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1. Introduction

The generalization of the Heisenberg and the lsing
models/ !/, which assume that the spins (magnetic moments)
take part in the thermal motions and that the exchange
integral depends on the instantaneous positions of the
atoms (ions), gives the possibility to investigate correla-
tions between magnetic and mechanical properties of
crystals. The usual approach to this problem contains the
following assumtpions:

Atomic displacements are small and so the exchange
integral can be expanded in powers of the displacements.
Restricting ourselves to the first two terms we get, be-
sides the usual Heisenberg (Ising) Hamiltonian, the term
linear to the displacement and quadratic in the spin
operators which describe spin-phonon interaction.

Lattice dynamics is treated in the harmonic approxima-
tion.

A detailed investigation of the various aspects of the
spin-phonon interaction in the Heisenberg model under this
assumptions is given in/2/.

Recently, many works have concerned this approach to
the Ising model, especially the interesting problem of the
first order phase transitions in some magnetic materials
(see for instance /3:4/  and the literature there cited).
But this approach cannotbe applied to certain cases, where
anharmonic interaction plays an essential role, e.g., at
high temperatures, near lattice structural phase transition
pionts, etc. In these cases the anharmonic interaction
should be taken into account explicitly.



In order to beable to treat such cases 2 new method for
the investigation of spin-phonon inter/arcti,on in the Hei-
senberg model has been proposed in->'‘". As compared
to the conventional approach ‘27 this method is not
restricted only to consideration of the linear terms in
the expansion of the exchange integral and allows one
to consider in self-consistent manner the effects of the
anharmonicity in lattice vibrations.

We also mention here the work % which gives some
arguments that the firstorder phase transition might occur
in a compressible anharmonic lattice though the corres-
ponding harmonic lattice does not undergo a first order
transition.

In this respect it is interesting to calculate some of
quantities, which have anomalous behaviour near a magne-
tic phase transition (elastic constants, thermal expansivity,
etc.), considering Heisenberg or Ising Model on a comp-
ressible lattice allowing for arbitrary anharmonicities of
the bare lattice.

The purpose of this paper is to presentan approximate,
microscopic calculation of the isothermal elastic constants
of the anharmonic ferromagnetic crystals, using the self-
consistent spin-phonon interaction theory -3=7'. Some
earlier calculations of the ferromagnetic elastic con-
stants - #*%" did not take into account the anharmonicities
of lattice vibrations.

For the experimental results we refer the reader to
the review - 9.,

Elactic constants of pure lattice can be calculated
by the method of homogeneous deformation and by that
of long waves -The results obtained by using both
methods are consistent in the cases of harmonic 11 and
anharmonic "'?7 lattices.

We shall calculate isothermal elastic constants using
the method of long waves and the fact that three inde-
pendent elastic constants of the cubic lattices can be
found from the dispersion curve inclination

In Section 2 we give the calculation of the phonon
frequencies taking into account spin-phonon interactions
of all orders. In Section 3 high-temperature isothermal
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elastic constants of f.c.c. lattice are given. At the end
of this section we consider approximately the influence
of spin system on the elastic constants.

2. The Hamiltonian and the Phonon Green
Function

We consider a magnetic anharmonic crystal which can
be described by the Hamiltonian /7.;
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where ﬁg and §y are the position and the spin of the
atom with mass M inthelatticesite ¥, =<f/>; the thermal
average <...>is taken with Hamiltonian (1). Using an
expansion of the potential energy of crystal U(ﬁr, ) and of
the exchange energy ](?{y;Rm)in the infinite series in
thermal displacement @, = F‘;Z we get the equation of
motion for the Fourier transform of the retarded phonon
Green function G, .(i=t7)=<<u; (O5u;.(t" )57,{i=0 ) in the
form /'3-7.";
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where we have introduced irreducihble (ir) Green func-
tion/6,7/:
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which cannot be simplified by the decoupling of the equal

time operators and the effective phonon-phonon interaction:
= 1 <« 8 7 ¢ ¢ ..
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The zero-order Green ﬁmctmnG" (w) is defined by the

equation

9 2. o
f-wa”‘SH "‘br)G;’ (w)=0“— 4)
and it describes the propagation of the undamped self-
consistent phonons /5:6/. In order to obtain the damping
of the phonons it is necessary to consider the equation of
motion for the Irreducible Green function <<A(t);u i (Lt
in (2) by differentiaiing it with respect to time argument
t". As a result we can rewrite the equation (2) in the matrix

form G=G°+G°PG° , where Pj;(w) is equal to the sum
of Droducts composed of the Green functions
<«<A|B>>" (A,B~luudor v .g J(SEI) and two corresponding
vertex functions of the phonon-phonon and spin-phonon
interactions.

