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1. I n t r o d u c t i o n 

The well-known concept of so-called muffin-tin potentials 
(MT-potentiale) ia used often and in different fields. In aolid 
state theory it ie of interest for bandstructure calculations 
(APW, KKH), for the derivation of model hamiltoninns (pseudopo-
tentiale for simple metals, hybridized nearly fra» electron tight 
binding schemes for transition metala) and for the discussion of 
the electron density of states in disordered systemB (pseudogaps 
in semiconductors with definite short range order; see Mc Gill and 
Klima 1972, Keller 1972 and John 1973). In the electron theory of 
molecules this MT-concept ia used both for bound states (aee 
Johnson and Smith 1972) and for the elastic electron scattering 
on molecules (Demkov and Eudakov 1970, John and Zieeche 1971). An 
essential advantage of this MT-concept consists in that structure 
(atomic sites E ; ) and atomic potential, the latter only via its 
phase shifts q'L enter into the theory by separated quantities. 
On the other hand the accuracy of calculations is restrici-d by 
the use of the MT-approximation, simplifying the potential in the 
following way: 

1. The potential within the muffin-tin spheres ia assumed to 
be spherically symmetric. Deviations from this assumption arise 
for instance fro» partially filled d-banda in transition metals 
(Jacobs 1970) or from covalent bands in semiconductors (Kane 1971). 

2* The potential between non-overlapping spheres, centered 
at the atomic sites is assumed to be constant. This is of course 
reasonable only for close packed structures, but leads for more 
open structures as diamond to essential errors (Kane 1971). 
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There are several attempts to overcome both restrictions• 
Evans and Keller (19?1) and John et al. (1972) discuss non-
-spherically symmetric potentials in the band structure calcu­
lation methods (KKR, APW), while Pettifor (1972) investigates 
such potentials in molecular problems (bound states). The APW 
method is generally not limited to MT-potentials and in the last 
two years several authors have studied corrections of the original 
MT concept within this method. For the KKR method the situation 
ia not so simple. Andersen and Kasovaki (1971) use HT-orbitals 
to overcome both restrictions. Bross and Anthony (1967) as well 
ее Belesnay and Lawrence (1968) have generalized the ККБ method, 
taking into account a non-zero potential between the MT-spheres* 
Unfortunately this destroys the simple structure of the KKR 
equations, which may be conserved by another approach, namely by 
the installation of additional MT-potentials at interstitial 
sites, as first performed by Keller (1971 b ). This of course 
increases the number of ecatterers in the unit cell* Besides there 
are attempts to extent the КХЯ method aloo to tue case of over­
lapping spheres, envelopping the spherically or non-spherically 
symmetric atomic potentials (Williams 1970, Ball 1972, Villiams 
and Morgan 1972). Here it is shown, that only in the case of 
non-overlapping envelopping HT-spheres the simple structure of the 
original KKR aethod is conserved owing to otherwise divergent 
angular momenta expansions. To discuss this in more detail, 
generalized UT-potentials are introduced, being non-zero within 
an arbitrary voluae tf (see Fig.l). In Section 2 the scattering 
states of such a single generalised MT-potential are described by 
generalized phase shifts t£ ̂  and corresponding partial wave 
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amplitudes А к Л аз recently introduced by Demkov and Rudakov 
(1970) and furtherly studied by John and 2iesche (1971a) and 
differently applied (generalized Friedel sum rule and Lloyd-
formula: John and Zieache 1971a, Saxon-Hutner gap criteria for 
alloys: John 1971, KKR- and APW-method for non-spherically symmet­
ric WT-potentiels: John et el. 1972, localized defects in metals: 
Lehraann 1973a,b,Rennert end Zieache 1972). In Section 3 finite 

clusters of such generalized ( of course non-overlapping) ЙТ-po­
tentials, the scattering states of which are assumed to be known, 
are considered. If certain atructure matrices determined by 
integrations alcng the surfaces of paira of these MT-volumes, eve 

