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1. Introduction 

At low tempera t i res spins ol a solid paramagnet 
relax to the equilibrium state toward the direct , one-
phonon p rocesses . (Van Vleck, 1941). This means the spin-
flip i s accompanied by creation or annihilation of a single 
phonon which frequency lies in the narrow band of 
frequencies. The width of this band is approximately 
equal to the width of resonance line Л « .Le t us suppose 
that frequency band is centred around frequency which 
will be called further resonant frequency. AH phonons 
with the frequencies from band Ли will be called further 
resonant phonons. We suppose that all other lattice 
modes a re in equilibrium. 

If the spin-phonon interactions a re more effective 
in comparison with the phonon-bath interaction we 
would expect a r ise in the resonant phonons " t e m p e r a t u r e " 
(Van Vleck, 1941). In this case the relaxation time of the 
resonant phonons defines the time of returning of the full 
system to the equilibrium sta te . Such a situation i s , 
following Van Vleck, termed a "phonon-bath bot t le-neck". 
The main conclusion of Van Vleck was that the phonon-
phonon interactions at low temperatures a r e not effective 
and, thus the interaction of the resonant phonons with 
the walls of the container or with the impuri t ies gives 
a significant r i s e to relaxation of the full system. 

There a re many at tempts to consider the theory of 
low-temperature paramagnetic relaxation, but the main 
Van Vleck conclusions were not changed. Various expe­
r imental techniques have been employed to demonstrate 
the existence of the bottle-neck. Some of them give the 
relaxation t imes (Scott et a l . , 1962; Nash, 1965; Standley 
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et al., 1964), and others offer the possibility of a direct 
observation of the hot phonons (cf. Brya et al., 1972; 
Altshuler et al., 1972). However, in our opinion under 
some conditions the pnonon-phonon interactions can play 
an essential role. We have in mind the fact that all 
previous calculations o*f the resonant phonons life-time 
were made in the collisionless regime. But it has been 
realized recently, that this life-time in the collision-
dominated regime differs significantly from that in the 
collisionless regime. Since the life-time of thermal 
phonons depends on temperature it is possible that for 
a given frequency of the resonance <o0 at liquid helium 
temperatures the collision-dominated regime occurs. 
In fact we prove for spin 1/2 that in the temperature 
interval, where usually the experiments have been made, 
( 1 - 4 K) life-time due to the interaction of the 
resonant phonons with the walls of the container and life­
time due to phonon-phonon interaction are of the same 
order. 

Description of the nonequilibrium state of the spin 
system depends on what interaction is stronger: spin-spin 
or spin-lattice interaction. If the spin-spin interaction is 
greater than spin-lattice interaction the evolution of the 
system is described by Provotorov type equations. Other­
wise, we must use the Bloch-type equations. 

In order to develop the kinetic equations for our 
problem we use the Method of Nonequilibrium Statistical 
Operator (NSO) proposed by Zubarev (1971). Buishvili 
et al. (1972) have proved that this method is very con­
venient in application to the problem of the phonon bottle­
neck. 

2. The Kinetic Equations 

Let us consider a solid paramagnet in the resonance 
conditions. The general Hamiltonian of such a system 
has the form 

K f t i - K s + K s s • И ' | + К И _ + К Ь . И + Н ; . 
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The operator K s descr ibes the spectrum of the resonant 
levels . We consider such a spin system which has 
a system of energy levels with energy difference b r 

This system is well separated from other levels and lies 
at the bottom of the energy spectrum. The second term 
of (1) H 

ss i s the energy of the dipole-dipole interaction, 
ft', r epresen ts the energy of the interaction of the spins 
with an яс magnetic field, " S i _ is the energy interaction 
of spins with phonons and H L i s the lattice Hamiltonian. 
At low temperatures (liquid helium temperatures) the spin 
system i s strongly coupled to the phoijtons of resonant 
frequency wg-oi^.The ac external magnetic field disturbs 
the spin system from the equilibrium s ta te and subse­
quently leads to nonequilibrium distribution function 
of the resonant phonons. We suppose tha ta l lo ther phonons 
are in equilibrium. This is the reason to distinguish 
the resonant phonons from all other phonons. 