Now introducing the phonon self-energy operator il
according to the equation G=G°+G°lG we get /7/:
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where the approximate explicit form is obtained in the
second order in spin-phonon and phonon-phonon (3) inter-
action by using the spectral representation for the re-
tarded Green function <<A[B>>a: in terms of the two time
correlation functions. According to the definitinn (2a)
the irreducible four-spin correlation function in (5) is
given by the expression:

>
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—<S?,Sm,>)> (52)
The inelastic phonon-phonon interaction in all orders (the
first term in (5)) and the inelastic spin-phonon interaction
(the four-spin two-time correlation function) withaddido-
nal excitation of phonons{expi...}) in the second term in
(5) are explicitly taken into account in the phonon self-
energy operator (5).

After the Fourier transformation of the Green function
of the displacement operators

a B P
. >, (258}
a, B °3i ®qi 1
<< 5> =g 3 »{w),
vplupy = N i 2o Gk ®
i

we get following expression for the Green functions

G /14/
T

20
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Further we shall investigate only the caseoff.c.c. lattice,
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We take the nearest neighbouricentral force interactions
for lattice interactions

e, 2 s
-3 E 8 Uy R0, 8)

where prime on the summation means that the second
summation is performed only over z nearest neighbours
( for f.c.c. lattice z=12 ). The spin system will be
investigated in the nearest neighbour approximation too.

Using the upper assumptions:andthe equation (4), the
frequenciesw _{q=(q,j)! in equation (3) can be determined
in the pseudo-harmonic approximation /14 by the equa-
tion

.
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Taking into account only the nearest neigbour interactions
the pseudoharmonic renormalization is reduced to that of
strength constant ?(9, 7 ), where Wy is the harmonic
frequency corresponding to the strené‘éh constant f,

The Fourier transformation of the self-energy operator
(5), taking into account only the renormalized cubic
anharmonicity ( n=2 in the first term of eq. (5)) and
neglecting the additional excitations of phonons (exp(...)~1)
in the second term in (5), gives
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The four-spin Fourier transformed correlation function
in (12) is obtamed by means of representation

§ - 3 e 'qu g_, .

f q
For the central pair force model we can calculate ;(11 l
analogously with /4 and get:
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is dimensionless sum over the lattice points, n=P|( d
d is lattice constant, { is the distance between ‘the
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nearest neighbours, 2»r is the reciprocal lattice vector,

The strength constants fl6,2) and g(6,2) in the
equations (9) and (13) are determined in the self-constant
manner:

£0,00=4(0)~] “(0x$, 85,56, 1)=g " ()] 105,53 (15)

where ¢({) and J(£) are self-consistent potential energy
and exchange integral respe:iively. In the pseudoharmonic
approximation these quantities take the form /4/,

(2n)

- 21,1 =3
$(0)= 3 H(u u?)"g M),

(16)
- o0 12n)
= = l<l Zy 170,

n=0 n!

The mean square relative displacement of neighbouring
atoms vZ(f) can be expressed using the Green functions
(6) and (7) as

u?(Y) <[ (u —u)]2> 1

2 2 " ZRe6, O
x [—ImGk(w+ic)].

It should be noted, that in strength constants (15), besides
the pseudoharmonic renormalization /14/, spin-phonon
interaction gives the new term proportional to the spin
pair correlation function <S S

The equilibrium lattice constant d= z\/z is obtainegd
from the equation of state for ferromagnetic anharmonic
crystals /8/_ which in our case takes the form

“k; *amn

P=- Z“(¢f>(l)-<5 STy, 8)

where v=V/N= t’?\/z and P is the external pressure. Thus
the self-consistent system of equations (16), (17) and (18)
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gives us the equilibrium parameters of the lattice, the
renormalized phonon frequencies ‘:t?j and phonon widths

l"q,j:

w, =w, +Rell, (o  )\I (w)=—Iml (o+ie). (19)
i i q} 1 q) q}

3. Elastic Constants for f.c.c. Lattice

Further we shall investigate only the case of a clas-
sical high temperature region: ¢=kT>>¢,and &>E__ (6),
where 9;, is Debyetemperatureand E ,,{6) is a maximum
energy of spin excitations at temperature ¢, when an
expression (e ®/ 6-1) = is possible in (10). We put also

9C>6 .On the basis of these assumptions the self-energy
opérator (10) takes the form:

~ 400, . -
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q)

i fxg,e) T o w—w tie
where
1 AG 44 ,-9) o
. _ b T ,
qu(u) 32Nq2q YIS RY F (4.9 ,9,)x
%2 Ta; %a,"q
2 2
(Ag A, ) (Aq,—Agy)
x1 73 * NENERY Y Z @h
()‘q]*‘)‘q)_" ( q:— q2)—u
8o
p=ﬂ,)\ =X =20, o, w, = (1).
@ q U i L L M

The first term of the self-energy operator (10) differs
from the corresponding expression in the absence of
2 spin-phonon interaction in’/1%/ by the renormalization
of strength constants and has been obtained in an analogous
way. The second term in (20), proportional to the spin-



phonon interact gon gconstant [] (ﬁ)} and four-spin correla-
tion function <{ Sq_q )(Sq Sq' qg> "describes the effect of
inelastic scattermg of phonons y spin excitations.