known, в purely algebraic scheme for the cluster phnee shifts г£^ 
and their amplitudes B L^ holds. In Sections 4 and 5 infinite 
systems are discussed. Using the cluster equations derived in 
Section 3, a generalized Lloyd-formula ia obtained immediately 
for the density of statea in disordered systems and generalized 
KKH-eq,uations for the band atructure of crystals. In the latter 
--ase there are included also potentials non-zero within the whole 
unit cell and therefore separated only by thin skins of zero 
potential along the boundaries of the unit cells, so that the 
envelopping spheres of immediately neighboured unit cells overlap, 
As a consequence of this in the KKR-structure matrices only the 
unit cells, far enough from each other, can be treated in the 
usual manner, while for the immediately neighboured unit cells 
the near fielda of their scattering states must be talcen into 
account, which cannot be described only by the asymptotic or 
far field characteristics. Therefore KKB equations appear, modi­
fied generally not only by the replacement tg^L(TlL. ""(ton) L. D U t 
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also by at least a partial change in the structure matrices, 
splitting into a siuple far field and a rather complicated near 
field part. 

2, A single generalized muffin-tin potential 
A generalized KT-potential ie defined here to be non-zero 

only within a certain volume lJ {aee Pig. 1). The scattering states 
fxC?) o f such a MT-potential are characterized by a behaviour 
outside the envelopping sphere (r> Г0 ) 
<PAfir)-ICjLfT)A^cos^-nurr)Ausin r2 A], (2.D 
containing generalized phase shifts г^л and real partial wave 
amplitudes A L / . As in (John and Zieache 19?la) th« abbreviations 

] L tr)s] e t i tr)y L f i i ) >n L6 r)an lUr)Y lCrn,n=i ( 2 , 2 ) 

вге ueed. i and n, are the usual apherical Beaael and Neumann 
functions, respectively, Y L are Teal spherical harmonies, 
L 5(£,me). 

The non-trivial scattering etetea<characterized by sinr^D) 
are determined by the Schr6dinger integral equation 

\ C r ) = U ? U r GC?-?)Vfr',?') <РЛ(?'•). 
• 1 1 Л ' (2.3) 

The ^ A used here differ fro» those us.a in (John and 
Ziesche 1971a) bjr a minus sign . 
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With the help of the usual expansions 

^),UiT-fl)=I.lCr)]L(?) for Г|Г', ( 2.4) 

^n0CStlf-fl)=2.nL(T)jL(r'l for Г>Г' (2.5) 

and demanding 

(2.3) realizes the asymptotic behaviour (2,1). For a given energy 
С = "?£ the equation (2,3) possesses solutions only for certain 
phase shifts г̂ д . By the way, from (2.3) and (2.6) it follows, 
that K A =H/*)tqn)h4and А и Л /эге the eigenvalues and the eigenvectors 
of the K-matrix 

K-V+V6°K ; G'Cr-r)«&n D(*lr ~r'fi C 2 ' ? ) 

in ita L-repreaentation on the energy shell, K U. = (|L.K [L. J 
Becauae the К-matrix is real and symmetric, the amplitudes are also 
real and . form an orthogonal and complete set. Аз я consequence 
of the finite range r0 the amplitudes A L A are email for £.»yr0 , 

aa it. is tfhown for a simple example in Appendix 1. 
In the following it ie necessary to assume, that besides 

h A and A u A aleo the wave function ̂ A and its normal derivative 
Зрл/Dn «long the surface of l9 are known. These latter quanti­

ties determine the wave function outside 13 end ineide the enve-
lopping sphere r<r0 ("near field"), while tyA and A|_* deter­
mine only the "far field" beyond the envelopping sphere r>rD 

^hia ie seen, rewriting (2,3) by meana of partial integration 
aa (here the index л ia dropped and the index at У /Э7 ehowa 
on which function it only acta); 
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г _ <2.8а) 

