СООБЩЕНИЯ
 ОБЪЕАИНЕННОГО ИНСТИТУТА
 คAEPHЫX
 ИССへЕАОВАНИЙ

АУБНА

 AND HUBBARD TYPE.
I. REALIZATION OF GENERAL STATISTICAL WICK THEOREM.

1973

^AБOPATOPИА

B.Westwański*

PERTURBATION THEORY
FOR HAMILTONIANS OF ANDERSON AND HUBBARD TYPE.
I. REALIZATION OF GENERAL STATISTICAL WICK THEOREM.

 EME NVHOTEKA

On leave of absence from Instytut Fizyki, Uniwersytet Slaski Katowice, Poland

Теория возмущений для гамильтонианов типа Андерсона и Хаббарда: 1. Реелиэаиия'обобше́нной статистической теоремы Вика

Реализаіия обобшенной статистической теоремы Вика описана в терминах поперечных операторов восьмифермионного и четырехспинового типов. Получено диаграммное представление как для поперечных, так и для диагональных операторов.

1. Introduction

Insulator metal transitions are phenomena which have been known for quite a while in a wide variety of systems: metal vapour liquid system (mercury), metal ammonia solutions, disordered system (impurity bands), transition metal chalcogenides. In the last few years there has been considerable interest in transition metal oxides. These oxides form a very interesting class of materials $1-2 /$.

The Hubbard ideas are central to the interpretation of the properties of many transition metal chalcogenides ${ }^{/ 4 ;}$. The Hubbard model ${ }^{/ 3 /}$ has been studied extensively in the approach of the equation of motion for the Green function $73-8 /$. The functional integration method is given in ${ }^{19}$. Moments method is developed in $/ 10-13$

Corresponding approaches to the Anderson model /14 are given and quoted in '15-17.'

This paper extends the ideas of $18-21$. We present here perturbation theory for Hamiltonians with the Coulomb repulsion of the type of the Anderson and Hubbard models, but using the general statistical Wick theorem (GSWT) $20-21 /$.

Following the Anderson model we include into the zeroth-order Hamiltonian the Coulomb interaction between two d-orbital electrons in addition to the single-particle d and conduction band energies. We pick out an analogous term in the Hubbard model case. The Coulombinteraction is in general the dominant term in both the above mentioned models. Therefore the perturbation theory presented here may be fruitful.

In § 2 the decomposition of Hamiltonian into unperturbed and interaction parts is given. In § 3 the realization of GSWT for transverse operators is achieved. In § 4 the diagrammatic representation of the transverse and diagonal operators is obtained.

2. Decomposition of Hamiltonian

Let us define

$$
\begin{align*}
&<\mathrm{X}> \equiv \mathrm{Z}^{-1} \operatorname{Tr}\{\operatorname{Xexp}[-\beta(\mathbf{H}-\mu \mathrm{N})]\} \\
& \mathrm{Z} \equiv \operatorname{Tr}\{\exp [-\beta(\mathbf{H}-\mu \mathrm{N})]\} \tag{1}
\end{align*}
$$

where X is any operator, N total number operator, μ chemical potential, H any Hamiltonian of fermion systems (in magnetic field h) containing the Coulomb interaction U.We assume that operator $\mathrm{H}-\mu \mathrm{N} \quad$ can be written in the form

$$
\begin{equation*}
\mathrm{H}-\mu \mathrm{N}=\mathrm{H}_{0}+\mathrm{V} \tag{2}
\end{equation*}
$$

where the "inperturbed" Hamiltonian

$$
\begin{equation*}
\mathbf{H}_{0}=\Sigma \mathrm{H}_{0 \kappa}, \tag{3}
\end{equation*}
$$

in which a subsystem Hamiltonian

$$
\begin{equation*}
\mathrm{H}_{\mathbf{0}_{\kappa}}=\mathrm{E}_{+} \mathrm{n}_{\kappa+}+\mathrm{E}_{-} \mathrm{n}_{\kappa-}+\mathrm{Un}_{\kappa+} \mathrm{n}_{\kappa-} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{E}_{\sigma}=\epsilon+\sigma \mathrm{h}-\mu \tag{5}
\end{equation*}
$$

and ϵ being some parameter. The operator $\mathrm{n}_{\kappa \sigma}=\mathrm{d}_{\kappa \sigma}^{+} \mathrm{d}_{\kappa \sigma}$, and $\mathrm{d}_{\kappa \sigma}^{+}, \mathrm{d}_{\kappa \sigma}$ are the creation and annihilation operators for an electron of $\operatorname{spin} \sigma(\sigma= \pm 1)$ (at κ-th lattice side. The second term in (2), V, we will call-an interaction.).

