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l.Introduction

The well-known concept of so-called muffin-tin potentials
(MT-potentials) is used often and in different fields. In aolid
state theory it is of interest for bandstructure calculstions
(APW, KKR), for the derivation of model hsmiltonimns (pseudopo-
tentials for simple metals, hybridized nearly free electron tight
binding schemes for transition metala) end for the diacussion of
the electron density of states in disordered systems (pseudogaps
in semiconductors with definite short range order; see Mc Gill and
Klima 1972, Keller 1972 and John 1973). In the electron theory af
molecules this MT-concept is used both for bound states (see
Johnseon and Smith 1972) and for the elastic electron scattering
on molecules {Demkov and Rudakov 1970, John end Ziesche 1971). An
essential sdvantage of this MT-concept consists in that estructure
{atomic sites ﬁi } and atomic potential, the latier only vie its
phase shifts QL enter into the theory by separsted quantities.
On the other hsnd the accuracy of calculaticns ia restrict:d by
the use of the MT-approximation, simplifying the potential in the
following way:

1. The potential within the muffin-tin spheres is assumed to
be spherically symmetric, Deviations from this essumption erise
for instance from partially filled d-bands in trensition metals
{Jacobs 1970) or from covelent bands in semiconductors (Kane 1971).

2. The potential between non-overlapping spheres, centered
at the atomic sites is assured to be constant. This is of course
reasonable only for close packed siructurea, but leads for more

open etructures ap dismond to essential errors (Kane 1971).



There are several attempts to overcome both restrictione.
Evena and Keller (1971) and John et al. (1972} discuss non-
-spherically symmetric potentials in the band structure calcu-
lation methods (KKR, APW), while Pettifor (1972) investigates
such potentiala in molecular problems (bound states). The APW
method ie gemerally not limited to MT-potentiasls and in the last
two years several authcra have atudled correctiona of the original
MT concept within thie method. Fru; the KKR methad the situstion
ia not sc aimple. Andersen and Kasows¥i {1971) use MT-orbitals
to overcome both restrictions. Bross and Anthony (1967} as well
aa Beleznay and Lawrence (1968) have generalized the KKR method,
teking inta account a non-zero potential between the MT-spherea.
Unfortunately this destroys the simple structure of the KKR
equations, which may be conserved by another epproach, namely by
the inatallation of additionsl MT-potentials at interstitial
aites, e first performed by Keller (1971 b ), This of course
increases the number of scatterers in the unit cell. Besides thare
are attempts to extent the XXR method aloo to tue case of over-
lapping spheres, envelopping the spherically or non-spherically
symmstric etomic potertials (Williems 1970, Ball 1872, Willieme
and Morgan 1972). Here it is shown, that only in the case of
non-overlapping envelopping WT-spherse the simple structure of the
originel KKR method is consarved owing 2o otherwise divergent
angular momenta expansmiona. To discuss this in more detail,
generalized UT-potentinle are introduced, being non-zero within
an arbitrary volume J (see Fig.l). In Section 2 the scattering
states of such a aingle genaralised MT-potsntial are described by

generalized phase ahifias L'2N and corresponding partial wave



amplitudes AL), as recently introduced by Demkov end Rudakov
{1970) and furtherly studied by Johu and Ziesche (1971a) and
differently spplied (generslized Friedel sum rule and Lloyd-
formula: John end Ziesche 1971a, Saxon-Hutner gap criteria for
alloys: John 1971, KKR- and APW-method for non-sphericelly symmet-
ric MT-potentimla: John et al, 1972, localized defecta in metals:
Lehmenn 1973a,b,Rennert and Zieeche 1972). In Section 3 finite
clusters of such generslized { of course non-overlapping) #T-po-
tentiels, the acattering states of which are assured to be known,
are congidered. If certain atructure matrices determined by
integrationa alcng the surfaces of paira of these MT-volumes, BTe
known, 8 purely algebraic acheme for the cluster phase shifta T
and their emplitudes B., holds. In Sections 4 and 5 infinite
systems are discussed, Uaing the cluater equationa derived in
Section 3, & generalized Lloyd-formule is obteined immedistely
Ior the density of stetes in digordered aystems end generelized
KKR-equatione for the band atructure of eryatala. In the latter
cagse there are included alao potentials non-zero within the whole
unit cell and therefore separated only by thin skins of zero
potentia. along the boundaries of the unit ceils, so that the
envelopping spheree of immediately neighboured unit cells overlap,
Aa a cvongequence of this in the KKR-structure matrices only the
unit cells, far enough from each other, cen be treated in the
usual menner, while for the immedistely neighboured unit cells
the near fielda of their scattering states must be taken into
secount, which cannot be described only by the asymptotic or

far field characteristics, Therefore XKA equationa appear, modi-

fied generally not only by the replacement tQQLdlu"(qu)LL- but



also by at least a partiasl change in the structure matrices,
splitting into a siupie far field and a rather complicated near

field part.

