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With increasing excitation energy of the atomic nucleus 
the density of the states increases and their structure 
becomes more complicated. The state density in medium 
and heavy nuclei near the neutron binding energy В „ is 
very large. Great success in the description of the density 
of highly excited states is due to the use of the statistical 
methods on the basis of the superfluid nuclear model/ ' / . 
The state density near B„ depends strongly on the mass 
number /I. The Л -dependence of the experimental values 
of the 1/2 h state density is well demonstrated in ref./ 2 / . 

In the present paper the semi-microscopic approach 
is used to calculate the average spacing I) between the 
/"= 1/2' states in spherical and deformed nuclei in the 
region 1,19^. -i'-joa for the neutron binding energy S„ and 
at an energy £ = 6.5 MeV, and the 4 -dependence of the 
spacing D is analysed. 

In ref. /••</ a model is suggested for the description 
of the structure of states of intermediate excitation energy 
and of highly excited states in odd-mass deformed nuclei 
which is based on the account of thequasi-particle-phonon 
interaction. In ref. /*/ this model is generalized to the 
case when in deformed nuclei in addition to the multipole-
multipole forces account is also taken of the spin-multipo-
le- spin-multipole forces. In ref. / J / a model is conside
red which is used frr the description of the state structure 
in odd-mass spherical nuclei. In refs / 3 - '4 t is shown that 
the number of states with given / " in spherical nucleus 
or with given K" in a deformed nucleus is equal to the 
sum of the poles of the following type 
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t( V) + CO , 8 

i(v) + CO + CO , 

i(v) + со +01 + ш , 
« j * 2 e} 

c(v) + со + со + со + со , , . . 
«2 «2 «3 * 4 W 

The number of states is equal to the number of poles of 
the type quasiparticle plus one, two, three and more 
phonons. In formula (1) the following notation is used: 
сМ=у/'С3-*(КМ-Х)2 -the one-quasiparticle state energy, 
where С is the correlation function, Л-the chemical 
potential, E(v) -the single-particle energy for the state 
v; со - the plionon energy, and g is equal to Л|д' , 
Лц is the phonon moment and its projection, I is the 
number of the root of the secular equation for one-
phonon states ' " . . . 

In the present paper, just as in refs. ' , using the 
phonon operators we describe not only collective vibra
tional states but all the states with given / " or К " . 
The wave functions of many states with Л > 3 are close 
to the wave functions of two-quasiparticle states, in the 
calculations a wide configurational space has to be used. 
Therefore in the case of deformed nuclei we taka into 
account multipole phonons with A ranging from 2 and 7. 
In the case of spherical nuclei we take into consideration 
multipole and spin-multipole phonons with A from 1 to 9 
and pairing-vibrational phonons. 

In the calculations use is made of the single-particle 
energies and the wave functions of the Saxon-Woods 
potential computed for deformed nuclei in ref. / ' / and for 
spherical nuclei in ref. /*/ The constants of the interacti
ons leading to pairing superconducting correlations and 
the ones of multipole-multipole interactions are taken from 
refs. i?-9/.The constants of multipole-multipole inter
action with Л > :i and spin-multipole - spin-multipole 
interaction do not noticeably affect the state density since 
the wave functions of such one-phonon states are close 
to those for two-qiasuparticle ones. In the secular 
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equation for the energy of the phonons of each multipo-
larity all the roots a r e calculated up to (6.5 - 7.0 MeV) 
excitations. After the quantities e(v) and ше have been 
found for each nucleus the express ions of the type (1) 
a r e calculated. In al l the cases the fundamental poles 
quasipart icle puis one, two, three and four phonons a r e 
taken into consideration. For some nuclei account is also 
taken of the poles quasipar t ic le plus five phonons. This is 
done so as to exhaust pract ical ly all the fundamental 
poles being present in a given nucleus up to fln and 
6.5. MeV. 