Three independent isothermal elastic constants of
f.c.c. lattice can be found from the dispersion curves
inclination '3/, In the static (w =0) long-wave 11m1t q -0,
with the definite choice of the wave vector k= =4/q along
one of summetric crystal directions and polarization

L (longitudinal) or j=T,, T, (one oftransversal), onecan
get the followmg expressions for isothermal elastic
constants /13157

l:=[l.0,0] pr;_? +C q2, pc;z +C qz,
9,1, 11 QT 44

K={1, 1,0 >, sc g2 pn? sd(e —c )2,
t )} P“;,T] ul P‘”.;’,'rz 5 (€7

where p= <

So the calculations of static, long-wave limit of phonon
frequencies(19) with the self-energy (20)gives the isother-
mal elastic constants of anharmonic ferromagnetic crystal:

CaB Ro £6.0) |, _ Zejﬁee) -
f

0
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where R, is equilibrium distance between the nearest
atoms in the harmonic approximation, {9 areisothermal
elastic constants of harmonic lattice, S o -—11m S. 3 (0=0) .
ki
I 3.0
The first and the second terms in eq. 23) give the
renormalized lattice elastic constants of /! /The third
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term in (23), proportional to four-spin correlation function
and spin-phonon interaction constant, appears as a conse-
quence of spin-phonon interaction.

Further we shall give an approximate investigation of
the third term in (23) in order to get some more
information about its influence on the elastic constants.

In the paramagnetic region (¢>¢ )in the absence of
any external magnetic fields, the quantity -5 (1)~ 1s equal
to zero and we therefore approximate the four-spin
correlation function by a sum of products of all possible
pair correlations '® :

28, S, M5, S v =E(sh s .)(s OBy
ql -ql -]2 —-qz (1/) ‘Il ‘l, “12
a =
s s SPts, e L 0
oo, dp=t, 4 (24)

Spin-pair correlation functions in (24) can be zalculated
by the method of work - '~ .for instance. In the paramagnetlc
region the rotational invariance condition is fulfilled

AN st ST L sy
T Gy 4 ~l{| N 1y (J ]

where susceptibility ~hm afh has to be determined

from the equation

A (26)
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Susceptibility given by eq. (26) is proportional to 1/6°

when @+~ and in the right vicinity of Curie temperature

X~ (-0, )2 Substituting (25) into (23) an additional term

of the renormahznd lattice elastic constants (third term

in (23)), which we denote by Ca;/cag , takes the form:
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We replace discrete summation over the first Brillouin
zone by an integral over Debye zone in (27):

27

lim L s b —_ 24,
N—[:o N q( (2 f q qfdﬂﬁ—{dl-( (28)

where u=cos@ and q, = (6n2/v)l/3. The dominant

contribution to the integral in the (27) comes from the
region of small q; and thus for convenience in performing
the angular _integration over y we approximate
cos (q, f’)cos(ql{’ )=1.After the integration in the equation
(27) we get:

(s) - T
CaB 3O e Wt s
Col 822(2d J(F))”‘zc;g’ L 1
- 29)
qd v2x J(0)
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The change of the elastic constants by the spin-phonon
interaction, %iyen by (29), agrees qualitatively with
experiment ' ' - This expression shows that the additional
term to the elastic constants increases in absolute value
when the temperature approaches to the Curie temperature
and has negative sign. Factorization (24) is invalid when
0-=0. and in the vicinity of Curie temperature 718/ o we
cannot gi(Y‘ the (%stimation of (29) in these cases. When
0o y .

In coiflusion we would like to point out that the main
advantage of our approach, as compared to usual approach
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( ‘2. and ‘5 for instance), consists in taking into account
in a self consistent manner the anharmonicity of lattice
vibrations and higher order terms of spin-phonon inter-
action.

The aim of the present work was to show how one can
calculate isothermal elastic constants of anharmonic
ferromagnetic crystals, and further approximations for the
four-spin correlation function serve only for qualitative
check of calculations. The approximate solution (23),
which contain four-spin correlation function, gives the
possibility, when a better theory for the Heisenberg model
will be develcped, to ubtain more reliable quantitative
estimations which can be used for comparison with expe-
riment. In our approach it is also necessary to choose
the models for lattice potential and exchange integral and
to find numerical solutions of self-consistent system of
equations (16), (17) and (!8) for the equilibrium lattice
parameters.

The author wishes to thank Dr. N.M.Plakida for
suggesting this investigation and for many valuable
discussions and V.L.Aksienov, I.0.Buchbinder for useful
discussions.
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