In the following <..7 denotes the average (1-2) with $V=0$ and

$$
\begin{align*}
& \mathrm{X}(\tau) \equiv \exp \left[\tau \mathrm{H}_{0}\right] \mathrm{X} \exp \left[-\tau \mathrm{H}_{0}\right], \tag{6}\\
& |\tau| \leq \beta . \tag{7}
\end{align*}
$$

Hamiltonians, in which a part of the type (3-4) occurs being of great physical significance, have been introduced by Anderson $14 /$:

$$
\begin{align*}
& \mathrm{H}_{\mathbf{0}}=\mathrm{H}_{\mathrm{od}}+\mathrm{H}_{\mathbf{0 s}} \text {; } \tag{8}\\
& H_{0} d^{=} \epsilon_{d+} n_{d+}+\epsilon_{d-} n_{d-}+U_{n}{ }_{d} n_{d-} \text {, } \tag{9}\\
& \mathbf{H}_{\mathbf{0 s}}=\sum_{\mathbf{k}, \sigma} \epsilon_{\mathrm{k} \sigma} \mathrm{c}_{\mathrm{k} \sigma}^{+} \mathrm{c}_{\mathrm{k} \sigma}, \tag{10}\\
& \epsilon_{(k) \sigma}^{d} \sigma^{\mathbf{d}}=\epsilon\left(\frac{d}{k}\right)+\sigma h-\mu, \\
& \mathrm{V}=\sum_{\mathbf{k}}\left(\mathrm{V}_{\mathbf{k d}}^{*} \mathrm{~d}_{\sigma}^{+} \mathrm{c}_{\mathrm{k} \sigma}+\mathrm{V}_{\mathbf{k d}} \mathrm{c}_{\mathrm{k} \sigma}^{+} \mathrm{d}_{\sigma}\right) \tag{11}\\
& \text { and by Hubbard } \\
& \mathrm{H}_{0} \quad \text { has the form (3-5) with } \epsilon=\mathrm{T}_{\kappa \kappa} \text {, } \\
& \mathrm{V} \equiv \mathrm{~V}_{\mathrm{H}}={\underset{\kappa}{K \neq \kappa^{\prime}}} \mathrm{T}_{\kappa \kappa^{\prime}} \mathrm{d}_{\kappa \sigma}^{+} \mathrm{d}_{\kappa^{\prime} \sigma} . \tag{12}
\end{align*}
$$

The other types of the interaction have beengiven in ${ }^{/ 3,13 /}$ / A most general form of interaction will be discussed in 84.

The first who introduced the decomposition of Anderson Hamiltonian into "unperturbed" and interaction parts in the way ($8-11$) is just Scalapino ${ }^{/ 15 /}$. He initiated finiteorder perturbation theory for the partition function. Keiter and Kimball /16/ following Scalapino have formulated infinite diagram summation. These authors applied the usual Wick theorem to k-electron operators only, and the thermodynamic expectation values of products of d electron operators were evaluated in the representation, where $\mathrm{H}_{\text {od }}$ in (9) is diagonal.

It should be noted that, Kaschenko et al. ${ }^{/ 22 /}$ were trying to formulate an analog of the Wick theorem, when "unperturbed" Hamiltonian contains single-ion anisotropy in addition to the Zeeman term ${ }^{/ 18}$. However they conclude that an analog of the Wick theorem in this case does not exist. According to $/ \mathbf{2 0 - 2 1 /}$, their conclusion is not valid. In $/ 20 /$ GSWT was given for an arbitrary unperturbed Hamiltonian. Application of GWST to spin Hamiltonian with $\mathrm{S}=1$ is discussed in /21/. This discussion contains two interesting physical cases - single ion anisotropy and more complicated crystal fields as described for example in ${ }^{/ 23,24 /}$. It seems, that recently (Report on the International Conference on Magnetism, Moscow, August 1973) the authors of $/ 22 \rho$ (and additional collaborators: V.N.Kitaev, Yu.A.Emelianov) have changed their opinion and get the result, which is a special case of that in $/ 20,21 /$.

Now we present here the general principles of diagram technique for Hamiltonians of the type of that by Anderson and Hubbard, on the basis of GSWT $/ 20-21 /$ for operators, commutators or anticommutators of which are not cnumbers. According to GSWT when it is possible to extract from Hamiltonian that part, which has the form of the sum (3), we can treat it as unperturbed Hamiltonian and the remaining part as an interaction.