2. A sipgle geperalized muffin-tin potential

A generalized MT-potential is defined here to be non-zero
only within a certain volume J (see Fig. 1). The ocattdring states
$A(r) of such a MT-potential are characterized by e behaviour

outside the envelopping sphere (r> f )
KL (PAcosn,on (FIA ,sin na ], (2.1)

containing generalized phame shifts na ond real partial wave

amplitudes AL)\ « Aa in (John &nd 2iesche 1971a) the abbreviations

LP= ) &G0 F)2nlan ¥ (R, R=E (2.2)

are used, jl and n, are the usual spherical Bessel and Neumann
functiona, respeccively. YL are Teal spherical harmonies,

A
L =(€,m,_)-

The non-trivial acattering statea{chearacterized by s'lnrb\ﬂ))

are determined by the SchrBdinger integral equation

- - - ) gl T
=147 §aP GF-PIVIT, ) 6, (2.9)

GUF-7)= & [, Cael?- 71) ~etgny, 3, GelF-71)]),

2) rne A used here differ from those used in (John and
Zieache 1971a) by a minus sign .



With the help of the usual expensions

‘f'f,]n(zelF—r"l)=§jL(T) 107 for rzr, (2.4)

&,m(xl?—?l#%m(?) LY for rar 2.5)
and demanding

(jL)Vq’)‘)=ALA(—:—C)Sian)\ (2.6)
(2.8) realizes the asymptotic behaviour (2.1). For a given energy
E =?e1' the equation (2.3) possesses solutions only for certain
phase shifts 17, . By the wey, from (2.3) and (2.6) it follows,
thet K,\E("V!)‘kgrb\end A _, are the eigenvelues snd the eigenvectors

of the K-matrix
K=V+ve'k ,  G'(F-F)=&n,GxIF ¥1) (2.7)

in ita L-representation on the energy shell, K, =(J“K w o
Because the K-mstrix is real and symmetric, the emplitudes sre also
real and | form en orthogonal and complete set. As a consequence
of the finite range r, the amplitudes A, , are small for (» ¥,

as it is shown for a simple example in Appendix 1.

In the following it is neceasary to assume, that besidea

rl" and ALA also the wave functien ?A and its normal derivative

Jp, /Dn along the surface of 1} are known. These letter quanti-
ties determine the wgve function outeide U end inside the enve-
lopping sphere r<ro, ("mear field"), while 1}, end A, , deter-
mine only the "far field” beyond the envelopping sphere r>r, .
This is seen, rewriting (2,3) by means of partial integration
as (here the index A is dropped and the index at O /2T showa

on which function it only acta);



(2,8a)

ﬁ’“'[&) 'aa;’ ]G F-me. ()= {? ) ]‘J)

€
¢

-ﬂ —~¢

(2.8b)
Really, from (2.8) it follows, that the wave function outside VU

takes the form

€5 ()=, (T heosn,on, () sinmy, (2.9)

with {(for ¢V )
PA=Z LB AL,
A(F)=x(§§)ﬂ‘[(a%)h- (%) ],Jn,(xlr-rl)‘&( TN TN

Using the expansion (2.5), the comparison with (2.1) for r>r,

{2.10)

yields the relation

A sin,=x S dF[ (3 ) '(-é’—?L ], (2.11)

(R0
following also directly from (2.6) by partisl intagration.

In addition (2.8a) yields with (2.4) and (2.5)
A cosiy, = y:é& f[ (Or ] n (DM, (2.12)

{2.11) and (2.12) connect the ssymptotic quantities with the
surface quantitiea ¢, 3¢, /On .