* (2.8Ь) 

Really, from (2.8) it follows, that the wave function outsideV 

takes the form 

Â (?'= ̂ ^ " ' Ч Г ^ *Щ\ < 2' 9 

with (for ? $ tf ) 

(2.10) 
^-K^df[(^) k-(^) i p]^n ir*ir-Fl)<P AC?)-^ :. 
Using the expansion (2.6), the compariaon with (2*1) for r>r"0 

yields the relation 

following also directly from (2.6) by partial integration. 
In addition (2.Ba) yields with (2.4) and (2.S) 

(2.11) and (г.12) connect the asymptotic quantities with the 
surface quantities f A }'dyK / Q n . 

By the way, with the replacement a 3C-*-i 3£ and chjnA-*-i » 
the latter guaranteeing the wave function to remain finite, 
also bound atates E - ' ^ c a n be included into the discussion. 

3. Finite ayatema 
Now we consider a cluster of such muffin-tina within non-

overlapping volumes "0; , to each of which is attached a aite R-, • 



The asymptotic properties of n and ALA are related to these sites 
R; • The cluster wave function <f'(?")in the immediate environ­

ment of 13; follows from an appropriate linear combination of the 
MT-orbitals fx (T) 

*№^[\№°*ЪГ nA C* J s i n ,b] *V sinî . . (3.1) 
The cluster wave function in the whole space, f^Cr), and the 
clueter-equatione, determining the cluster phase shifte n and the 
cluster amplitudes Ьд , ere obtained directly from (2.B), taking 
into acoount only the replacement "0 -*- 5 X); . Really (2.8b) yields 
with the help of (3.1)immediately the cluster wave functions 
(outside the volumes "0; ) 

% (7)=I [,;CT) cos^- r!s(?) sint^] В Л ; (3.2) 

with ВЛ / и. =sini^x b A / l t . Again using (3.1) from (2.8a) there follow 

the cluster equations (for ainr^£ 0 ) 

I"—"i \l. [ к- Ъ+ta^kf N^-c tg^^ . ) ] в ^ «о, (3.3) 

naaeljr acting on (2.8a) by 

If nr.e uses in thia operation instead of f'^Crl the function 
Zn.f ̂ 1 А щ with A corresponding to the tririal ЫТ-atates (with 
L ; 
sin 1̂  j =0), then the coefficients Ьл/ч. for such Л , 

appear, needed in the expression (3.1) for Ц?' CT"). The first term 
in (3.3) arises fro* 



С-м,)«% 

. ; г , (3.5) 

which is seen, deforming the integration surfaces appropriately, 
using (2.S), (2.11), (2.12) and the orthogonality of 4 L , . The 
left-hand aide of (3.4) is similarly defined. The second term in 
(3.3) and (3.4)contains a structure matrix NJJX defined as 

If as in (3.4) Л is a trivial MT-state (with sin 13'x =0), then 
д̂С"г) muat be replaced by£ АА1. П1.П^). T n e structure matrix JA'\' 
in the third term of (3.3) is similarly defined, only with ],>(•.) 
instead of n 0 (...). Owing to the restriction of the expansion 
(2.5)( the complicated expression (3.6) can be reduced to the 
asymptotic quantities A*L>li and a much more simple matrix N^- , 
containing only the point structure R, . only if the volumes 0; 
are within non-overlapping spheres around their corresponding 
sites R; : 

Otherwise, that is for overlapping envelopping spheres, the 
asymptotic propertiee are not sufficient and near field properties 
as in (3.6) must be taken into account. The corresponding relation 

' I H A L X A L ( 3 - 8 > 
always holda, because the expansion (2.4) is valid without 
restrictions. Deriving (3.7) and (3.8), the relation (2.11) and 
the addition theorems for j L (j^+ Гг ) (see Ziman 1966) and 