3. Realization of GSWTI

To determine the realization of GSWT ${ }^{/ 20,21 / \text { / }}$ it is sufficient to find the solutions for eigenvalues \dot{H}_{0}^{+11} and eigenoperators $J_{\kappa}^{\text {ij }} \quad(i \neq i)$ of superpropagator $H_{o k}^{x}$

$$
\begin{align*}
& \mathrm{J}_{\kappa}^{\mathrm{ij}}=\mathrm{J}_{\kappa}^{\mathrm{ji} \cdot} \tag{13}
\end{align*}
$$

Physical meaning of such, eigenoperators is described in ${ }^{\prime 25 \%}$. In contrast with ${ }^{20 \%}$ we define here (for convenience) the operators $\mathrm{J}_{\kappa}^{13} ; \mathrm{J}_{\kappa}^{14}$ in the following way

$$
\begin{equation*}
\left.\mathrm{J}_{\kappa}^{13} \equiv-|3\rangle_{\kappa}<1\left|, \quad \mathrm{~J}_{\kappa}^{14}=-\right| 4\right\rangle_{\kappa}<1 \mid . \tag{13a}
\end{equation*}
$$

Four eigenstates of $\mathrm{H}_{\text {ок }}$

$$
\begin{align*}
& |1\rangle_{\kappa} \equiv|11\rangle_{\kappa}, \quad|2\rangle_{\kappa} \equiv|01\rangle_{\kappa}, \\
& |3\rangle_{\kappa} \equiv|10\rangle_{\kappa}, \quad|4\rangle_{\kappa} \equiv|00\rangle_{\kappa} \tag{14}
\end{align*}
$$

with two electrons, with a $\mathrm{d}_{\kappa_{-}}$-electron, a $\mathrm{d}_{\kappa_{+}}$-electron and no electron, respectively 15,16 ; have properties

$$
\begin{align*}
& |1\rangle_{\kappa}=d_{K+}^{+} d_{K-}^{+}|4\rangle_{K} \tag{15}\\
& |2\rangle_{\kappa}=d_{\kappa-}^{+}|4\rangle_{K} \\
& 13\rangle_{K}=d_{K+}^{+}|4\rangle_{K} . \tag{16}
\end{align*}
$$

In this representation (4) may be rewritten as the 4×4 matrix

$$
\mathbf{H}_{0 \kappa}=\left(\begin{array}{cccc}
\mathbf{H}_{0 K}^{\prime 1} & 0 & 0 & 0 \tag{17}\\
0 & H_{0 K}^{\prime 2} & 0 & 0 \\
0 & 0 & \mathbf{H}_{0 K}^{\prime 3} & 0 \\
0 & 0 & 0 & H_{0 K}^{\prime 4}
\end{array}\right)
$$

with eigenvalues $\mathrm{H}_{0}^{\prime}=\mathrm{E}_{+}+\mathrm{E}_{-}+\mathrm{U}, \mathrm{H}_{\mathrm{O}}^{2}=\mathrm{E}_{-}, \mathrm{H}^{\prime}{ }^{3}=\mathrm{E}_{+}$, $\mathrm{H}^{\prime}{ }^{4}=0$. Hence due to (13) it suffices to write down $\mathbf{H}_{\text {ok }}^{\prime}{ }^{\mathrm{ij}}$ for $\mathrm{i}<\mathrm{i}$:

$$
\stackrel{+}{H}_{0 \kappa}^{\prime,}=\mathrm{E}_{+}, \stackrel{+}{H}_{0 \kappa}^{24}=\mathrm{E}_{-}, \mathbf{H}_{0 \kappa}^{14}=\mathrm{E}_{+}+\mathrm{E}_{-}+\mathrm{U} .
$$

$\begin{array}{ll}\text { According to } \\ \text { the form } & (13 a-16) \text { and } \\ \text { : } & \text { the operators } J_{K} \quad(i<j) \text { take }\end{array}$

$$
\begin{align*}
& \mathrm{J}_{\kappa^{12}}^{12}=\mathrm{d}_{\kappa+}{ }^{\mathrm{n}} \kappa_{\kappa-}, \quad \mathrm{J}_{\kappa}^{34}=\mathrm{d}_{\kappa+}\left(1-\mathrm{n}_{\kappa-}\right), \quad \tag{19}\\
& \left.\mathrm{J}_{\kappa}^{13}=\mathrm{n}_{\kappa+} \mathrm{d}_{\kappa-}, \quad \mathrm{J}_{\kappa}^{24}=\left(1-\mathrm{n}_{\kappa+}\right) \mathrm{d}_{\kappa-},\right\} \\
& \mathrm{J}_{\kappa}^{23}=\mathrm{d}_{\kappa+}^{+} \mathrm{d}_{\kappa-}, \quad \mathrm{J}_{\kappa}^{14}=\mathrm{d}_{\kappa+} \mathrm{d}{ }_{\kappa-}- \tag{20}
\end{align*}
$$