By the way, with the replscementa %~ 3 and chgga =i »
the letter guaranteeing the wave function to remain finite,

also bound atates E=-3t’can be included into the discussion.
3. Finite systems
Now we consider a cluater of such muffin-tina within non-

overlapping volumes '!J; , to each of which is mttached a asite ﬁ'. .



H i
The aaymptotic properties of rl)l and ALA are related to these sites
-
R; « The cluster wave function ‘(,'L(y’)in the immediate environ-

ment of U, follows from an appropriate linear combinetion of the
MT~orbitals ‘Pk (F)
e N[ AP s P

@F(r)—g[h(r)cos%« nA(r]S‘nQA] bA,‘ s, (3.1}
The cluster wave function in the whole space, i), (¥), and the
cluster-equations, determining the cluster phase shifts . and the
cluster amplitudes h;’*/"“ , are obtained directly from (2.8), taking
into acoount only the replacement 10—~ S U; . Really (2.8b) yields

with the help of (3.1)immedistely the cluster wave functions

(outside the volumes V; )

‘ﬂb ('r')=%[‘&;(?) €081y, n"A(?] 5':an] B'M,,J (3.2)

with B',\,L =simz',\ bIA,L < Again using (3.1) from (2.8a) there follow

the cluster equations (for ainq;ﬁ: 0)

e T = Y K 1
)};[gi.‘. S+ g, Ny ety an ] BA-,L=O,J' @)

nemely acting on (2.8a) by

? 2 [
» & &f[(57)- () |67
[ E)t[(ar e \2F jgl 2
If ore uses in this operation instead of @ (¥) the function

ZHL(Y’ALA with A corresponding to the trivial MP-atates (with
5’”'ZA =0), then the coefficients b*/“' for such A ’

i i i
= - 3.4
bap '-.zx[dg'lhl)\x Nl (3.4)
eppear, needed in the expression (3.1) for LF;,‘(F). The firat term

in (3.3) arises from



e "]‘L(a )-(%) J"(’]Md—f[(ar-) (5% }h(rwnn@u?—m)

it § . (3.5)
=5, Oxx COSR L,

4

which is seen, deforming the integration surfaces appropriately,
uaing (2.5), (2.11), (2.12) and the orthogenality of A, , . The
1eft-hand 9ide of (3.4) is similarly defined. The second term in

(3.3) and (3.4)contains a atructure mairix ":x dafined as

Ny=0-8. )% & 3] (B (%]ﬁumﬁﬁu)hl%m

x 2o, (2 IT-711),

If a8 in (3.4) A is 2 trivial MT-state (with sin "Z,\ =0), then
\g,\(r] must be replaced by% K,\Ln,_(ri). The structure matrix Jw
in the third term of (3.3) is similarly defined, only with )e(.}
instead of n, (...). Owing to the restriction of the expansion
(2.5), the complicated exptualon (3.6) can be reduced to the
asymptotic quantitiea AL,\ and a much more simple matrix NL._ s
containing only the point structure R| , only if the volumea U;
are within non-overlapping spheres around their correaponding
sites ﬁt

Nox =2 AN, Ay (3.7)

Otherwise, thet is for overlapping envelopping spheres, the
asymptotic properties are not sufficient end near field properties

es in (3.6) must be taken into account. The corresponding relation

I A A .8
always holds, because the expension (2.4) is valid without
restrictions. Deriving (3.7) and (3,8), the relstion (2,11) and

the addition theorems for j, (¥,+ ¥; ) {see Zimen 1968) snd



n (¥, +7) (see Lloyd 1969, 1972, Andersen 1971, John and Ziesche
1971a, Zieache 1372)have been used. The point structure metrices

appearing in {3.7) and (3.8) are defined by

T =% Gt T R San Y R, £,
N =(1-8) s C FE LR

8 iy g

(3.9}

with B = R = Foand with Cuee = Jda Y (MY () Y. () »s Gaunt

coefficients,

The cluater equations (3.3} have been derived here anslogously

with Kohn/Rostoker (1954). Of course they can be abtained also

by a Rayleigh trestment a la Korringa 1947, considering (3.2) as
an ansatz and demanding »{l,;:%)'f~ in the surrounding of esch VU as the
"Tiayleigh~Huygens" self-consistency condition for diffraction
(Ziesche 1973). (3,3} then is the condition for that all wave
functiona (3.1) have the seme continustion (3.2) into the whole
spece (outside the volumes VU, ) with an &symptotic behaviour

