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1. Introduction 

The generalization of the Heisenberg and the Ising 
modelsi ' / , which assume that the spins (magnetic moments) 
take part in the thermal motions and that the exchange 
integral depends on the instantaneous positions of the 
atoms (ions), gives the possibility to investigate co r re l a 
tions between magnetic and mechanical proper t ies of 
c rys ta l s . The usual approach to this problem contains the 
following assumtpions: 

Atomic displacements a re small and so the exchange 
integral can be expanded in powers of the displacements. 
Restrict ing ourselves to the first two t e rms we get, be
sides the usual Heisenberg (Ising) Hamiltonian, the term 
linear to the displacement and quadratic in the spin 
opera tors which descr ibe spin-phonon interaction. 

Lattice dynamics is t reated in the harmonic approxima
tion. 

A detailed investigation of the various aspects of the 
spin-phonon interaction in the Heisenberg model under this 
assumptions is given i n ' 2 ' . 

Recently, many works have concerned this approach to 
the Ising model, especially the interest ing problem of the 
first order phase transi t ions in some magnetic mater ia ls 
(see for instance •"iA/ and the l i te ra ture there cited). 
But this approach cannot be applied to certain cases , where 
anharmonic interaction plays an essential role, e.g., at 
high tempera tures , near lattice s t ructura l phase transition 
pionts, etc. In these cases the anharmonic interaction 
should be taken into account explicitly. 
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In order to be able to t rea t such cases a new method for 
the investigation of spin-phonon interaction in the Hei-
senberg model has been proposed in 5 ' ' . As compared 
to the conventional approach 2 , this method is not 
res t r ic ted only to consideration of the linear t e r m s in 
the expansion of the exchange integral and allows one 
to consider in self-consistent manner the effects of the 
anharmonicity in lattice vibrations. 

We also mention here the work B , which gives some 
arguments that the first order phase transition might occur 
in a compressible anharmonic lattice though the c o r r e s 
ponding harmonic lattice does not undergo a first order 
transition. 

In this respect it is interesting to calculate some of 
quantities, which have anomalous behaviour near a magne
tic phase transition (elastic constants, thermal expansivity, 
etc.), considering Heisenberg or Ising Model on a comp
ress ib le lattice allowing for a rb i t rary anharmonicities of 
the bare lattice. 

The purpose of this paper is to present an approximate, 
microscopic calculation of the isothermal elastic constants 
of the anharmonic ferromagnetic crys ta ls , using the self-
consistent spin-phonon interaction theory • >~ 7-. Some 
ear l ier calculations of the ferromagnetic elastic con
stants , ! ' 9- did not take into account the anharmonicit ies 
of lattice vibrations. 

For the experimental resul ts we refer the reader to 
the review l 0 . 

Elastic constants of pure lattice can be calculated 
by the method of homogeneous deformation and by that 
of long waves The resul ts obtained by using both 
methods a re consistent in the cases of harmonic / • ' and 
anharmonic , 2 latt ices. 

We shall calculate isothermal elastic constants using 
the method of long waves and the fact that three inde
pendent elastic constants of the cubic lattices can be 
found from the dispersion curve inclination 

In Section 2 we give the calculation of the phonon 
frequencies taking into account spin-phonon interactions 
of all o rde r s . In Section 3 high-temperature isothermal 
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elastic constants of f.c.c. lattice a re given. At the end 
of this section we consider approximately the influence 
of spin system on the elast ic constants. 

2. The Hamiltonian and the Phonon Green 
Function 

We consider a magnetic anharmonic crys ta l which can 
be described by the Hamiltonian / 7 : 

Н = -(2МГ'Х V p

2

+ U ( R f ) - ^ S I ( R f - R J ^ s ' m , (I) 

where Rp and £p a r e the position and the spin of the 
atom with mass M in the latt ice si te xj> =<R*p>; the thermal 
average <... > is taken with Hamiltonian (1). Using an 
expansion of the potential energy of crystal U(S (, ) and of 
the exchange energy ](Rp-R m)in the infinite s e r i e s in 
thermal displacement ip *=~Rp -xp we get the equation of 
motion for the Four ie r t ransform of the re tarded phonon 
Green function G .. , ( t - f ) = « u (t);u , ( t ' )>?,(i=f | U ) in the 
f o r m •>- ' : 