10 



n L(T>+f£)(see Lloyd 1969, 1972, Andersen 1971, John and Ziesche 

1971a, Zieache 1972)have been used. The point structure matrices 

appearing in (3.7) and (3.B) are defined by 

l'1>™IQ,L..; l"Wj,.(R;,)=1

4'tSdnYLre)e"^"Y,[nl, 
... L 1 I'.C — (З.Я) 

N;; L=(i-^WLC L L. L..i nL.tR-„o 
with R*,-;. = H",- - iTj.and with C u- L- = Jd-nYJntY (n) YL.. (nl »s Gaunt. 

coefficients. 

The cluster equations (3.3) have been derived here analogously 

with Kohn/Hoatoker (1954). Of course they can be obtained also 

by & Rayleigh treatment a la Korringa 1947, conaidering (3.2) aa 

an ansotz and demanding fu. = î ' in the surrounding of each "0; as the 

"nayleigh-Huygens"* self-consistency condition for diffraction 

(Ziesche 1973). (3,3) then ie the condition for that all wave 

functions (3.1) have the same continuation (3.2) into the whole 

apace (outside the volumes 0,) with an asymptotic behaviour 

( r > r 0 ) 

l^ c;bL[jL(r) B^coa^-rvCf) B^sim^.], (3.10) 

following from (3.2) by means of the mentioned addition theorema 

for j L and n L . The asymptotic behaviour ia described by 

cluster phase ehifte t£̂ . and asymptotic or far field amplitudes 

BL^A. t resulting from the near field amplitudes 8i_^ by 

As a consequence of (3.3) the amplitudes are orthogonal to each 

other for different cluster scatter og states ft. 



Неге 

у -i'° У = "•" , (3.13) 

haa been used, which followa again from the mentioned addition 
theorem for j L . 

Just as in the свае of spherically symmetric MT'a (John and 
aieache 1971a) the cluster equations (3.3) determine aa шапу non-
trivial cluster scattering statea (with sini^ +0 ) aa non-trivial 
MT-phaee ahifte r*'K (with ainri'yfQ) eadat. Alao difo /Э^д >0 
holds aa for apherically symmetric MT'a, Finally with ctqij^i 
and ê = iaealao bound atatea E--^<-Dare determined by (3.3). 

Similarly as in(John and Zieache 1971b) the cluster- K-
latrix in ita L-representation on the energy ehell 

K.,-lBL,KRBr. , M - £ t n r
 l a M ) 

ia obtained from the cluster equations (3.3) aa 

(3.15) 

Thia follows of course alao directly from (2.7) (aee Zieache 
1973b).If the envelopping spheres do not overlap, then (3.6) 
applies and (3.15) takes the form 

(S.16) 

in agraeunt with Lloyd (1969, 1972), only with tha diffarenca, 
that the aingla acattarar K-«atricae on the energy ahall hara 
ara expreaaed explicitly Ъу thaip aiganTaluaa K^C-l/sOtqi^ 
and thair eigenrectora A'L* , that ia KLL.=I A|_AK^ Ад,. • I» the 
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special case of spherically symmetric ecatterera their K-matricea 
are diagonal, K L L. = oLL- ]\'L p and (3.15) simplifies itaelf, in ag­
reement with John and Zieache (1971b) and He Gill and Klima (1972), 

By the way, the amplitudes form a complete aet, if the 
trivial scattering states (characterized by Кц =0) are also 
included. From (3.15) it follows, that they obey the condition 

I^B^-O for K>0 (3.17) 

allowing to represent the projection operator of the non-trivial 
scattering states in the following form 

£&^B r^ f K;, 0, ]L.J] L< ]<L , (3.18) 

as proved in the Appendix 2. While for the fer fielde amplitudes 
(3.17) holds, the near field amplitudes obey 

г в1 в' ~ ( T T ( ; 5 Л 9 ) 

ctv+o) 
following from (3.18) together with (3.11). 