where 

н - x f t^Are,* ; , ( 2 ) 

i s the Hamiltonian of the resonant jphonons and 

The Hamiltonian of the interaction of the resonant and 
thermal phonons has the form 

К0тг * <b

K

VK+VKh+*> *<**>• (4) 
к 

where ЬК,ЬК a r e creation and annihilation operators of 
phonons, and VK is equal to 
V K = 3 £ V(K,KpK2)AK AK (l~h(q,K ))(l-h(q,K )), 

K,K2 1 2 1 2 

(К, K2,K3)being the matrix element of three-phonon 
interaction and 
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'Ак = ьк+Ь^с ' 
К denotes the pair of indices K=(k,j),k is quasi-
momentum vector, / -polarization and mode index. 

Similar division of the phonon Hamiltonian is used 
in the sound attenuation problem (Maris, 1965; Paszkie-
wicz, 1972). 

In what follows we shall consider a system with the 
resonant spectrum defined by Zeeman energy levels of 
the spins in external magnetic field H 0. thus H, i s 

equal to 
z 

Ks= H Z= hoiO S S i ' (5) 
i 

^0, is connected with no ~шо = уНо' у .being the gyro-
magnetic ratio. The spin interaction with а с magnetic 
field of the amplitude nt is taken in the form 

H' = —~ 2 (S e + S . e ; , a) { = yHt . (6) 
2 i ' 

Description of our system of the impurities in solids 
depends substantially on which of dipole-dipole interactions 
or spin-lattice interactions is greater. Firstly, we con­
sider not too diluted systems in which the spins are more 
strongly coupled with themselves than with phonons. In 
such a case usually in the spin interactions the main role 
part of which is 

" S - l Г I A4<S'S,'--7SX>- CO 
We take the spin-lattice interaction Я si, in the following 
form 

K , a , < K > K * 
where after Sears et al. (Sears et al., 1967) we take 

.2 + -Уз ftiU/i^»- 1Л 

where 
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•A in the Kramers ion 

со -й in the non-Kramers ion. о 
Let us divide the spin-lattice interaction into two 

p a r t s HSL - *k + H s 0 , 
where M^L is the great part 

H' - , '* S gaSa(b JKt' -b+e-IK4)(l-u.(q,K)), 
Ь К,a,) K > K K 

and the small part is the Hamiltonian of interaction of the 
resonance phonons with the spins 

¥'sQ'ih 1 ' K

S , ( b K e ' -bKe ' )&(4.W.(fi) 

It can be seen from Eq. (8) that the width of the resonance 
line Лш defines this partition of K S t Next we shall trans­
form away the large part of KSL (Frohlich, 1953"). After 
canonical transformation in the second order in nSL , we 
obtain an effective spin-spin interaction the main secular 
part of which is equal to 

Kfi = * 2 \uJ2(t-lb(4,K))\S*S~ 
K,i,j л ' ' й) - (o 

,K(r-r) 
- + e ' ; 

_ s. S. !. 

In contrast to dipole-dipole interaction the leading terms 
of К c

eft for a long distance between ions have an oscillat­
ing character sin x / x г . It is possible that the phonon 
induced spin interaction can be larger than dipole-dipole 
interaction. Probably, such a case takes place in some 
organic complexes with Си (Standley and Wright, 1964). 
In addition to effective spin interaction an effective 
spin-thermal phonon interaction of the type of (8) does 
appear. This leads to relaxation of the dipole subsystem. 
We can divide the Hamiltonian b* the full system 
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( К / n d being the phonon induced spin-spin interaction, 
the secular part of which is K ° H , and H J T is an 
effective spin-phonon interaction) into strong and weak 
parts. The strong part 

describes the rapid returning to the internal equilibrium 
state of different subsystems - the coupled spin-resonant 
phonon subsystems and the thermal phonon subsystem. 