G.. ,(<u)=G° ,(<u) + I X- 2 G.° (а>)Ф.. «u . . . . i i | u . , » -u ii n = 2 n! j b - - n . j j l . . . n I n ' • ш 

- 1 X 1 G ° ( f f l ) « u . . . u s ' s j u . w ' v v , ^ 
n = O n ! i£ml. . .n 4 ' n t m i ш , J n 

(2) 

x I - < j ( R r R m ) > , 

where we have introduced irreducinble (ir) Green func
t i o n / 6 ' 7 / : 

«)u 1 (t) . . .u n (t)^(t) .S £ X01;ii r (0» '= « l u j - u n (S ? S r ) -

- < u , . . . u n ( s f s r } > t ; u r » -

- I C m <u . . .u„ > « l u , ...u (§ S„, )\;a,, >>' -
m=0 " m+l " 1 m I I ' 
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-}_l

cl< %+r-un^e V ) > < < l u i - u » . h v » " 
(2a) 

С " . а ! /и ! (л -ш)! 

which cannot be simplified by the decoupling of the equal 
time operators and the effective phonon-phonon interaction: 

i.m 

The zero-order Green function G°, (<«) is defined by tht* 
equation '' 

and it describes the propagation of the undamped self-
consistent phonons /s,s/. i n order to obtain the damping 
of the phonons it is necessary to consider the equation of 
motion for the irreducible Green function «A(t);u ., ( О » 
in (2) by differentiating it with respect to time argument 
t'. As a result we can rewrite the equation (2) in the matrix 
form G=G°+G°PG° , where Psi'((o) is equal to the sum 
of products composed^ ^ of the Green functions 
«A|B>^ r (A,B"l u i - - u

r ' o r ' u r •u„(S'^)l)and two corresponding 
vertex functions of the phonon-phonon and spin-phonon 
interactions. 

Now introducing the phonon self-energy operator fl 
according to the equation G=G°+G°riG we get / 7 / . 

П (a + iO- lPd+G^P) - ' U Г - d " ' . ^ ' / в - »x 

х Г ^ - е " " 0 1 ! ! A-( X <u (t)u , >\.V.J 
_ « , Lit n = l Ш . . / J J j J 

x Ф , (...x, . . . )Ф г ( . . . х , - . . . ) h 
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+ e » ' ' ! ' i - 2 <(S„(t)S (i))(S,, S , ) > % 

xV < J ( R . - R ) > V . , < j ( R „ , -R ,)>, ( 5 ) 

i t m i t m 

where the approximate explicit form is obtained in the 
second order in spin-phonon and phonon-phonon (3) inter
action by using the spectral representation for the re
tarded Green function «А|В»Ш in terms of the two time 
correlation functions. According to the definition (2a) 
the irreducible four-spin correlation function in (5) is 
given by the expression: 

<(S{ ( t )S m ( t ) ) (S r S m , )>=<(S e(t)Sm(t)-<S fSm»(S r S m , -

-<S. ,S ,->)> (5a) 

The inelastic phonon-phonon interaction in all orders (the 
first term in (5)) and the inelastic spin-phonon interaction 
(the four-spin two-time correlation function) with additio
nal excitation of phonons(exp|...|) in the second term in 
(5) are explicitly taken into account in the phonon self-
energy operator (5). 

After the Fou rier transformation of the Green function 
of the displacement operators 
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we get following expression for the Green functions 
G J ( o 0 / u / : 

G (<»). Ъ& (7) 
4 <о2-ко2-2и П (*>) 

ч ч ч 
Further we shall investigate only the caseoff.c.c. lattice, 
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We take the neares t neighbouricentral force interactions 
for latt ice interactions 

U - j j X I R - R J ) , (8) 

where p r ime on the summation means that the second 
summation is performed only over z neares t neighbours 
( for f.c.c. la t t ice z = 12 ). The spin system will be 
investigated in the neares t neighbour approximation too. 