4. Infinite disordered systems 

Now we consider an extended system of non-overlapping 
generalized MT's, For such a system the integrated density of 
states N(E) is connected via a generalized Friedel sum rule (John 
and Ziesche 1971b) with the phaae shifts h ̂  , the number of which 
is proportional to the volume 1? of the system: 

NCE)-N4E) = ̂ H ^ C E ) . «•» 
N (E) corresponds to the free electron ease. The following 
derivstion is similar as in (.John end Ziescha 1971b), but owing 

13 



to certain peculiarities connected with the resonances of the 
MT-phaee shifts r'A a more careful treatment is necessary ав 
mentioned by I/ehmann (1973b) . 

Using the identity 

« „ - - О т Ь вхр(-1^г)»-1т1 Ы с ^ ^ - ' О - З т С п С ^ п ^ ) (4.2) 

(4,1) splite into two terms, namely 

-3m In iie*ltCctg^-')6^He-Imln detlld-gji ^ • ^ A ' ^ A V 1 ] ^ ^ 4 - 3 5 

and 

-3m Indefllsinry^ lb -3m£n detUsm^ in»<5A* l l• (4,л) 

(4.3) is baeed on the cluster equationfl (3.3) and on 3m lr\ detllll^O, 
following from de+l|~|U > 0 . Thie latter property affects also, that 
if one of the MT-phase shifts 17̂  passes through nTT at a certain 
energy, then а1во one of the cluster-phase shifts Пц passes 
through hTT in t-he а а |ве sense. Therefore also (4.4) holds. Alto­
gether a generalization of the Lloyd-formula £1967) is obtained 

\Ж)Ш)--^ЬШа$4ЛгЬх*™$.Мх* ~ if. HI (4-s) 

If with МдД. ̂ Q one completely neglects the multiple scattering 
between the KT*s, then (again with deHllHK) and *]" - 4 ) 

NCE)-N'(E)«^g£ fa (4.6) 

approximately results in. This is the approximation of independent 
non-aph.rically symmetric scatter»* as used by He Gill and Klima 
11972) and Keller (1971) in their cluater theory of amorphous 
coralent semiconductors. The matrix N describee therefor, the 

3) 
Th« author is grateful to Dr.L«hm«nn for pointing thi» out. 
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multiple scattering. To ita elements N^V the simplification 
(3.7) applies, only if the scatterers are far enough from each 

other, ao that their envelopping spheres do not overlap 
((?,;•>!" + r'' ). Otherwise the complicated ne&r field formula 
(3.5) must be applied. 

5. Infinite ordered aystama 

If all the MT'a are equal and arranged regularly, then a lattice 
appears, the periodicity of which is described by 

Therefore with Fourier transformation of the structure matrices 

(3.3) changes into generalized KKR-equations 

determining the bandatructure >t (Ц) , while the wave function in 
the cell at the origin tafcea according to (3.1) and (3.4) the form 

(singwC.Ai< for sinnfc *0 (5.4) 

For negative energies ctg n^ in (3.3) and (3.4) must be replaced 
by i guaranteeing the wave functions to remain finite. For 
poaitive energies ctg ̂  can be chosen arbitrarily, because "|AA. ~0 

for v.*|£+|^!. This ia due to <3.8) and (3.9) and II exp 
(i К R; ) = 0 for к ia not a reciprocal lattice vector К . 