The calculations of the average spacing between the 
/ "= 1/2 + levels a r e performed as follows: in a given 
energy range from E to E + &E the number of fundamen
tal poles quasipart icle plus one, two and more phonons is 
calculated, the summation of them resul t s in the total 
number of poles by which the energy interval д £ is 
divided. For example, in , 5 7 Gd in the interval of 10 keV 
near IK = 6.347 MeV there is the following number of 
the l / 2 + poles: 

e (v) + со -8 

e (v) + ы + to — 135 
e l g 2 

e (v) + a> + со + со - 8 1 
*2 e2 S3 

i(v)+a+a+<o+co-17 (o) 
e) s2 e3 e4 

a total of 241 poles, therefore D = 41.5 eV. It is seen 
from (2) that the main fraction is the poles qupsiparticle 
plus two and three phonons. 

The calculations of this type were first performed 
in ref. ' 3 ' for the239V s t a tes . These calculations have two 
mer i t s compared with those of ref. 1*1 the account of the 
collective s t a tes and d i rec t calculation of the number of 
s ta tes without r ecour se to the methods of s tat is t ical 
physics. 

The resu l t s of calculation of the average spacing D 
between the / " = 1/2 + s t a t es at excitation equal to the 
neutron binding energy and the corresponding experimental 
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data are given in table. There are also given the values 
of the parameter a calculated by the well-known formula 
for the level density 

^ j - exp\2yJaUtlf\ (2/+ l)exp\-(j+l/2)112 о \ 

"~T2 "„'/4Ц5/4 2 V J 7 a 3 ' (3) 
'If 

2 б ., , ,, , l / 2 
where ° =—— <™ >(""tii > ><nr>the average squared 
projection of the momentum near the Fermi surface, 
Vefl= V -SP,U - excitation energy, Sp pairing energy 
for protons. The a parameters in (3) are taken from 
ref. I161'. 

It is seen from the table that in spherical nuclei with 
•K J50 the calculated 0 values for the / "= 1/2 + state 

for E = II is by about an order of magnitude larger than 
the corresponding experimental values. The largest dis
crepancy occurs for the nuclei of the transition region 
' " Nd and ,4'.Sm. This should just be expected since the 

calculation for them was carried out in the same manner 
as for the spherical nuclei. The softness of the nuclei 
of the transition region is the cause of the broad spectrum 
of excited states with different equilibrium deformations. 

For deformed nuclei there is a very good agreement 
between the calculated and experimental values of о • 
The exception is ' 7 3 V4 and , 7 S Yb, where disagreement 
reaches 50%. 

For the spherical nucleus Wg there is observed 
rather good agreement between theory and experiment. 
However for 2<" fig , 2 0 3 fig and 20SPb calculations do not 
yield such a sharp increase of the 0 value that is observed 
in experiment. 

The neutron binding energies B„ for different nuclei 
assume different values which makes it difficult to clarify 
the dependence of В on A. Therefore, in just the same 
way as in ref. I2I, the calculations of the average spacing 
D between the 1/2 + levels for all nuclei are carried 
out at 6.5 MeV energy. The corresponding experimental 
data are recalculated by the formula (3) for the energy 
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6.5 MeV. In Fig. 1 the recalculated experimental data 
for В a r e compared with the resul t s of calculation at 
E = 6.5 MeV. It is seen from the figure that the theory well 
descr ibes the s trong increase of D in the transition from 
deformed nuclei to spherical ones and the increase of 
D a s approaching to magic nuclei. For spherical nuclei 
with A < 150 the calculated values lie much above the 
D -values recalculated from the experimental data. This 
disagreement at £ = 6.5 MeV is somewhat larger as 
compared with the case E -- В . 

In deformed nuclei there fs good agreement between 
the calculated and the extracted from experiment fl -va
lues at E = 6.5 MeV. The calculations a s s e r t that the 
density of highly excited s ta tes is a function of the single-
par t ic le state density near the Fe rmi surface energy. 

Figure 2 gives the values of the parameter a calcu
lated by the formula (3) from the experimental values of 
the 1/2 •" state density and the calculated values for 
E - II „ . The a values extracted from the calculations 
a r e seen to lie everywhere below the о values obtained 
from the experimental data, but correct ly descr ibe the 
general A -dependence of о . 