The weak part 
M S O + H QT + H S T 

leads to the slow, smooth relaxation. With the interaction 
K°d + H° e f ( there is connected a small time interval 
г , such that after time much greater than rd the non-
equilibrium state of the spin system is described by a set 
or average values of the operators Pm , which obey the 
following condition. 

[ b . H o l - S - b . ' V (9) 

This condition guarantees that the nonequilibrium average 
values <Pm>' apart from the free oscillations change slowly 
and are relevant to description of the nonequilibrium state 
of our system. In our first case there are four operators 
with such a property, namely H , , H° + H° „ , й л,Н „ . 

ь a ell v I 
The operators Pm and thermodynamic parameters 

Fm(t) coupled to<Pm>' in the nonequilibrium thermodynamic 
sense define the entropy operator S(t,0).ln our case: 
s(t,o) = Bz(t) Hz+pd(t) (H° +H e°„ ) +pQ(t) KQ+ рНт+Ф(Ц , 
where ySut) ,fid(t) ,/3Q(t) are the parameters coupled to the 
<H 2>',<H° + H°ff>< , <K 0 >', respectively. The thermal 
bath has the temperature T and p is equal to familiar 
(itf1 . With the help of this entropy operator we can 
introduce the local equilibrium statistical operator pp (UO) 

p £ (t,0) = ezp\-S(t,0)], Trpp (t,0) = 1, 
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Ф( t) i s the normalization factor of p. (t, 0) . Using the 
NSO method we construct the nonequilibrium stat is t ic 
operator , p(t,0) being the functional of p f (t,0) relevant 
to the given stage of evolution 

p(t,0) = f / dtje V+(t+11,t1)pi(t+t1,0)V(t+t1,t1), 

(10) 

where 

V(t, t') = exp(- i H !j T expi— f H' (t ) dt, 1, 
I 

After taking the thermodynamic limit, the next step is 
to take f_ . Averaging the operator equations of motion 
for P^ s over the nonequilibrium stat is t ic operator (10) 
we obtain the energy balance equations, i .e. kinetic 
equations for<H z >' ,<H^ +JK°/f>', and <KQ>. We compute 
the coefficients of these equations with an accuracy to 
t e r m s of the second order in al l interaction, i .e. H', , 
^ QT, ^ST and H J " . The balance equations can be r e ­
written in the form of equations for " r e v e r s e " Zeeman 
Pz (O , dipole pa(t) and resonant phonon temperatures 
fid (t) (cf. Buchbinder and Kessel , 1972). In the high-
temperature l imit we get 

df3z(t) <»-ы0 /3 pz(t)-p (t) 

< " 2 % " V y r *e (lla) 

dpd(t) _ _ w ы-о0)% (p (f) + »-% p (t)) j s few-ftw 
dt „ ; " * % " Ц* T d o 

(lib) 

d0o(t) fiQ(t) jiji)ez(t) /30(t) PJO-pjt) pjt) fytj-p 
* = P TQZ ' P T Qd P V 

(lie) 
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Now, we shall explain our notations. The main quantity 
is the function of the dipole-dipole line shape l(to) defined 
as the Fourier transform of the spin correlation function 

m . - j - 7 „,."" m , m . > s+s~+

(t>_ . 
Some other quantities are functions of l(to) 

2 2 2 Trs H d 

№ = n to I (to — ш ) , 
i r s s z 

The kinetic coefficients TZQ , ?QZ > ?QT • TQd > rdQ 
equal to 

«О П а й <? P l 0 ; dp ZQ a 2 

. 4wKS(M)P h 2. _-J т-'Л1А. 
d 

1 + 

<*т b 2 ( l + n(<o0)) 

where N is the number of paramagnetic impurities in 
the sample and Д2 is the second moment of the line-
shape-function. The average value of the number of the 
resonant phonons in equilibrium state with temperature 
of thermal bath T is equal to п(ы^) = (ejpfphto.)- 1) . 
The relaxation time of resonance phonons is connected 
with Jv* v (a) the spectral density of phonon correlation 
function derined as 

<V*Vn(9> = / <lo>e~"° 1+ (to). 
Q Q _«, 0 0 

The bracket <... > denotes equilibrium average 
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< . . . > = Тг( ) . 
Тгехр|-/ЗН г! 