(r>r)

t’,; (v) "{—[L(ﬂ B, cosyn (71 B, sian”], (3.10)

following from (3.2) by means of the mentioned addition theorems
for j. and n, . The ssymptotic behaviour is described by
cluster phase shifts 1, and esymptotic or far field amplitudes

By  resulting from the near field auplitudes Bl._,. by

BT J B s JoiT Jo A

A8 a conaequence of (3.3) the amplitudes are orthogonal to each

llI

other for different cluster scatter ag siates M

Z B,L‘BL,,,- = ‘):A Bm B, =8 (8.12)
i



with B8,,.=B,, . Here

5— -|\L Ao T -j:»\' (3.13)
hea been used, which follows egain from the mentioned addition
theorem for j,_ .

Just as in the cese of spherically symmetric MT's (John and
Ziesche 1971a) the cluster equetions (3.3) determins as many non-
trivial cluster scattering states (with ainrzr*(l ) as non-trivial
MT-phase shifts IZ;)‘ (with sin '21#07 exist. Also a'Z.» /B.Zi\ >0
holds as for spherically symmetric MT's. Finally with Ctglz,.:i
end =% alao bound states E=-%<Dare determined by (3.3).

Similarly as in(John and Ziesche 1971b) the cluster~ K-

~atrix in its L-representation on the energy shell

-3 B =-4 (3.14)
Ko % BL’A.KM BrL‘ ) K,“' % tan.
is obtained from the cluster cquationn (3.3) as
-1
Ko Z :\“ (1 m ]“ ’ (3.15)

\1“ —5,, é,\,\' BCK N .

This follows of course also directly from (2.7) (see Ziesche

1973b}.If the envalopping spheres do not ovarlap, then (3.6)
applies and (3,15) takea the form
-4\ H
K\.L‘ 2 —}LL‘(M )L.‘L; KL}L)JL:L'

'-1.‘-!

M“ ‘51. SLL XZ Ku.u N:.l.,t.
in agreement with Lloyd (1969, 1972), only with the difference,

{3.16)

that the single acattersr X-matrices on the ensrgy shell here
are expresasd explicitly by their Qigonvaluea K (—1/x)tgr“
and their eigenvectors AI_,‘ , that is ,_L.—z ALAK AM. In the



special case of :pherically symmetric scatterers their K-matricea
are diagonal, u.' —Su_' K., and (B8.15) simplifies itself, in ag-
reement with John end Ziesche (1971b) end Mc Gill and Klima (1972).
By the way, the amplitudea form a complete set, if the
triviel scattering states (characterized by Kp =Q) mre also

included. From (3.15) it follows, that they obey the condition

o s
= {3.17)
T80 for K0
sllowing to represent the projection operator of the non-trivial

scattering states in the following form

Ve

0F -4yt
l B, "L.‘%(Khol Ju (] )A)\' ?ixu ) (3,18}
(K»'D) XKL #0)

as proved in the Appendix 2., While for the far fields amplitudes

(3.17) holds, the near field amplitudes obey

-1
3.
z B B ]) (3.19)
(K +0)
following from (3.18) together with (3.11).

4, Infinite disordered syastema

Now we consider an exiended system of non-overlapping
generalized NT's, For such » asyatem the integrated density of
states N(E) is connected via a generalized Friedel sum rule (John
and Ziesche 1971b) with the phase shifts np » the number of which

is proportional to the volume ¥V of the Bystem:

NIB-N(E)=35 5 . (E). (4.1

N (E) corresponds to the free slectron csse. The following

derivation is similar as in (John and Zieasche 1971b), but owing



to certain peculiarities connected with the resonances of the
MT-phase shifts T.A a more careful treatment is neceasary ae
mentioned by lehmann (1973b)‘5).