For convenience we denote by F_{κ} and S_{κ} the sets of pseudo-fermion and pseudo-spin operators, correspondingly:

$$
\begin{align*}
& \mathrm{F}_{\kappa} \equiv\left\{\mathrm{J}_{\kappa}^{12}, \mathrm{~J}_{\kappa}^{12}, \mathrm{~J}_{\kappa}^{34}, \mathrm{~J}_{\kappa}^{+}, 34, \mathrm{~J}_{\kappa}^{13}, \mathrm{~J}_{\kappa}^{+13}, \mathrm{~J}_{\kappa}^{24}, \mathrm{~J}_{\kappa}^{+} 24\right. \tag{19a}\\
& \mathrm{S}_{\kappa} \equiv\left\{\mathrm{J}_{\kappa}^{23}, \mathrm{~J}_{\kappa}^{+23}, \mathrm{~J}_{\kappa}^{14}, \mathrm{~J}_{\kappa}^{+} 14\right. \tag{20a}
\end{align*}
$$

From (19) and (20) we see that for $\kappa \not k^{\prime} 1^{\circ}$ operators from F_{κ} and F_{κ} anticommute, 2° operators from S_{K} and S_{K}, (or F_{K},) commute. This is why we have to introduce the following set $Q_{\kappa} \equiv\left\{Q_{K}^{i j}\right\}$ of diagonal operators

$$
Q_{K}^{\mathrm{ij}} \equiv\left[\mathrm{~J}_{\kappa}^{\mathrm{ij}}, \mathrm{~J}_{K}^{+_{i j}}\right]_{\rightarrow \eta} ; \eta=\left\{\begin{array}{ll}
-1 & \text { for } \mathrm{J}_{\kappa}^{\mathrm{ij}} \in \mathrm{~F}_{\kappa} \tag{21}\\
+1 & \text { for } \mathrm{J}_{K}^{\mathrm{ij}} \in \mathrm{~S}_{K}
\end{array}, \mathrm{i}<\mathrm{j}\right.
$$

i.e.,

$$
\begin{aligned}
& Q_{\kappa}^{12}=n_{\kappa-}, \quad Q_{\kappa}^{34}=1-n_{\kappa-}, \\
& Q_{\kappa}^{13}=n_{\kappa+} \quad Q_{\kappa}^{24}=1-n_{\kappa+}, \\
& Q_{\kappa}^{23}=Q_{\kappa}^{13}-Q_{\kappa}^{12}, \\
& Q_{\kappa}^{14}=1-\left(Q_{\kappa}^{13}+Q_{\kappa}^{12}\right) .
\end{aligned}
$$

The operators (21) commute with both transverse operators from F_{K}^{\prime} and $S_{K^{\prime}}$ for different lattice site indices. Let now by definition

$$
\begin{equation*}
\Theta_{K}=F_{\kappa} \cup S_{K} \cup Q_{\kappa} . \tag{22}
\end{equation*}
$$

The corresponding anticommutators (or commutators) of any pair of operators from Θ_{κ} are obtained from table of products given in Appendix A.

According to $1^{\circ}, 2^{\circ}$ and $/ 20 /$ we have to introduce two types of the following free Green functions (FGF): Fermi FGF's ($\eta=-1$) corresponding to pseudo-fermi operators (19a) and Bose $F G^{\prime}{ }^{\prime} s(\eta=+1)$ corresponding to pseudo-spin operators (20a), i.e.,

$$
\begin{align*}
& \mathrm{G}^{+}\left(\tau-\tau^{\prime}\right)=\exp \left[\left(\tau-\tau^{\prime}\right) \stackrel{+}{\mathrm{H}}_{0}^{\prime} \mathrm{ij}\right]\left[\eta \mathrm{n}\left(\mathrm{ij}^{+}\right) \Theta\left(\tau-\tau^{\prime}\right)+\right. \\
& \left.+\left(\eta \mathrm{n}\left({ }_{\mathrm{ij}}^{\mathrm{ij}}\right)+1\right) \Theta\left(\tau-\tau^{\prime}\right)\right]=\beta^{-1} \sum_{\mathrm{m}} \exp \left[-\mathrm{i} \lambda_{\mathrm{m}}\left(\tau-\tau^{\prime}\right)\right]^{\mathrm{ij}}\left(\mathrm{i} \lambda_{\mathrm{m}}\right) \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathbf{n}(\stackrel{+}{\mathrm{i}}) \equiv\left(\exp [\beta \stackrel{+}{\mathbf{H}} \underset{0 \kappa}{\mathrm{ij}}]_{-\eta}\right)^{-1}, \\
& G^{+1}\left(i \lambda_{m}\right) \equiv\left(i \lambda_{m}+H_{0}^{+i j}\right)^{-1}
\end{aligned}
$$