According to (3.7) and (3.8) a cooplete reduction to the 
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eiaple point structure matrices of the ordinary KKR-method, 

x [ N L U tR)-i]L,(K)]=ALL.(k) or I'"1' B^.fK), (s-5) 

is possible only in the case of non-overlapping, envelcpping 
apheree. Thin means a non-zero potential only within the ephere 
inscribed in the Wigner-Seitz-cell and just touching the bounda­
ries. This caae has been considered recently by John et al. (1972). 
Peaeing from the ̂ .-representation (5,3) to the L-repreaentatior», 
the ordinary KKR-equations emerge, onlytoRLo\L. is replaced by the 
matrix (tgi^u^EAutgi^AA*,;» the non-diegonality of which comee from 
the non-apherically symmetric potential within the inscribed sphere. 
If thia potential arises from a cluster of ЫТ-potentiala at sites 

5n , then the non-overlapping condition for the applicability 
of (Э.7) can be softened slightly, becauae it is sufficient, that 
only the sites belonging to a cluster are within в sphere not 
overlapping with the corresponding spheres of the neighboured 
clusters (see Zieache 1973a). In this case the KXH-equetiona for e 
lattice with several atoms per unit cell appear in such a way that 
the structure of the cluster and the structure of the corres­
ponding Sravaia lattice are described by separate* quantities 
(see Lehmann 1970, John at al 1972). 

If the potential ie non-жего in the whole Wigner-Seitx-cell, 
thus separated only by thin skins of eero potential along the 
boundariaa of the unit cell, then the lattice sum in NAx(T?) splits 
into one (far field) part of unit cells, being far enough froe 
each other and allowing again the reduction (3.7), 

1С (Й»1 А ЛХ,Л) kix , Ш (U= I e;**' С , (s-6> 
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and a second (near field) part of the immediately neighboured 
unit cells, which can be calculated only via (3.6), 

( M M 
F 0 is the length of the smallest lattice vector outside the 
sphere, envelopping the unit cell. Passing again to the L -repre­
sentation modified KKR-equatione" 

,1 

appear with С,д«£;Д^С д£ a n a 

aN t,(E)-EA t AAN A A.CK)R A.,. ( 5- 9> 
In difference to the ordinary KKR-method not only iqq b u t also 
^ N contains via (3.6) the potential within the unit cell. That 
means the separation of potential and structure, as characteristic 
for the ordinary KKR-method, is modified in the considered case. 
That the near field part A N X A > io not factorized into the 
asymptotic or far field properties A L X and point structure, is 
physically due to an old statement of wave theory, namely, that 
the near field (see second line of (2.10)) generally cannot be 
determined completely by the far field characteristics only, but 
rather depends on the details of the distribution of the scattering 
centres. The mathematical background is essentially the restriction 
in the expansion (2.5) of п0(я\г гЧ), meaning, that (2.S) diverges 
if r*r' - The analogous expansion of n^f-rHs restricted in 
the same way (see John and Zieache, 1971, Ziesche 1972). Consequen­
tly divergent series occur,if one factorizea^N^n the same way as 
N u i , trying to set up the ordinary KKR-equatione also for 
overlapping envelopping spheres,.Of course this divergence 
disappears fornally if one truncates the KKR-matrices with respect 
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to L as is usually made. Clearly such a treatment is in principle 
incorrect. In this case the truncation of L acts as an effective 
restriction to a potential non-гего only within the inscribed 
sphere. 

There are yet two remarks with respect to the near field 
partaNdeecribing ti:e "miring" or "interaction" between potential 
and structure: 

1, Although the factorization (3.7) is not completely appli­
cable, there are nevertheless parts of the surfaces, which are 
far enough from each other to allow this factorization at least 
partially. Namely, the unit cellal^appearing in (5.7) and surrounding 
the central unit cell *00 г form as s whole a certain volume "#•=£ tfi. 
with an interior and an exterior surface (see fig.2), Only those 
surface parts of the surrounding unit cells ^ contribute vie 
(3.6) to aN A A. which belong either to the interior or to the 
exterior surface of "0 . We denote these surface parte of 1?, by 
F!" and F. *" , The contribution of FfK really factorisee. Therefore 
uN^x ePli*e into two parts 

4NAXCI<I-?: е**'С-Кщ.ё™1СС ( 5- 1 0 ) 

i.K',4S,l CH:*R») 
НАд. ie that part of N ^ in (3.6) with the aacond aurface integra­
tion only along F!n and A 1^ ia that part of A L* in (2.11) with 
th. aurfac» integration along Ff . Етег. in N^x are further certain 
eurfec» parte allowing again thia partial factorization. 