Using the tdentity

Pu==Im I exp(ig)==1m Unletgn,-i)-Im InGinnu) @2
(4,1) splite into two terms, nemely

“Tm tn detilctgu-i)dpui=-Imln detictqn), & JMWN:'X-}:]E\‘;.II (4.3)

end

-Im Un detlsinn, & = -Jm En det lsin ré', Sda s (4.4

(4.3) is based on the cluater equations (3.3) aud on Jm In deHlZ]H=O,
following fram detdT) > O . This latter propsrty affects slso, thet
if one of the MT-phase shifts 'Z’\ pasees through nT at a certain
energy, then also one of the cluster-phase shifts Py passes
through nT in the same senase. Therefore slso (4.4) holds. Alto-

gether e generalization of the Lloyd-formule {1967) is abtained

R(E-NEY-Z; ImEn dethcos g &, un+sin gy (N - ;]A )ll,, {a.5)

If with N:; =~{] one completely neglects the multiple scattering
betwsen the MT's, then (again with defll:[""ﬂ and ]:\; =1

NEE)-NE)=E5 o (4.6)
B

approxinmately results in. This is the approximation of independent
non-apherically symnetric ascattersrs as used by Mc Gill and Klima
(1972) and Keller (1971) in their cluster theory of amorphous

covalent semiconductors. The matrix N describes thersfore the

N The author is grateful to Dr.lehmann for pointing thie out.



multiple scattering. To its elements Ni\;',\- the simplification
(3.7) applies, only if the scatterers are far enough from each
other, so that their envelopping spheres do not overlap

(R,;> r; + rn" }. Otherwise the complicated near field formule

(3.5) mupt be applied.

8. Infinite ordered systems

If all the MT's are equml anderranged regularly, then a lattice

appears, the periodicity of which is described by

. H SRR ‘
sing. B =€ Gz . (5.1}

Therefore with Fourier Lransformation of the struciure matrices

RO PR W MUB T RS 0.2

{3.3) chenges into generalized XXKR-squations

}Z{ M"tgh)\[NAA‘(k l-{’\,\(k)]lc,d: 0,] (5.3)

determining the bandstructure ¥ (k) s While the wave function in

the cell at the origin takes aceording 4o (3.1) and (9.4) the form

Fair)= Z[JJr)costzA n,(F)sinp, e,

(Sln . Cait for sinma +0 (5.4)

lz “ (K- N,\x(ﬂl]c,\n for sines =D,
For negative enargxas ctg 7 in (3.3) end (3.4) must be replaced
by i guarenteeing the weve functions to remsin finite., For
positive energieu ctg Up cen be chosen erbitrarily, becsuse ]M. =0
for K+ {!. This is due to (3.8) and (3.9) end Z exp
G ﬁ'; ) =0for K is not a reciprocel lattice vactor K

According to (3.7) and (3.8) a complete reduction to the



simple point structure matricea of the ordinary KKR-method,

W[ N (R0, (] =AL R or e M, (5.5)
is posaible only in the case of non~-overlapping, envelcpping
apherea. This means a non-zero potential only within the sphere
inacribed in the Wigner-Seitz-cell and just touchiang the hounds-
ries, This case has been considered recently by John et al. {1972).
Paasing from the a-representation (5.3) to the L-representation, .
the ordinary KXR-equations emerge, only tglz,_zf“_. is replaced by the
matrix (tgr;)uﬁgn‘\utgq,Am, the non-dimgonelity of which comes from
the non-spherically symmetric potential within the inscribed sphere.
If this potential arises from & cluster of MT-potentiala at sites

3, » then the non—.nverlupping condition for the applicability

of (3.7) can be softened slightly, because it is sufficient, that
only the sitss balonging toc a cluster are within & sphers not
overlapping with the corresponding apheres of the neighboured
clusters (see Ziesche 1973a). In thia case the KKR-equations for s
lattice with seversl atoms per unit cell appear in such a way that
the structure of the cluster and the structure of the correa-
ponding Bravais lattice are deacribed by separated guantities

{see Lehmann 1970, John et al 1972),

If the potential ie non-sero in the whole Wigrer-Seitg-cell,
thus seperated only by thin skins of gero potential along the
bounderies of the unit cell, then the lattice sum in N, (K) eplits
into one (far field) part of unit cells, being far enough from
each other and msllowing egain the reduction (3.7),

