· d e 
Q-1Q2Q3Q4QS= Q1Q 3Q·2Q4Q5; 
J J ~ 

Q ; Q ; is to be calculated in the manner (9a)_, 
L.:-J. 

Q a Q bQ c Q d Q e = 
11213 415 

and the c -function 

Qa Qc Qe 

11 l3 Js 
is of the type of (Sa) and is equal to it for Q ~ = Q ~2 , 

Q c - Q 13 
3 -: ~ ' 

Q 
e · 12 

·s= Q p 0 

In general we define the contraction of k -diagonal 
operators in the manner 

a b x a b x-1 x 
Q 1 Q 2 • ~ • Q k = D 1 D 2' • • D k -1 < Q k > o 
1 I l 1 l I (10) 

a· b x-1 x 
-= 0 1,2 ° 2,3''' 0 k-l,k D.k Dk ••• Dk <Qk >o 

Thus it is a (k-1)-fold derivative of average <Q~>0 •. Of 
course (10) is invariant under the arbitrary permutation 
of the indices 

<;), { ~) ' ... , (x-1) , { x) 
k-11 k 

Summarizing all the. process of the reduction consisting 
of two stages (!.25) and (9) we can say that every. "time"-

8 

_, 

) 

ordered average on the left:-hand. side- of. (i'.25) at ui~:; 
end becomes ·a· sum of the- products· of FGF's (!.23), (5) 
and averages. (4); or, in 'other words, .the. sum of the 
products' of transverse FG F' s (!.23). and: the derivatives 

. (5) ot'Itverages (~). This 's'um may be' spiitted~i~to:two 
parts, one o~ which corresponds 'to unconneCted diagrams 
and the second to connected ones~ When the average 
on the left.:..hand side- of (!.25) appears in the linked 
cluster expansion of some_ quantity it is equal to the 

- second part. 

3. Representation of the .''Interaction"- ,, 

There are a good deal of the interactions in (!.33) 
as well as FGF's (I.23), (5). on the one hand, and the 
simple product properties (in Appendix I. A) for ·the 
projection type operators· in e K, on the other hand. 
In this situation it seems to be better to repres~nt: 
all interactions (transverse and diagonal) (1.33) with the 
help of one wayy line ~ in tile manner ·= · 

ij .~k , ij fk , . . @. 
k· T K, K J K J !< = ®"j ,.,...,_..;. ek 

Kf.K' KK K /( • 
(11) -

i]' fk , i]' fk , r::1 . f'Fi:l• 
k. T K' ,K_ Q K Q- !< =t.!i.J~-~ 
_f , K , K- K - K · . 

K rK 

.• _,(12) .. 

where the: circle' Q ·refers to the transverse operators 
(1.19.:..20) · and the ,square . D - to ·diagopal- ones (!.21); 
every transverse FGF's (!.23) by means oLthe labeled 
·directed line: as· in "(!.27), .. all diagonal FGF's (5) .- by·· 
undirected line · 

r 
, 

T ' . (13) 

where the diagonal operators, standing at its ends :With 
"time" r and. _r' correspondi!J.gly, determine the kind 
FGF (5) due to (9-10). 

.--_, 
-:'·" ,, 

- 9 
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4. Representation of Anderson Interaction 
and Hubbard "Interaction" 

As an example of .the application of above formalism 
we consider the interaction (I.ll) in Anderson Hamiltonian 
(L2), (1.8-11) and the "interaction'~ (1.12) in Hubbard one. 
From (1.19) we obtain 

d+ -~ J12+ J.S4 

d =J13+J24. 
(14) 

Taking into account (ll)1 (14) for d-electron operators 
in the Anderson ·model and representing in addition 
k -electron operators· in the following way 

. c k+ ( c :) 

c ( c ) 
k- k-

by e < 0). 
by B < ITP 

(15) 

we can write the transverse interaction (1.11) as follows 

v = v + v . 
+ - ' 

+ + v =I IV* (J I2+J34) c +V +(JI2 J34) I-
+ k kd d d k+ kd ck+ d + d -

=~+~+~+~) 
(16) 

+ l 3 + 24 . + I 3 24 · 
V- =I I V~d (Jd. +J d } c + vkd ck- (J d :+ J d ) I = 

k k-

= @r.--E]+®---EJ~EJ--®+ E}-@ 

The "interaction" (1.12) takes similar form 

10 

. ) 
l . 

I 

I 
l 
t 

1 
! 

I 
\. 

I 

~ 

J 
J 

I 

VH=·VH++VH_; 

V =.I. T , (~12 +~ 34) (J1~+ J3~). 
H+ .1 , K ,K · K K K K 
. K rK. 

=~+®---®+.®--®+~. 