In agreement with the result of Van Vleck (1941) and 
Orbach (1961) we obtain the spin-lattice relaxation time 
proportional to temperature 

Г'' - T. 
ZQ 

In the equations (11) we omit relaxation times due to the 
effective spin-thermal bath interaction. In the opposite 
case where the dipole interaction is much weaker than 
spin-phonon interaction the main part of Hamiltonian 
Ho is equal to 

Now, the set of operators which satisfies the condition 
(9) consis ts of K T , И Q , Su=- X Su(a= x, y, z) . V, SQ , 

H p T cause slow smooth relaxation. For the average 
values of Sa we obtain modified Bloch equations. For 
simplicity we consider the spin one-half case only. This 
allows us to compare the asymptotic time behaviour for 
systems governed by equations of Provotorov and Bloch-
type. Using the same method as that for derivation of 
Provojtorov-type equations we obtain modified Bloch 
equations. 
d<S_>' , , ( N t 

^ — = - A\(l + 2<n > ) < S _ > \ + a ,casat<S > , 
О ' Z о / у ' dt Q £ 2 ' y 

(12a) 

dt -£\1 + 2<a >' \<S >'-a <S > , (12b) 

d < S v > A . t , , „ < , 
L = - — U + 2 < n n > <S > + U I <S > -to,cosat<S > 

dt 2 Q У о * 1 Z 
(12c) 
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d<tia> A t 

£ - = \(1 + 2<п > )<S> 
dt p(<o ) A<J Q z 

where 

A = 2"\eQ\3 p(v0) • 

In both systems of equations (11) and (12) we discard all 
terms describing the relaxation of the spin subsystem 
direct to thermal bath. These terms are smaller than 
the terms due to resonance phonons. 

3. Phonon Relaxation Time 

The relation between the frequency ш0 and life-time 
of thermal phonons т № influences very simply the result 
of computations of the relaxation time TQT • Due to the 
nature of Bose-Einstein statistics such thermal phonons 
with the energy of the order of * I play an essential 
role in the dynamics of the phonon system. In the colli-
sionless regime (w„r ( f t » 1) there are a few collisions 
during the characteristic time ш~д and interactions 
between the thermal phonons result in a sort of the self-
consistent field. Therefore, thermal phonons never reach 
their equilibrium. In this regime the relaxation-time 
of resonant phonons can be found from the probability of 
transition of the acoustic phonons (or from suitable limit 
of phonon mass operator). Following Kwok (1967) we 
decouple the correlation function < Vg Vg(t /) > in the product 
of two correlation functions of the type of <AKA'£(tJ>.In 

such a manner we obtain 

TQT=36" X , \V(K1,K2,Q)\2 / й П 1 ( / П 2 У к ( П , ) / к ( П 2 ) х 
К * 'K^r Q —oo 1 2 

xfJ + nCtlj) +n(fl 2 )) S(Qj + n 2 -u) ) . 

(12d) 
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The spectral density function JK(il) is defined with the 
help of the phonon Green function (Kwok, 1967). 

J (Q) = !(«A ;A+» -«A -A » ) . 
К К К Qj_i£ л К II- к 

If we use the harmonic approximation for the spectral 
density we obtain the standard Van Vleck (1941) result, 
(usually called Landau-Rumer formula). 

In the opposite саье, i.e. in the collision-dominated 
regime there are many collisions during the characteris­
tic time ы~0' , the thermal phonons collide frequently and 
relax toward a local equilibrium state. The suitable 
equations describing such a local equilibrium are some 
kind of the Bottzmann equations. Such equations were 
developed by many authors but their suitable derivation 
for our purpose is that of Sham (1967). 