and $i \lambda_{m}$ is the imaginary Fermi or Bose frequency due to the kind of operator $J_{K}^{i j}$. FGF'S (23) relate the "unperturbed" (the word "unperturbed" will be omitted in the following) average of T-ordered product of operators $J_{\mathcal{l}^{j}}^{i j}\left(r^{\circ}\right)$ and $J_{\mathcal{R}}^{i j}(r)$ to that of $\left[J_{\mathcal{R}^{i j}}^{i j}, J_{\mathcal{R}}^{i j}\right]_{-\eta}$ in the
following way:

$$
\begin{equation*}
\left.\left.<\mathrm{TJ}_{\ell^{\prime}}^{\mathrm{ij}} \quad\left(\tau^{\prime}\right) \mathrm{J}_{\ell}^{+\mathrm{ij}}(\tau)\right\rangle_{0}=\mathrm{G}^{\mathrm{ij}}\left(\tau-\tau^{\prime}\right) \delta_{\mathcal{R}, \mathcal{R}^{\prime}}<[]_{\mathcal{R}^{\mathrm{i}},}, \mathrm{~J}_{\mathcal{Q}}^{\mathrm{ij}}\right]_{-\eta}>, \tag{24}
\end{equation*}
$$

where $\mathrm{J}(\tau)$ is defined in (6).
On the basis of above consideration and that in $/ 20-21 /$ applying the Gaudin method $/ 26,18,27 /$ we obtain a modification of GSWT ${ }^{/ 20 /}$ for the case considered here (when
there are two types of the reductors (19a) and (20a)). Namely the average of T-ordered product of $n+1$ operators may be reduced to that of T-product of m operators with $m<n+1$ according to the formulae (GSWT)

$$
\begin{align*}
& \left.\mathrm{I}_{\kappa_{\mathrm{j}-1}}^{\ell_{K_{\mathrm{j}-1}}\left(\tau_{\mathrm{j}-1}\right.}\right)\left[\mathrm{I}_{\kappa_{\mathrm{j}}}^{\ell_{K_{\mathrm{j}}}} \mathrm{~J}_{\kappa_{\mathrm{p}}}^{\ell_{\kappa_{\mathrm{p}}}}\right]_{-\eta}\left(\tau_{\mathrm{j}}\right) * \\
& \left.* I_{\kappa_{j+1}}^{\ell}\left(\tau_{j+1}\right) \ldots I_{\kappa_{n}}^{\ell} \kappa_{\kappa_{n}}\left(\tau_{n}\right)\right\rangle_{0}, \tag{25}
\end{align*}
$$

where
a) $G{ }^{\gamma_{p}} \quad$ is of the Fermi type (Bose type) if

$$
\mathbf{J}_{\kappa_{p}}^{\ell} \kappa_{\mathbf{p}} \in \mathbf{F}_{\kappa_{\mathbf{P}}}\left(\mathbf{S}_{\kappa_{\mathbf{p}}}\right)
$$

b) anticommutator should be taken if $I_{\kappa_{i}}$ and $J_{\kappa_{p}} \kappa_{p}$ belong to $F_{\kappa_{j}}$ and $F_{\kappa_{p}}$, correspondingly, otherwise -

c) factor $(-1)^{K_{j}}$ arises when ${ }^{P_{j}}{ }_{\kappa_{p}}{ }_{\kappa_{p}} \in F_{\kappa_{p}} ; P_{j}$ is the number of transpositions of the operator $J_{K_{p}} \kappa_{p} \quad$ with other operators 1 on the left-hand side of (25) which is required to set up this operator on the right of $I_{\kappa_{j}}^{\kappa_{j}}$. In this procedure the operators $I_{\kappa_{k}} \in S_{\kappa_{k}} \cup Q_{\kappa_{k}}$ may be treated as the product of two Fermi operators, and this procedure then gives factor $(-1)^{2}$.