W R=E K N (R A, N (RIST 90N 5.8
(R:R,)



and a second (near field) part of the immediately neighboured

unit cells, which can be calculated only via (3.6),

- ;,‘(ﬁ‘ 0i .
PUTMCIES SR W (5.7
(Ri£R,}
R, is the length of the smalleat lattice vector outside the

aphere, envelopping the unit cell. Pasging agein to the L -repre-

sentation modified KKR-squatians®

[rz{g_ g(tqnz)u.[N:L_'(F)+ANL.L..(_R)-'|],L.'(R)HC",_..; =o] (5.8)

|

appear with C,_;;Eg/\“c“; and

N W= AL aN, (A, . (5.9)
In difference to the ordinary KKR-method not only tgrz but slso
4N contains via (3.6) the potential within the unit cell. That
maans the geparation of potential and structure., as characteristic
for the ordinary KKR-method, is modified in the considered case.
That the near field part ANM\- is not factorized into the
asymptotic or far field propertiss A _, and point structure, is
physically due to an old statement of wave theory, namely, that
the near field (see second line of (2.10)) generally cannot be
determined completely by the far field characteristies only, but
rather depends on the details of the diatribution of the acattering
centres. The mathematical background is essentially the restriction
in the expension (2.5) of n (%(F 1), meening, that (2.5) diverges
if rsy . The analogous sxpanaion of n(7-7*}is restricted in
the same way (sse John and Ziesche, 1971, Ziesche 1972}, Consequen-
tly divergent asries occur,if one factorizesaN,in the seme way as
N:,‘- s trying to set up the ordinary KKR-equations alao for
overlapping envelopping spherss,.0f course this divergence

disappears formally if one truncates the KKR-matrices with respect

7



to Lras is usually made. Clearly such a treatment is in principle
incorrect., In this case the truncation of L acts as an effective
restriction to & potential non-zero only within the inscribed
aphere.

There are vet two remarka with respect to the near field
partaNdescribing tie “mizing" or "interaction" betwean potential
and structure:

1. Although the factorization {(3.7) is not completely appli-
cable, there are nevertheless parts of the surfaces, which ere
far snough from each other to allow this factorization at leaet
partially. Namely, the unit cellslisppearing in (5.7) and surrounding
the central unit cell 7V,,form as » whole a certaiu volume V=% U;
with an interior and an exterior aurface (mes fig.2), Only tho;u
surface parts of the surrounding unit cells <V, contribute via
(3.8) to aN,, which belong either to the interior or to the
sxterior aurfac.e of ¥ . We denote these surface parte of U, by
F;f" and F7° | The contribution of F'* really factorizes. Therefore

alN,x ®plits into two parts

- '.‘R’; i} e .-°, ° {
aN, (RI=x e "N R 5 &R N AT, (510

. LRSR,) (=R}
N,x is that part of N’y in (3.6) with the mecond surface integra-

tion only along Fi" and A}, is that paTt of A.» in (2.11) with
the surface integration along F.l" + Bven in Nl,:',‘ are further certain
surface parts ellowing again this partial factorigation.

2+ It i»s easumed, that a (generally non-real) potential

E YAV P YR for remy (5.11)

0 for r>r,
coupling u finite set of angular momenta { <[, deacribes the

VIEF)=



crystal potential of one single unit cell. Then the Schr¥dinger
equation is transformed with sn ansatz ${f}=) Y(n?R (rlinto a aet
of (L"’l) coupled differential equations for the resdial parts
R.(r] (see Evane and Keller 1971). Demanding regularity atr=10,
a set of ({g+/1) 1inearly independent solutions R, {r)erises, havinog

outside the envelopping sphere the behaviour

Rinled=p(erdoymmbedfn for rov, (5.12)

Now the ascattering states !,(¥)are obtained by an sppropriate

linear combination'nZ\P,,(F) Yo s demanding

-,.L‘-"“M.YanLACOS’ZA ) Zn@,_ngn,\r—/\u sings (5.13)

88 it follows from the comparison with the asymptstic behaviour

{2.1). Therefore a set of algebraic equations arises

gf_(oum-ctg 'ZAPL'I)\{“:O’ (5.14)
yielding(ln*"n’éolutions 7 an? A,_,‘ « By the way, if one paasea
to the L-representation (5,4%), then the calculation of 58 and
ALx can be avoided, because the needed quantities cmm be expressed

directly by oL.n and ﬁm H

- A F e R - 5.15)

3o s P 0, QO P s ¢
Here the completeners of A _, has been used. With the first
equation of (5.15) from (5.10) there follows

aN, (=3 e'kk Nt By F" 5 'WNM(p bee o (5.16)

LRER, (ReRy o
Here A7), and NY) are defined in the seme manner ss A% and NM%

only using the primary functions ‘Pn=¥ Y.R.n inatead of ~P)‘ .

The author is grateful to Dr.John and Dr.Lehmann for useful
discussiona.