V - I T + 13 + 24 13 24 
H- - K ,f K , K ,K , ( J K + J K ) ( J K , + J K , ) (17) 

=~.,.~+®---®+®--® 

5. Applications 

The application of presented. diagram method to 
calculation of the free energy F-in the Anderson· model 
is· given in Appendix A. For example, first four 
diagrams in second order, in Vkd give the Scalapino 
result (Eq. (7) in ref. /:-./ ). The dominant fourth-order 
~ree energy contribution given by Scalapino (Eq. {12) in 
ref. IV) comes from diagrams indicated ·as C( ij, rk) and 
.D( ij, .•. ) in· App. A. Infinite diagram summation in the 
Anderson model is continued.· · · · ·" ~. 

In this section first order result will be derived for 
the transverse Green function in the Hubbard model. The . . 

calculations are conveniently carried out by 'employing 
a matrix representation and we therefore define a 2x2 
matrix Green function G+ (k,iA m) by 

{ -:} 

G + (k;iA ) = 
( -) m 

G 12,12 (k,iAm) G 12,34 (k,i,\m) 
(13,13) .(13,24) 

G 34,12 (k,iA m) 
(24,13) 

G 34,34 (k,iA m 
. (24,24) 

1 (18) 

II 



' j 

where the elements of the matrix are causal Green 
functions of the· transverse Fermi type operators (I.19a) 
and are defin,ed by 

+ .... 
(k i.\ . ) = «J.lJ . JfP>::> . 

' m k ' k . . G ij ·rp 
' 

(19). 

with 

+ 
«J ij 

k 

. {3 
; J fp >> = _.!:_ ~ J dr exp [ -ik ( R - R ,) + i.\ r] * 

Jk 2 K K m 
~ -{3 

* < T J f~ (0) jij (r) ·>. 
K K 

·The corresponding matrix for the t~,~~sverse interaction 
is 

v (k) v (k) ( ~ ~ } (20) 

where 

v ( k) ~' -t ( k) = - (< k - ( ) ' 
(21)' . 

t ( k) is the Fourier transform. of T K K ·, in (17) arid £ K 

describes the unperturbed band structure /4/. 
Denoting by ~ / 7 • 9 -l 2/ the irreducible polarization 

part of G we can write the graphical equation · 

G +(k,i.\ m) = ~ ~ ~· ~ + V(k) G_+ (k,i.\ m) , (22) 
l- . . ( -) . ( -) . ( -) 

where . E + is the 2x2 matrix, 
.. From'(l4), (18-19) we have' 

+ . 
«dk + .; dk +·>>­

( -) (..:..) 
G + ( k, i.\ ) 

( -) m 

G 12 12 (k,i.\ m) + G12 34 (k,i.\ m) + 
(1J,l3) '·· . (13.,24) 

... 

+ G 34,12 (k,.iAm) + G34,34 (k,i.\m ) 
( 24,13) ( 24,24) . 

(23) 

According to (20), (22) the solution for Green function 
(23) takes the form 

-.-1 -1 (24) 
G+ = (~+ -V(k)) 
{ -) ( -) 

where 

12,12 12,34 34 12 34.34 
~ + = ~ (13,13) + ~ {13,2~) + ~ ( 24,13) + . ~ ( 24,24) 

·( -) 

The components of ~ , are given in Appendix B ·up to 
first order (i.e., they · involve one internal momentum. 
summation only). The diagrams for the components of 
I __ {~13,13,~ 13,24 .~ 24,13 ,I 24,24 ) can beobtainedaccord­
ing to Appendix· I.B from those in App. B by substitution 
12 .... 13, 34 -. 24 .. 

The zeroth-order result for ~-, due to App. B takes 
th f 'J a/ . . e orm . . , 1.e., 

~0 ~~ + = ® -- - y+~ -. ..- <{ = 
(25) ~~. 

12 + 12 -1 34 + 3( -1 
"" < Q >o. { i.\ + H 'o· ) + < Q > o ( i.\ + H'o J 

K m K K ID K 

~ep , ~ 1 in (24) is equal_jo ~~ , then we obtain, as 
m 1 l3t , Hubbard I result for ·G + /4/. 

Effective (transverse) interaction _V,+ (k,i.\ m ). is· 
defined similarly as in /7,9 -12/ i.e.,--

:i_ + (k,i>.. . ) o: V(k) +V(k) G0+. V(k) 
(-) - - (-)-

(26) 

where 



_, 
.I 

I2,I2 I2,34 
"'03,I3) "' ( 13 24) v 

' 
·v . 

"' 1-

y+ 
\ . 34,I2 34,34 

( -) "' ( 24, 13) "" ( 24,24) 
v . v 

It is. easy to see that all components of -·v+ 
-( ...,} 

are equal /I3/ 
' 

i.e .• ,_, {11) - -I 
.Y_+ ,- V(k) 11 0- ~o+ V(k)) • 

(-) . (-) 
(27) 

These components are represented in the App. B and 
App. C with the aid of the directed wavy line ~in 
the manner ( i < j , r < k )A'\_ 

1 
:... · fo:"\_ 

·-'·-~·-·-· 
The renormalized. spect~umf±< ~) (<±I- <±2 = ~±) is ob-

tained from the condition 1 + t( k) ~o = 0 and was given 
in /13/. - . . ± . 