Thus, the account of the shell and collective vibrational 
state effects made it possible to obtain a ra ther good 
description of the excited 1/2 h state density at the 
neutron binding energy fi„ and descr ibe the A -depen
dence of the average spacing between the l/2 + levels at 
the energy 6.5 MeV. 

Calculations of the state density in the framework of 
the method presented here continue . The dependence of 
the state density on the excitation energy, the angular 
momentum / in spher ical nuclei and on the projection 
К in deformed nuclei i s being studied. The role of the 

collective s t a tes in the description of the s ta te density 
and. other re lated problems a r e being investigated. The 
resul t s of this studies will be published in the neares t 
t ime. 

It should be noted that the s t ruc ture of highly excited 
s ta tes is very complicated and they cannot be described 
in the framework of the simple model which is employed 
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for the calculation of state density. For the highly 
excited state s t ruc ture of importance is the fragmenta
tion p rocess , i.e. the distribution of the s ingle-par t ic le 
state strength over many nuclear levels , which was 
presented in outline in ref. ' 1 7 ' . 
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Fig. 1. The average spacing D between the / "= 1/2 + 

levels at an excitation energy £ >= 6.5 MeV. Notation: 
the continuous curve is the calculation; the dashed curve 
is the recalculation of the experimental data. 
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Fig. 2. The parameter о as a function of the mass 
number A . Notation: The continuous curve is the о va
lues, obtained by the formula (3) from the calculated 
density at E- B„,-the dashed curve is the a values 
obtained by the formula (3) from the experimental data. 
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Table 
Experimental and calculated raluee of the average spacing D 
between 1/2* lerela and the parameter a at the neutron 
binding energy В 

Com
pound 
nuole-
ue 

"n 
HeV 

Experiment Theory Com
pound 
nuole-
ue 

"n 
HeV D, eV a j l l eV 1 

Bef. D,eV а, Нет"1 

1 3 9 f c 4.720 (9 .6+3 .4 ) . 10 3 19.33 10 43.10" 3 13.1 
1 Л С 5.438 (3+ Г.0).10Э 17.8 10 1 8 . 7 . 1 0 3 11.8 
" 3 C . 5.113 (1.0+0.2) . 1 0 3 21.31 10 1 2 . 5 . 1 0 3 13.5 
™M 6.100 (1.<M).25).10 3 18.5 11 7 . 7 . 1 0 3 12 
! « > d 5.970 520+70 19.4 11 1 .95 .10 3 15 
1 « И 5.140 310+43 24.4 11 5 . 5 . 1 0 3 15.3 
" 9 B d 
" ' в п , 

4.940 
6.900 
5.860 

200+21 
200+40 
90+~15 

26.9 
18.5 
24.4 

11 
11 
:.i 

2 . 2 . 1 0 3 

2 . 0 . 1 0 3 

1.66 .10 3 

16.4 
12.8 
15.8 

i » a , 5.886 5.8+1.5 12 63 22.3 
1 5 7 G d 
l ' 9 G d 

6.347 
5.942 

4 7 i * 
85+9 

22.8 
22.2 

11 
11 

42 
67 

го.в 
22 

1 6 S D 7 6.253 42^6 23.46 10 56 21 
1 6 5 D 7 
1 6 7 E r 

5.715 
6.438 

200+38 
38.4+0.32 

13 
14 

133 
57 

21.1 
19.3 

l 6 9 E r 5.997 95 .3 f l .7 14 117 19.4 
" 3 j b 6.4B0 70.3+2.6 15 41 20.3 
" ' n > 5.830 162^18 15 110 20.4 
" ' l b 5.530 185+19 15 161 20.6 
" 9 H f 6.070 55^8 23.05 10 58 20.8 
1 8 5 W 5.748 93*19 23.56 10 78 21.3 
1 9 9 H g 6.653 100+30 21.32 10 84 18.3 
2 0 1 H g 
2 M H g 

6.227 
5.987 

(1 .3+0 .1 ) .10 3 

г . 4 . 1 0 3 

17.93 10 
г 

112 
163 

16.3 

2 0 5 P o 6.730 (2 .8+0 .7 ) .10 3 2 200 