Appendix 1: Angulsr momentum dependence of the partial
wave emplitudes

As a simple example we consider two S -scatterers with

equal phase shifts o and a distence a . Then the cluster

equations (3.3) produce only two non=-trivial scattering statea
A=%
+ pplaea)

_ _ctgre )
€8 g e METI

. W S o=t AT (A1.1)
=Nt jerea)] Ao A

yielding with respect to the centre the following far field

amplitudes
T Y
A= T AT <121t 2 =,
LT er Avr T ' ]dmye Var etk a)] | (AL.2)

The ! -dependence of A, is sesentislly determined by lt(xal:),
which tends for {®¥%a/2 to zero aa

5 N et
(m0ly) gt (A1.3)

P ey



Appendix 2: The projection operateor of the non-trivial
scattering states

(3.18) ia proved in the following way: Abbreviating the
right-hand side of (3.18) by P_. and acting on a trivial scat-
tering state B., (characterized by K. =0), yields really
Z P..B e =0} owing to (3.17). The non-trivial scattering states

BLp. (charascterized by K,‘ ¥0) obey the relation
=X P KB
‘n
* Kf‘ K K (A2.1)
—g KLL" BL'L KP’ BL/" '

Here P K = K has been used, following directly from the

B R B,

definitions of XK and P and from (3.13),

21



References

Andersen 0.X. 1971 in Proc. Conf. on "Comput.Meth.in Band Theory",
May 1970, Plenum, New York (p.488)

Andersen O.K. and Kasowski R.V. 1971, Phys.Rev. B4,1064-69
Ball M.A. 1972, J. Phys. G5, L 23

Beleznay F. and@ Lawrence M. J.1968, J,Phys. C1, 1288

Bross H. and Anthony K. H. 1967, phys. stat. sol. 22, 667
Demkov Yu.N. snd V.S.Rudakov, 1970, Zh.exp.theor. Fiz.59, 2035-47
Evane R. and Keller J, 1971, J.Phys. C4, 3155-67

Jacobs R.L. 1970, Phys.lLetters 334, 414-5

John W. 1972, Phys.stat.sol. (b) 48, K57-9

John W. 1973, phys.atat.sol.(b) 55, 801-9

John W. and Ziesche P. 197la, phys.stat.sol.{b} 47, 555-~64
John W. and Ziesche P, 1971b, phys.stat.scl.(b) 47, K 83-5
John W., Lehmenn G. and Ziesche P.1972, phys.stat.sol,.(b)s53,287-93
Johnson K.H. and Smith F.C. 1972, Phys.Rev, BS5, 831

Kane E.O. 1971, Phya.Rev. B4, 1917-25

Keller J. 19718, J.Phys. C4, 31438-54

Keller J. 1971b, J.Phys. C4, L85=7

Kohn W. end Rpstoker N. 1954, Phys.Rev. 94, 1111-20
Korringa J. 1947, Physica (Utrecht) 13, 392-400

Lehmann G. 1970, phys,stat.sol.(o) 38, 151-7

Lehmenn G. 1973m, phys.atat.sol.(b) 5§56, K 33

Lehmann G. 1973b, phys.stat.sol.(b). (to ba gublished).

Lloyd P. 1969, "Electrons in Metals and Multiple Scattering
Theory", University of Bristol,

Lloyd P. 1972, Adv.Phys., 21, 69-142
Me 0ill T.C. ard Klima J. 1872, Phys.Rev. BS, 1517-28



Pettifor D.G. 1972, prepriut, Bep.Phys.Univ.Dar-es—Salaam
Rennert P, and Ziesche P. 1972, JINR E4-6746, Dubna
Williams A.R. 197C, Phys.Rev. Bl, 3417-26

Williems A.R. eand Morgan Jw.Kk1972, J.Fhys. €S, L 293
Ziesche P. 1972, ZAMM 52, 375

Ziesche P. 1973a, JINR E4-7273 Dubne

Ziesche P. 1973b, JINR E4-7274, Dubnae

4iman J.M. 1966, Proc.Phye.Soc, 88, 387-405

Receivad by Publishing Department
on August 24, 1973.

2



®ip, i. A genersl uT-potential and its cavelopping aphere With

reapect to sn arbitrary centre.

Fig. 2. A simple two~dimensional example, to explain the
contributions to the near field part of the generslized

KKR-structure matrix.