Using the upper assumptions land'the equation (4), the 
f requencies^ iq=(<f,j)l in equation (3) can be determined 
in the pseudo'-harmonic approximation / l i / by the equa
tion 

qj M l f.2 f 'Hi 
, _ м а £ (e.gj, ){1_еФ)иЩЛы2^ . ( 9 ) 

Taking into account only the neares t neigbour interactions 
the pseudoharmonic renormalization is reduced to that of 
strength constant 1{6, P ) , where «„•>. is the harmonic 
frequency corresponding to the strength constant f. 

The Four ier transformation of the self-energy operator 
(5), taking into account only the renormalized cubic 
anharmonicity ( n = 2 in the first te rm of eq. (5)) and 
neglecting the additional excitations of phonons (exp(...)si) 
in the second term in (5), gives 

П > ) - X 1ФГ-Ч.Ч, , q , ) | I 

_ < " „ - " q, >["(<" q,)+n fa Я 9 ) ] +» 
И 2 - f a -Ш ) 2 -оо 

41 Ч 2 

2 faq, ^ q 2 ) U + n f a q [ ) + n f a ^ ; 

И 2 - fan 
4 i 

+<u ) 2 

4 2 

UJ-Ш + i ( 

, m'/e 
-(e -•l)C q fa), 

where 
(10) 

n) n(o>)=(e -1) 



Л ( Ч , +49+44) 'Ci,a„a 
Ф (q ,q ,q )= ! 2 — 2 2 Ф ' 2 3 

3 ^ Ч 1 ' Ч 2 ' Ч 3 > ( 2 N ) 3 / 2 V a ^ " ' ^ 1 * 2 -*3 
1 а 2 я .Ч ( » ) 

« П ( ^ е 4 i ' ) 
V M at 

С ( U ) ) = — ; ^ - i — _ , £ _ , ; sin^±-(q f ) s i n y t ( q f ) x 

4 2 4 , q 2 M&. ! M | P ' I 
?! 

xe 
-i-^fP i - L q f U<T-4,)f - i ( q V 2 > f /,оч 

е е e x *• -* 

x / l i L e ' " " < ( S ^ ( t ) s ' . -. ( t ) ( s L S -. - )> ' • 

T h e f o u r - s p i n F o u r i e r t r a n s f o r m e d c o r r e l a t i o n funct ion 
in (12) i s o b t a i n e d by m e a n s of r e p r e s e n t a t i o n 

S„ = I e i q *t S _ . 
1 q Ч 

F o r t h e c e n t r a l p a i r f o r c e m o d e l we c a n c a l c u l a t e |<li, |" 
a n a l o g o u s l y with ' * and ge t : 

l * , U , q 1 , q 8 ) l ' - A ( - q ' 4 4 g " q ) - g 2 ( t f . n F 2 ( - q , q ,q ) (13) 

q q, q , 

w h e r e 

<1 

F(qj Л i .q i J = z ' ( - i ) (не -. )(•% ё -> . )(n,e, . )x 
г l ^ 2 ' 2 n 4) q, i [ q 2 J 2 

x sin -d-(nq)sin i ( n q̂  ) sin 1 ( 3 ^ ) (14) 

i s d i m e n s i o n l e s s sum over the la t t i ce po ints , n= CK-7-). 
d i s la t t i ce constant , I i s the d i s tance between The 
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nearest neighbours, 2пт is the reciprocal_lattice vector. 
The strength constants f(0,O and g(0,£) in the 

equations (9) and (13) are determined in the self-constant 
manner: 

f~«M W "(E >-Г ' (е)Ц So>,i(0, l h<f"'{t )-J~"T£ XS£S£(15) 

where ф\1) and J(£) are self-consistent potential energy 
and exchange integral respectively. Inthepseudoharmonic 
approximation these quantities take the form/ 1*/; 

ф1П. f - L a u - ^ y n n . 
n= 0 n! 2 

(16) 
J(H= S - i ( f u 2 ) J (I). n= о n! 2 

The mean square relative displacement of neighbouring 
atoms u3(0 can be expressed using the Green functions 
(6) and (7) as 

u~> П ^ I " ^ ] K —i v 1 Г н r o f h » 
f2 zf{0, l) к k " ~o 2 6 (1") 

x [-lmGk(u>+it)]. 
It should be noted, that in strength constants (15), besides 
the pseudoharmonic renonnalization /14/, spin-phonon 
interaction gives the new term proportional to the spin 
pair correlation function <£f S»>. 