FGF's (23) satisfy the relation

$$
\begin{equation*}
\mathrm{G}^{\mathrm{ij}} \quad\left(\tau-\tau^{\prime}\right)=-\mathrm{G}^{\mathrm{ij}}\left(\tau^{\prime}-\tau\right) \tag{26}
\end{equation*}
$$

If in (25) $R_{\kappa}=$ ij κ_{p}, i.e., we reduce the average ${ }_{+}$on the left-hand side of (25) with the help of operators $J_{K_{p}} \mathrm{ij}_{K_{p}}$ using $G^{i j} \kappa_{p}\left(\tau_{p}-r_{j}\right)$, then from (26) it follows that the
 can be used if $\ell_{\kappa_{p}}=i j_{\kappa_{p}}$ in (25) but at the same time we have $\left[{ }_{\kappa_{p}}^{i j_{p}} \kappa_{K_{j}}{ }_{\ell_{j}}{ }_{\kappa_{j}}\left(\tau_{j}\right)\right.$ on the right-hand side of (25) Due to this fact two reduction processes can be carried out, in one of which only FGF's G ${ }^{+}$($i<j$) arise and $G^{i j}$'s $(i<j)$ in the other. It is easy to see that FGF's (23) are not all independent and hence the way of reduction in (25) is not the only one. However in every case we obtain the same result. Therefore we can separate one of all these ways. We propose the following process of the reduction. Let us consider the averages like those on the left-hand side of (25). Firstly for the reduction we take an arbitrary transverse operator, say $J_{\kappa_{p}}^{\ell_{\mu_{p}}}{ }_{\kappa_{p}}$. Then we obtain n terms on the right-hand side of (25). We define the second stage as follows: if $\left[I_{K_{j}}^{\ell_{K_{j}}}, \mathrm{~J}_{\kappa_{\mathrm{P}}}^{\ell_{K_{P}}}\right]_{-\eta}$ is (according to realization of GSWT and Appendix A) a transverse operator, then it is to be used for the reduction of j-th term, otherwise, i.e., if $\left[I_{\kappa_{j}}^{\ell_{K}}, J_{\kappa_{p}}{ }_{K_{0}}\right]_{-\eta}$ is a diagonal operator we reduce the j-th
average by means of an arbitrary transverse operator. We define the next stages as the repetition of second one. This repetition is continued as long as there are transverse operators and at the end (25) becomes a sum of the products of FGF's (23) ($i \neq j=1,2,3,4$, and $\left.j^{+} \equiv i j\right)$ and averages of product of diagonal operators*only.

4. Diagrammatic Representation of Operators from Θ_{K}

From the definition of the reduction process there follows diagrammatic representation of transverse operators given in Appendix B, where directed lines

denote the FGF's (23) G ${ }^{\text {ij }}\left(\tau_{\mathrm{p}}-\tau_{\mathrm{j}}\right)$ and $\mathrm{G}^{\ell_{k}}\left(\tau_{p},-\tau_{\mathrm{i}}\right)$) respectively. Here we introduce a generalization of usual particle-hole picture ${ }^{/ 28 /}$ calling the operators J ij J^{ij} correspondingly the creation (annihilation) and annihilation (creation) ones of "particle (hole) ij ". Such a picture in the case $\mathrm{ij}=23$ ($\mathrm{H}_{0}^{\prime}{ }_{0}^{23}=-\mathrm{H}^{\prime}{ }_{0 k}^{23}$ is independent of chemical potential)is adopted here only for generality. These operators playing the role of creation and annihilation ones of "particle ij " are represented in the following manner

i.e., the operator ${ }^{+i j}$ by the $\left({ }_{i j}^{+}\right)$with one outgoing line $\xrightarrow{i^{t}}$ and $J^{i j}$ by ii with one incoming line,
$\xrightarrow{+}$. The other possibilities of representation of above operators in the "particle" case are of two types: with one incoming and one outgoing line

or with two incoming and one outgoing line

The kind of incoming and outgoing line in (28a, 29a) is determined by corresponding conditions:

$$
\begin{align*}
& {\left[J_{\kappa}^{+}, J_{\kappa}^{\ell_{k}}\right]=(\pm) \mathbf{J}_{\kappa}^{p q},} \tag{28b}\\
& \mathrm{H}_{0 \kappa}^{, \mathrm{Pq}-\mathrm{H}_{0 \kappa}, \ell_{k}=\mathrm{H}_{\mathrm{OK}}, \mathrm{ij}, ~} \\
& {\left[J_{K}^{i j}, J_{K}^{\ell^{\prime} k}\right]_{-\eta}^{\prime}=(\pm) J_{K}^{p^{\prime} q^{\prime}},} \tag{29b}
\end{align*}
$$

In (30) the line $\xrightarrow{\ell_{k}}$ occurs if

$$
\begin{equation*}
\left[Q_{K}^{i j}, J_{K}^{\ell k}\right]_{-1}=(\pm) J_{K}^{\ell k} \tag{30a}
\end{equation*}
$$

The sign (\pm) in ($28 \mathrm{~b}-30 \mathrm{a}$) given by $[,]_{-\eta}$ is indicated on the figures in Appendix B.
${ }^{i j}$ The "hole" case representation of operators $J^{i j}$, J can be considered analogically.

