СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3/12-73

E4 - 7273

P. Ziesche

C 323

Z-64

.......

MULTIPLE SCATTERING WITHIN FINITE SYSTEMS OF GENERAL MUFFIN-TIN POTENTIALS

E4 - 7273

P. Ziesche*

MULTIPLE SCATTERING WITHIN FINITE SYSTEMS OF GENERAL MUFFIN-TIN POTENTIALS

• On leave from Technical University Dresden, GDR

1. Introduction.

Recently an algebraic scheme has been derived, allowing the calculation of generalized phase shifts 7, and corresponding partial wave amplitudes Aix of a special non-spherically symmetric potential, consisting of a cluster of non-overlapping muffin-tin (MT) potentials. The case of pure s -scatterers, next to considered by Denkov and Rudakov (1970), has been generalized by John and Ziesche (1971) to scatterers with arbitrary angular momenta, using the analogy to the KKR method for band structure calculations (Korrings 1947, Kohn and Rostoker 1954). The mentioned quantities 2, and A,, are determined only by the sites \vec{a}_n and the phase shifts 2^n_A of the scatterers. The proposed scheme is useful for problems not only of the theory of molecules (electron scattering at molecules (Demkov and Rudakov 1970), bound states of molecules (Smith and Johnson 1969)), but also of solid state theory. It was for example possible, to derive the Lloyd-formula for the density of states of arbitrary, extended MT-systems in a very simple way via a generalized Friedel sum rule (John and Ziesche 1971 b). The use of general properties of the cluster phase shifts 2, (with respect to their dependence of the MT-phase shifts 2^n) allows the derivation of new gap criteris of Saxon-Hutner type also for three-dimensional binary alloys (John 1972). Also the application of the proposed method to band structure calculations of lattices with several atoms per unit cell has been discussed recently

(John, Lehmann and Ziesche 1972). Clusters of MT-potentials have been used to describe shortrange order and pseudogaps in elemental amorphous covelent semiconductors (Mc Gill and Klima 1972).

Non-spherically symmetric potential (within the MT-spheres) are important also in transition metals with partially filled d - bands (Jacobs 1972) or semiconductors with covalent bonds (Kane 1971). For such potentials (coupling finite sets of angular moments) Evens and Keller (1972) recently generalized the usual methods for band structure calculations (KKR,KKRZ,APW). They also used generalized, but slightly otherwise defined phase shifts $l_i(\bar{z})$. In (John, Lehmann and Ziesche 1972) it has been shown, that the use of phase shifts l_λ and seplitudes $A_{L\lambda}$, which by the way correspond to the signestates of the S-, T- or K- matrix, represents probably the more appropriate and natural description. So certain complications can be avoided for example (John, Lehmann and Ziesche 1972), obtained in (Evens, Keller 1972) with respect to the generalization of the APW method.

In the following a more general type of non-spherically symmetric potentials will be considered, being non-zero within an arbitrary volume (Section 2). The application of such potentials to the band structure calculations ~f lattices within a generalized KKR method allows one in principle, to take into account a non-constant potential within the whole cell.

But have (Section 3) next to only finite clusters of such generalized (of course.non-overlapping) MT-potentials are considered. The cluster equations, determining the scattering properties of the cluster, are obtained by an appropriate ansatz of the wave function (linear combination of MT-orbitals). similar to the original approach of Korrings (1947) and as recently again used (John and Ziesche 1971 a. Anderaen and Kasowski 1971, Andersen 1971). In this connection a generalization of recently derived addition theorems for the spherical Bessel (Ziman 1966) and Neumann (John and Ziesche 1971, Ziesche 1972, Andersen 1971) functions is needed (Appendix 2). The decoupling of structure (MT-sites) and potential (MT-phase shifts), which is characteristic of clusters of spherically symmetric WT-potentials, is generally unfortunately last, although the cluster equations are of the same type. This decoupling appears only in the case, that the envelopping spheres don't overlap. Only in this case the WT-potentials are completely characterized by their asymptotic scattering properties, that means by their far fields, Otherwise, also the near fields appear (mathematically via integrations over pairs of more or less complicated MT-surfaces) . hindering the mentioned decoupling. As a first simple example of generalized MT-potentials (sub-) clusters of usual MT-potentials are considered (Section 4). The elimination of the quantities, describing the scattering properties of the subcluster, yields just the equation for the whole cluster. This shows the consistency of the developed