The equilibrium lattice constant d= t\j2 is obtained 
from the equation of state for ferromagnetic anharmonic 
crystals /6/', which in our case takes the form 

p—-ir{f'il )-<s",^>r<«». as) 
where v=--V/N- £Д/2 and P is the external pressure. Thus 
the self-consistent system of equations (16), (17) and (18) 
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gives us the equilibrium paramete rs of the lat t ice, the 
renormalized phonon frequencies Z -,. and phonon widths 

Г<ГГ 

Z. =ai _, + Re[]_ (a, ), Г (w) = -lmIU (<u + if)- (19) 
<ii q j ч) i qi 4i 

3. Elastic Constants for f.c.c. Lattice 

Fur ther we shall investigate only the case of a c las 
sical high temperature region: 0 = k T » # D a n d 0 » E m o j ( e ) , 
where 60 is Debye temperature and E m a ) (0) is a maximum 
energy of spin excitations at temperature в , when an 
expression ( е ш ' " - 1 ) » -4 is possible in (10). We put also 
0„>0 .On the basis of these assumptions the self-energy 

operator (10) takes the form: 

п_ (ш) =-<>«... ifo'. E} s .̂ ы+ ±У<-'^')^а1., <20) 

where 
I A(q + q — q ) о 

Ч 1 Ч 2 Ч : Ч 2 Ч 

Ч] q 2 q, q 2 

2 - . л л 7 , • s F ( g l ) 

f = — ; л =л . = zui-». / ш , ; о» = • 
в ] _ Ч 11 4J L L М 

The first te rm of the self-energy operator (10) differs 
from the corresponding expression in the absence of 
a spin-phonon interaction i n / l 4 / by the renormalization 
of strength constants and has been obtained in an analogous 
way. The second term in (20), proportional to the spin-
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phonon interaction constant [J '(£)] and four-spin correla
tion function <(S^Sf-qyS>ij2&^$>t'J describes * е e f f e c t o f 

inelastic scattering of phonons oy spin excitations. 
Three independent isothermal elastic constants of 

f.c.c. lattice can be found from the dispersion curves 
inclination' 1 3 ' . In the static (w =0) long-waveJimit (q'̂ O) , 
with the definite choice of the wave vector k"=q/q along 
one of summetric crystal directions and polarization 
j = L (longitudinal) or j =T, ,T2 (one of transversal), one can 
get the following expressions for isothermal elastic 
constants ' , 3 - 1 5 ' : 

(22) 
k = [ l , 0 , 0 ] р й 2 - c q 2 , p a 2 , - c q 2 , 

q,L U q , T U 

£ = [1,1,0)1 pa\ -c q 2 , p S 2 ->4(c ->-• )Ч2 

where p= V • 
So the calculations of static, long-wave limit of phonon 

frequencies(19) with the self-en.ergy (20) gives the isother
mal elastic constants of anharmonic ferromagnetic crystal: 

^% l { i\e,t) k ! 

_ U " " £ _, V J. 4 i (k, fXk, Пх (23) 
4 в т С ^ tt'ify |fJ | П 

xcos(q Ocos(q £ )<(S^ S _)(S-, S .,)> , 
1 l Ч ) ~ Ч 1 Ч 2 " Ч 2 

where R 0 is equilibrium distance between the nearest 
atoms in the harmonic approximation, С'°i are isothermal 
elastic constants of harmonic lattice, Sa,=limS.> (n>~0) . 

The first and the second terms in eq. (23) give the 
renormalized lattice elastic constants of *"* '.The third 
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term in (23), proportional to four-spin correlation function 
and spin-phonon interaction constant, appears as a conse
quence of spin-phonon interaction. 

Fur ther we shall give an approximate investigation of 
the third term in (23) in order to get some more 
information about its influence on the elastic constants. 