According to accepted above reduction process we will represent the diagonal operators, $Q^{i j}$ by $i j$ with the same incoming and outgoing line

where all possible lines are determined by the condition (30a). Corresponding representation table for diagonal operators is to be obtained from that given in Appendix B, when here one replaces $+\dot{+} \rightarrow$ (ii) by ii] on the figures
of the type (30). Besides (31) we will represent diagonal operators $Q^{i j}$ simply by

Obviously

It should be pointed out here that described above diagrammatic representation of operators from Θ_{κ} is valid for arbitrary structure of interaction. From (19-21) it follows what types of interactions with hopping integrals similar to that of Hubbard $/ 3 /$ we can introduce (if they can have the physical meaning). Namely denoting such integrals by $T_{\kappa, \kappa^{\prime}}^{\ell_{K}, k}$, where the index $\ell_{\kappa}\left(k_{K^{\prime}}\right)$ denotes the kind of the operator in $\Theta_{\kappa}\left(\Theta_{\kappa}\right)$, we can write down the class of interactions mentioned in §2. in the form

$$
\begin{equation*}
{\underset{K \neq K^{\prime}}{ } \mathbf{T}_{\ell^{\prime}, K^{\prime}}^{\ell_{K} \mathbf{k}^{\prime}} I_{\kappa}^{\ell_{\kappa}} \mathbf{I}_{\kappa^{\prime}}^{\mathbf{k}_{K^{\prime}}^{\prime}} .}^{\prime} \tag{33}
\end{equation*}
$$

Frequently we obtain the interaction of the type of (33) by a diagonalization analogous to (17-21).

In conclusion we would like to point out that in the second part of this paper (reffered to as II) we shall formulate an analog of GSWT for diagonal operators and use the presented approach to study of the Anderson and Hubbard model.

Acknowledgements

The author would like to express his sincere thanks to A.Pawlikowski for critical reading of the manuscript and helpful comments.

He is also indebted to A.I.Larkin, N.M.Plakida and J. Czerwonko for useful discussions.

Appendix A. Table of Products of Operators from $($

$$
\begin{aligned}
& \mathrm{J}^{12} \mathrm{~J}^{12}=\mathrm{J}^{+13} \mathrm{~J}^{13}=\mathrm{J}^{14} \mathrm{~J}^{14}=\mathrm{Q}^{13} \mathrm{Q}^{12} \\
& \mathrm{~J}^{23} \mathrm{~J}^{23}=\mathrm{J}^{24} \mathrm{~J}^{24}=\mathrm{J}^{12} \mathrm{~J}^{12}=\mathrm{Q}^{24} \mathrm{Q}^{12} \\
& \mathrm{~J}^{34} \mathrm{~J}^{34}=\mathrm{J}^{13} \mathrm{~J}^{13}=\mathrm{J}^{23} \mathrm{~J}^{23}=\mathrm{Q}^{13} \mathrm{Q}^{34} \\
& \mathrm{~J}^{14} \mathrm{~J}^{14}=\mathrm{J}^{24} \mathrm{~J}^{24}=\mathrm{J}^{34} \mathrm{~J}^{+34}=\mathrm{Q}^{24} \mathrm{Q}^{34} \\
& \mathrm{~J}^{12} \mathrm{Q}^{13}=\mathrm{Q}^{24} \mathrm{~J}^{12}=-\mathrm{J}^{+} \mathrm{J}^{13}=\mathrm{J}^{24} \mathrm{~J}^{14}=\mathrm{J}^{12} \\
& \mathrm{~J}^{34} \mathrm{Q}^{13}=\mathrm{Q}^{24} \mathrm{~J}^{34}=\mathrm{J}^{24} \mathrm{~J}^{23}=\mathrm{J}^{14} \mathrm{~J}^{13}=\mathrm{J}^{34} \\
& \mathrm{~J}^{13} \mathrm{Q}^{12}=\mathrm{Q}^{34} \mathrm{~J}^{13}=-\mathrm{J}^{23} \mathrm{~J}^{12}=\mathrm{J}^{34} \mathrm{~J}^{14}=\mathrm{J}^{13} \\
& \mathrm{~J}^{23} \mathrm{Q}^{12}=\mathrm{Q}^{34} \mathrm{~J}^{23}=\mathrm{Q}^{13} \mathrm{~J}^{23}=\mathrm{J}^{23} \mathrm{Q}^{24}=\mathrm{J}^{34} \mathrm{~J}^{24}=-\mathrm{J}^{13} \mathrm{~J}^{12}=\mathrm{J}^{23} \\
& \mathrm{~J}^{14} \mathrm{Q}^{12}=\mathrm{Q}^{34} \mathrm{~J}^{14}=\mathrm{Q}^{24} \mathrm{~J}^{14}=\mathrm{J}^{14} \mathrm{Q}^{13}=\mathrm{J}^{34} \mathrm{~J}^{13}=-\mathrm{J}^{24} \mathrm{~J}^{12}=\mathrm{J}^{14} \\
& \mathrm{~J}^{24} \mathrm{Q}^{12}=\mathrm{Q}^{34} \mathrm{~J}^{24}=-\mathrm{J}^{14} \mathrm{~J}^{12}=\mathrm{J}^{34} \mathrm{~J}^{23}=\mathrm{J}^{24}
\end{aligned}
$$