8. It ia aaeumed, that a (generally non-real) potential 

V ( r p ).jgY tm\£ t.(r,r ,lY l.lffl forr<r„ (5.11) 

( . 0 "for or, 
coupling 'J finite act of angular nomenta £ < £ t describee the 
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crysta l potent ia l of one s ingle unit c e l l . Then the Schrttdinger 
equation i s transformed with an ansatz У(гЫУ_YJn)RL(rUnto a aet 
of (£0*1) coupled d i f f e ren t i a l equations for the radia l parts 
R L (rJ (see Evane and Keller 1971). Demanding regular i ty at r = 0 , 
a set of (^o-i-'l) l inear ly independent solutions R L n fr)arises, having 
outside the envelopping sphere the behaviour 

R L n l r b j ^ x r i o ^ - n J ^ r t O u i fbr г>Ги . (5.12) 

Now the sca t te r ing s t a t e s {,f(?)are obtained by an appropriate 

l inear combination-J^tf) \)пл > demanding 

SjLeCfn.ynv'A.ACOSlZA , ^ р ^ У п л - ^ А и sinigxj (5.13) 

as i t follows from the comparison with the asyraptatic behaviour 

(2 .1 ) . Therefore a set of algebraic equations ar ises 

y ie ld ing(1в + ^ ' so lu t ions nh ~г л А ц л . By the way, if one passes 
to the L-representation (5.9^, then the calculat ion of гч and 
ALA can be avoided, because the needed quant i t ies can be expressed 
d i r ec t ly by cC L n and (3,_n : 

Here the completenees of A u A has been used. With the f i r s t 
equation of (5.15) from (5.10) there follows 

aMh>-£„ e l U ; N'L;. £Л\-+ШХХ е , й ; С ф ' \ , . <«•"» 
Here Â 'n and N„ n. are defined in the same manner as Ас

и'л and NA'A-
only using the primary functions fn=51 Y L Rbn instead of ^ л 

The author ia grateful to Dr.John and Dr.I<ehmann f0r useful 
discussions. 
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Appendix 1: Angular momentum dependence of the partial 
wave amplitudes 

As a simple example we consider two S -scatterers with 
equal phase shifts i£0 and a distance a . Then the cluster 
equatione (3.3) produce only two non-trivial scattering states 
A - t 

yielding with respect to the centre the following far field 
amplitudes 

i~ii*f [,f^ta/21 
(A1.2) 

The £ -dependence of A L , i s essent ia l ly determined by i((->ta/2), 

which tende for Z ^ l t a / 2 to zero «a 

" , , f v a / z ) - -'-"* g / Z ' ' - е " " ' " ' . (Д1.3) 
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Appendix 2: The projection operator of the non-trivial 
scattering states 

(3.18) is proved in the following way: Abbreviating the 
right-hand side of (Э.1В) by PLU. and acting on a trivial scat­
tering state BL/Д. (characterized by K^=0), yielda really 
^ p..BL, =0 owing to (3.17). The non-triviel scattering states 

BL/I (characterized by K̂ . ФО) obey the relation 

x : PLL. s L r - L PL L. Buh-^ =^-„pt-L- J W 8 L > K 

: K , B L > ^ - B L A L , 
(A2.1) 

Here P К - К has been used, following directly from the 
definitions of К and P and from (3.13). 
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?i|>. 1. A general liT-potential ond U s c.welopping Sphere *lth 
reapect to en arbitrary centre. 

Fig. 2. A simple two-dimensional ezanple, to explain the 
contributions to the near field part of the generalised 
KKR-atruoture matrix. 
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