In the paramagnetic region {()>(!,.) in the absence of 
any external magnetic fields, the quantity s"( i )^ is equal 
to zero and we therefore approximate the four-spin 
correlation function by a sum of products of all possible 
pair correlat ions "' : 

•:(S., s ' , )(s\ S* , ) •" -X <(S", S a , )(S^ S ^,):>'Г~ 
Ч, - Ч , ' 1 , - 4 2 afi Ч , - 4 , Ч , - ч 2 

' • ( 24 ) 4 , - 4 , 4 , • - 4 „ 

Spin-pair correlation functions in (24) can be calculated 
by the method of work • '" '.for instance. In the paramagnetic 
region the rotational invariance condition is fu l f i l l ed ' 1 ' : 

• ^ S 1 -—-s- s 1 - - s ' s ' -1>- V.—.-.--
'I I ~ч'| 'I I - I | 4 I "'I I N I . 2 y ( J - i ) 

(I • III 

(25) 

where susceptibility y.-limu/h has to be determined 
from the equation h >0 

(26) _ 1 _ = JL v 1 
- .V N 4* U 2 X (/„-]'„• ) 
Susceptibility given by eq. (26) is proportional to I/O' 

when 0 -•«. and in the right vicinity of Curie temperature 
\>~ f 0-0L. )Г 2 Substituting (25) into (23) an additional te rm 

of the renormalized lattice elastic constants (third term 
in (23)), which we denote by C ^ V c j j , takes the form: 

С ф Ъ8[](1)]г d?Ai ) ( P \ S 3 j ) -> 

сЖ~ = -~<^ iv 1 2 i L ( k , C x k , r ) x 
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, 2 jAos(qjПс^П ( 2 7 ) 

N 4, [ 1 + 2 X ( J " ' - J „ - > 1 '0 J 4 

We replace discrete summation over the first Brillouin 
zone by an integral over Debye zone in (27): 

N-~ q" (2ж)3 0 0 - 1 ( M ' 

where /i=cos6 and q = (6n2/v) ' . The dominant 

contribution to the integral in the (27) comes from the 
region of small q i and thus for convenience in performing 
the angular ^integration over ^ we approximate 
rus(q, f)cos(q'f" ) = 1. After the integration in the equation 
(27) we get: 

^ " " 0 8**(2d J (t)f*C "/ ^ 17j ' X 

ap 
(29) 

iarctgq d V 2 x J( ? ) 
4 o d v 2 x J ( n 

° l + 2 . V q ^ d 2 j " ( f ) 

The change of the elastic constants by the spin-phonon 
interaction, given by (29), agrees qualitatively with 
experiment ' ' • This expression shows that the additional 
term to the elastic constants increases in absolute value 
when the temperature approaches to the Curie temperature 
and has negative sign. Factorization (24) is invalid when 
0---0r and in the vicinity of Curie temperature / l 6 / , so we 
cannot give the estimation of (29) in these cases . When 
°'"° C « f l / C a 0 . - O . 

In conclusion we would like to point out that the main 
advantage of our approach, as compared to usual approach 
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( 2 and f> for instance), consists in taking into account 
in a self consistent manner the anharmonicity of lattice 
vibrations and higher order t e rms of spin-phonon inter
action. 

The aim of the present work was to show how one can 
calculate isothermal elastic constants of anharmonic 
ferromagnetic c rys ta l s , and further approximations for the 
four-spin correlation function serve only for qualitative 
check of calculations. The approximate solution (23), 
which contain four-spin correlation function, gives the 
possibility, when a better theory for the Heisenberg model 
will be developed, to obtain more reliable quantitative 
estimations which can be used for comparison with expe
riment. In our approach it is also necessary to choose 
the models for lattice potential and exchange integral and 
to find numerical solutions of self-consistent system of 
equations (16), (17) and (18) for the equilibrium lattice 
parameters . 

The author wishes to thank Dr. N.M.Plakida for 
suggesting this investigation and for many valuable 
discussions and V.L.Aksienov, I.O.Buchbinder for useful 
discussions. 
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