Appendix B. Graphical Representation of Transverse Operators

References

1. D.Adler. Solid State Physics, 2l, 1 (1968).
2. N.F.Mott: Proc.Phys.Soc. (London), A62, 416 (1949); Can. Journal of Physics, 34, 1356 (1956); Phil.Mag., 6, 287 (1961); Rev.Mod.Phys., 40, 677 (1968).
3. J.Hubbard. Proc.Roy.Soc., A276, 238 (1963), ibid., A277, 237 (1964); ibid., A281, 401 (1964); ibid., A285, 545 (1965).
4. S.Doniach. Adv. in Phys., 18, 819 (1969).
5. A.Sakurai. Prog. Theor. Phys., 39, 312 (1968).
6. J.Hubbard and K.P.Jain. J.Phys., Cl, 1650 (1968).
7. C.Mehrotra and K.S.Viswanathan. Phys.Rev., B, 7, 559 (1973).
8. M.A.Kanehisa and H.Kamimura. J.Phys.Soc. Jap., 34, 44 (1973).
9. W.E.Evenson, J.R.Schriffer and S.Q.Wang. J.Appl. Phys., 41, 1199 (1970); Phys.Rev., B, 2, 2604 (1970). M.Cyrot. Phys.Rev.Lett., 25, 871 (1970); Le Journal de Physique, 33, 125 (1972). H.Nishimura. Phys. Lett., A, 44, 405 (1973).
10. W.F.Brinkman and T.M.Rice. Phys.Rev, B, 2, 1324 (1970).
11. J.Sokoloff. Phys.Rev., B; 2, 3707 (1970); 3, 3826 (1971).
12. M.E.Fisher and W.J.Camp. Phys.Rev., B, 5, 3730 (1972).
13. B.Roulet, M.E.Fisher and S.Doniach. Phys.Rev., B, 7, 403 (1973).
14. P.W.Anderson. Phys.Rev., 124, 41 (1961)
15. D.J.Scalapino. Phys.Rev.Lett:; 16,937 (1966).
16. H.Keiter and J.C.Kimball. Phys.Rev.Lett., 25, 672 (1970).

Jour. Appl.Phys., 42, 1460 (1971); Int.J.Magnetism; 1, 233 (1971)
17. H.Mamada and F.Takano. Prog.Theor.Phys., 43, 1458 (1970).
18. F.G.Vaks, A.I.Larkin and S.A.Pikin. Zh. eksp. teor. Fiz., 53, 281 (1967); Zh. eksp. teor. Fiz., 53, 1089 (1967).
19. B.Westwanski. JINR Preprint, E4-7315, Dubna, 1973. to be published in Phys. Lett. A.
20. B.Westwanski and A.Pawlikowski. Phys.Lett. A 43, 201 (1973).
21. B.Westwañski. Phys.Lett A, 44, 27 (1973).
22. M.P.Kaschenko, N.F.Balakhonov, L.V.Kurbatov, Zh. eksp. teor. Fiz., 64, 391 (1973).
23. I.E.Dzyaloshinsky. Phys.Chem,Solids, 4, 241 (1958).
24. T.Moriya. Phys.Rev., 120, 91 (1960).

25, S.B.Haley and P.Erd6s. Phys.Rev., B, 5, 1106 (1972).
26. M.Gaudin. Nucl.Phys,, 15,89 (1960).
27. Ju. A.Izyumov and F.A.Kassan-Ogly. Fiz.Metallov y Metalloved. 26, 385 (1968), ibid.; 30, 225 (1970).
28. R.D.Mattuck. A Guide to Feynman Diagram in the Many-Body Problem (1967).

Received by Publishing Department on October $9,1973$.