In order to obtain the spectral density function VQVQ 
we must solve the Boltzmann like equations by Sham (1967). 
We do this following Niklasson (1972) in the relaxation-
time approximation. In such an approximation in the theory 
there appear two parameters: the relaxation time connected 
with the normal processes r^^and that connected with the 
momentum nonconservating (Umklapp) processes rv . 
Solving the Boltzmann-like equations for cubic crystals 
in the diffusion region, where the normal and Umklapp 
processes are equally frequent (о>0т«1 ,а>0ти« 1 , 
т~' = '^ + 'у1 > we get 

-1 c„ a 0 ( c \ \ $ TV 

Q = (q, longitudinal acoustic). c p being the heat capacity 
per unit volume at constant pressure, с „ at constant 
volume, c|| i.« the second sound velocity approximately 
equal to c/^,T,where с is the sound velocity which we 
take the same for differently polarized acoustic oscilla-
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tions. In the presence of the impurities of low concentra­
tions we should reipace relaxation time r„ by that 
rR connected with all resistive processes. 

For great concentrations of impurities we can use 
approximate results of Miller (1965). 

The Boltzmann-like equations admit a solution des­
cribing the propagation of the wave-second sound mode. 
But in the considered systems such a. mode is strongly 
damped due to the interactions with the impurities which 
change the momentum of phonons. Probably only in 
samples used by Standley et al. (1964), which are stoi­
chiometric crystals, this mode can be propagated. 

4. Discussions 

In this section we consider the process of relaxation 
in the system of the fictious spins 1/2 after turning off 
a disturbing field. The equation for temperature (11) 
are very complicated nonlinear equations. It is a hard 
task to And the solution of these equations. Recently, 
Bushvili et al. (1971) have solved equations of this type 
for some simple cases. If we drop all dipolar terms 
in balance equations for <HZ> , <HQ>' we obtain the 
nonlinear equations of Brya and Wagner (1967). However, 
thjs approximation is obviously incorrect. The discussion 
of our equations for temperatures in the presence of 
dipolar terms is very complicated thus we shall consider 
the role of phonons in the low-temperature paramagnetic 
relaxation without taking into account the dipolar terms. 
For this purpose we shall use our modified Bloch equations. 
For the long time in the lowest order in deviation from 
equilibrium the equations for <SX >' , <Sy>f are decoupled 
from equations for <SZ>' and <n 0>'. 

In agreement with the Mims and Taylor (1971) the 
equations for <SZ>' and <ng>' coincide with those of Brya 
and Wagner (1967). These equations can be written in 
terms of the following quantities used by Brya and Wagner 

14 



U (i) = ± , у s: ——£ S- , 
n° + - n ° nCujgJ +1/2 

where nt-,n_are the numbers of ions in the lower and the 
upper state, respectively; n°, , ri'_ are the same numbers 
but in equilibrium state, 

du 1 
—— = ~ Z. (u + l+ ay) , 

dy 1 

dt 
(o (a + 1) + oay - y) 

QT 

JZg being the direct spin-lattice rate at the ambient 
temperature 

and a is the "bottle-neck factor" equal to the energy 
exchange rate between spins and phonons divided by energy 
exchange rate between phonons and bath 

_ г о г h t"o ("+ ~ n - ^ 
TZQ Ь<,!0 &шр(ш0)(2 +n(a0)) 

Brya and Wagner (1967) have discussed eqs. (12a, 12d) 
in details. They have shown that these equations describe 
the phonon avalanche ^f the spin temperature is initially 
negative and resonant phonons cannot be immediately 
absorbed by the thermal bath. 

Although the rate equations are nonlinear and can 
ba solved only numerically, it is possible to find the 
solutions for certain special cases. From the point of 
view of NSO method we are interested in the behaviour 
of the system пеэг the end of decay, where a--I , у-» О , 
< s „ > U o > < s y " ' -°- Following Brya and Wagner (1967), 
we obtain two decay rates, the slower of which is 
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TlA-<6 + 1> hQ- {Щ 

This quantity i s the asymptotic t ime constant obtained 
in pulse saturation studies of Scott and Jefferies (1962); 
Ruby et al . (1962); Nash (1965), Standley et al. (1965). 