In the approximation given in App. B for ~ + we get 
-~) ~ 
~ +. =. ~ A i • (28) 

. I= I 

where A 1 is the sum of the diagrams (B. I) 

+ l 2- -I -I I2 + + 
AI ={i..\ + ll'0 ·) N ~ I<Q > - n(l3) - n(24) + m K K 0 q 

- t(q) [ z_I n(cjq})+ z~2 n(c_2(q)) l + (29) 

-i I2 I2 
- t(q) ~U[·n(c+1 (q))-n(c+lq))]~+(q)DK <Q K >

0 
l · 

The sum of diagrams (B. B) give·s 

A 2 ~(iA +H'
0
34 ).-I N-1 ~I<Q 34 > +n01i) +n(24) + 

m K q K 0 

+ t(q) [ z_1 n(c..:.1(q))+ z_2 n(c_2(q) )l+ 

14 

'• 

- - . . -1 . 12 34 . 
- .. t(q) f3U[n(c+l(q))-n(c (q))]~ (q)DK <QK >o L 

+2 + . 

The coefficients Z -<I> are equal to: 
2 

·z _ (+) !Qu·:.-1< > n13 0 12 . 
(1 ) - - fJ il q < > + 

- - K K 0 
2 

13 . + 24 + '13 -1 -1 
-<QK>0 (c_(l)(q) -H~K)(c-(l)(q)-H~K) /1 (q) + 

2 2 

-<lf: >
0

(c_(1)(q) -H~ 1:) (c_(I )(q) _;I,
0
2!)-1 !1=1

(q)l, 
2 2 

-l 

n( ij) . is given in (1.23) and n(c ±( ] ) ) = ( exp [ f3c±( l)] :+ n-1
. 

2 2 

Collecting the diagrams (B.2), (B.4), (B.6) and (B.9) we 
get 

. . + + 
A =-D12<Ql~ * _l ~ t() U2(i..\ +H'l2)-J (i..\ +H'34)-1 * 

3 K K 0 N q q m OK m OK 

*( i..\m +£+1 (q) )-1.( i..\~+ £+2 (q) )..:.1· 

The diagrams (B.3), (B.5), (B. 7) and (B.lO) give two 
types of contributions A4 and A 5 ; 

A =-[(i..\ +H'12) -(i..\ +·H,~4)-:-1]2_* 
4 m OK m OK · 

.* N-
1 ~ t(q) IY:_

1 
n(c_

1
{q))I.Y_

2 
n(c.;..

2
·(q)) }; 

q -

. + .- .. + 
A =-[ (i..\ + H'12)-1 ;...(i..\ + H,34)-1] 2 *' 

5 m OK m OK_ 

(30) 

15 



*N-I~t{q)_{X 1[W213·(i,\ +£ (q)...H'23)-1. + 
- ,- m -1 OK . q (31) 

. + 
W I 4 (. H'I4 1] 

+ -I i,\ m + 0 K- f -1( q)}- + 

+ X [ W 23 ( iA +t: ( q) -~ , _23 ) -1 + 
-2 -2 m -2 0 K 

14( H+,14 ())-1]} 
+ W -2 iA m + 0 K- f -2 q ' 

where 

+ 
23 23 23 . Q 23 ( 

W = < J J > + .< K >o n £ ( 1 ) ( q) ) • -(1) K K 0 ...._ 2 · 
2 

+ 14 14 . 14 . 
W 14 = < J J >0. + < Q >o n ( £- ( 1) ( q) ) 
-(l) K K K 2 

2 . 

+ .. . .. 
and averages of product of operators j ~J and J ~J can 
be calculated according to. App. lA and (1.15-17). The 
factors Y and X in (30) and (31) have the form 

- 13 + ~ 24 -1 
y -{ 1 } = ( +) < Q K > 0 f f -Q. )( q) -H 0 K ] /). -. ( q) 

2 2 

24 . + 13 -1 
+ ( ±) < Q K > ~ (c -(l)( -q) -:H, 0 K] /). - ( q) 

2 

+ + 
X ( 1 ) = ( +) ~ 1 ( q) -H, 13 J [ t: 1 ( q)-H "_24] ll -1( _q) • 

- 2 -( ) . . OK . -( ) · 0 K 
2 2 

Sum of diagrams in Appendix C gives us average 
of Q ~3 in. the first order. The diagrams for <Q ~2> can 
.b..e obta_ined from those (B.l) given in App. B if we replace 

. ~·by @. Their sum is given by the right-

16 

+ 
hand side of ..;.;.~q. (29) -without th~ factor (IAm+H'J~) -I : 

Replacing L+ . in (24~ by ~~I) given in (28) we· 
get the Green function G +l) in the first order. 

Analysis of this furiction is being continued. 
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Appendix A. Free Energy Diagrams up to Fourth-
Order in v for Anderson Model k d . 
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Appendix B. Irreducible Polarization Part 
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Appendix C. Diagram Representation of Average 
of QI3 
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