Finally, we shall consider the role of phonon-phonon 
interactions in the bottle-neck. Following Guyer and 
Krumhansl (1966) we divide the temperature interval 
into two par t s ; below and above the temperature of 
conductivity peak JM 0.025 TD .where TD i s the Debaye 
temperature of the crys ta l . For mostly used frequencies 
of the order of 10 w s e c _ / according to Guyer and 
Krumhansl (1966) the system is found in the diffusion 
region and below JM in the collisionless one. In the 
collisionless regime T01.u 7 ~ J and in high-temperature 
approximation we get 

! A ВТ6 сТ 

From this formula one draws usually a conclusion that 
for low temperatures the phonon-phonon interactions 
a r e much less effective than with the walls or impurit ies 
(Stoneham, 1965). However, this statement i s valid only 
in the high-temperature approximation, i.e. Ъы <'кт . 

As we have shown in sect. 3 temperature and field depen­
dence of TQT differ significantly in the collisionless and 
collision-dominated reg imes . It makes it possible that for 
substances with sufficiently low Debye tempera tures TD , 
the system at liquid helium tempera tures can be found 
in the diffusion region. The Debye tempera ture in this case 
should be of the order of 6 0 е К. 

Let us es t imate the ratio of a № due to the interactions 
of phonons with the walls and a d for phonon-phonon in ter ­
actions in the diffusion region. We as sume the following 
crude figures for evaluating the order of magnitude of 
formulae: following Niklasson (1972) we take r =10~9 sec , 
Ш-109 s e c - ' and time of flight of phonons ac ross the 

16 



sample equal to 1 0 - 6 sec (the size of sample 0.25 cm), 
then 

" c „ 
This resu l t i s valid only for temperatures above Tu . Both 
approximations - cubic crysta ls symmetry and one branch 
dispersionless model cause the presence of the small 
parameter ( c p /c „- l) .This parameter i s of the order of 
10 -* at T = 10°K(GuyerandKrumhansl,1966);Bleaumont 
et al . (1961)). Thus the ratio of aw and ad i s of the order 
of unity. 

Recently Brya et a l . (,19*72) have really observed the hot 
phonons in m -doped MgO using the Brillouine light 
scattering. The Debye temperature for /ngo i s 700°K 
and the diffusion region appears above 7м = 19°К. From 
the result of Brya et al. (1972) it follows that the bottle­
neck pers i t s up to 40°K, but the hot phonon temperature 
is constant up to temperature of 16°K.Above this tempera­
ture up to 40°K the number of hot phonons decreases to 
zero. In our opinion up to 16 °K the phonon system is found 
in the collisionless region and according to usual formulas 
the temperature of resonant phonons changes very slowly. 
Above flie temperature of 16°K the collision-dominated 
region occurs and the resonant phonon temperature 
quickly relaxes toward equilibrium. Hence, it seems 
reasonable to expect that for direct processes thephonon-
phonon interactions can contribute the frequency and 
temperature-dependent mechanism of disappearing of 
bottle-neck, although other phonon processes ,e .g . ,Raman 
processes , .can be prevailing at elevated temperatures . 
The measurements in wide region of frequencies and 
temperatures may provide the proof of this suggestions. 

5. Conclusions 

The aim of the study was to consider the role of phonon-
phonon interactions in the low-temperature paramagnetic 
relaxation. If dipole-dipole interactions a re greater than 
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spin-latt ice interactions we obtain in r igorous manner 
the system of equations for r eve r se tempera tures of 
Zeeman, dipolar and resonant phonon subsystem. In the 
opposite case we have developed the modified Bloch 
equations. We have shown that the asymptotic solutions 
of this equations coincide with those obtained by Brya and 
Wagner (1967). Using this solution we have revised the 
influence of phonon interactions on the low-temperature 
paramagnetic relaxation. If we have found our system in 
the hydrodynamic region thermal phonons can form the 
thermal bath and for great dimensions of samples the 
influence of surface can be neglected. Probably these 
conditions took place in experiments of Brya et a l . (1971). 
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