formalism and means, that a cluster can be divided arbitrarily into subclusters if one takes into account fully the multiple scattering between the subclusters. Such divisions are of interest also for practical calculations, because generally some subcluster phase shifts are small for a given not too high energy (Demkov and Rudakov 1970). This allows to reduce the dimension of the whole cluster problem. - Finally, finite sets of angular momenta coupling potentials $V_{11}(r)$ are discussed as a second simple example of generalized MT-potentials (Section 5), Clusters of such potentials are of interest for the band structure of covalent semiconductors with their more open structures of diamand type, because within a generalized KER-method both the non-sphericity of the MT-potentials ; at the lattice sites (due to the covalent bonds) and the nonconstant potential in the interstitial region can be taken into account. The latter has been approximated by Keller (1971), installating additional spherically symmetric MTpotentials at interstitial sites. But generally these interstitial potentials are non-spherically symmetric.

2. Non-spherically symmetric muffin-tin potentials

A general muffin-tin potential is defined here to be non-zero only within a certain volume \mathcal{F} (see Fig.1). The scattering states $\varphi_{i}(r)$ of such a MT- potential are characterized by a behaviour outside the envelopping sphere ($r \rightarrow r_{\bullet}$)

$$\varphi_{\lambda}(\vec{r}) = \sum_{L} \left[j'_{L}(\vec{r}) A_{L\lambda} \cos \gamma_{\lambda} - n_{L}(\vec{r}) A_{L\lambda} \sin \gamma_{\lambda} \right], \qquad (2.1)^{2}$$

containing generalized phase shifts γ_{λ} and real partial wave amplitudes $A_{L\lambda}$. As in (John and Ziesche 1971 s) the abbreviations

$$\dot{J}_{L}(\vec{r}) = \dot{J}e^{(\mathbf{x}\mathbf{r})}Y_{L}(\vec{n}), \ n_{L}(\vec{r}) = n_{e}(\mathbf{x}\mathbf{r})Y_{L}(\vec{n}), \ \vec{n} = \frac{\vec{r}}{r}$$
(2.2)

are used. j_e and ρ_e are the usual spherical Bessel and Neumann functions, respectively. Y_L are real spherical harmonics, $L \triangleq (\ell, m_e)$.

The non-trivial scattering states (with $\sin \dot{\gamma}_A \neq 0$) are determined by the Schrödinger integral equation

2) The \mathcal{G}_{λ} used here differ from those used in (John and Ziesche 1971 a) by a minus sign.

With the usual expansions

$$\frac{i}{4\pi} \dot{J}_{o} (\mathbf{x} | \vec{r} - \vec{r}'|) = \sum_{L} \dot{J}_{L} (\vec{r}') \dot{J}_{L} (\vec{r}') \quad \text{for } r \neq r' ,$$

$$\frac{i}{4\pi} n_{o} (\mathbf{x} | \vec{r} - \vec{r}'|) = \sum_{L} n_{L} (\vec{r}) \dot{J}_{L} (\vec{r}') \quad \text{for } r > r'$$

$$(2.4)$$

and demanding

$$(\dot{a}_{L}, \forall \mathcal{G}_{\lambda}) = A_{L\lambda} (-\frac{1}{2}) \sin \eta_{\lambda}$$
 (2.5)

(2.3) realizes the asymptotic behaviour (2.1). For a given energy $E = \chi^2$ the equation (2.3) possesses solutions only for certain phase shifts 2χ .

This is seen rewriting (2.3) as

$$\begin{aligned} \mathcal{G}_{\lambda}(\vec{r}) &= \mathcal{G}_{\lambda}^{*}(\vec{r}) + \int_{\mathcal{U}} d\vec{r} \int_{\mathcal{U}} d\vec{r} \left(\vec{r} \cdot \vec{r} \cdot \vec{r} \right) \forall (\vec{r}, \vec{r}') \mathcal{G}_{\lambda}(\vec{r}'), \\ \mathcal{G}_{\lambda}^{*}(\vec{r}) &= \sum_{L} j_{L}(\vec{r}) A_{L\lambda} \cos \gamma_{\lambda}, \quad \varsigma_{L}^{\circ}(\vec{r} - \vec{r}') &= \frac{\chi}{4\pi} n_{o} (\alpha |\vec{r} - \vec{r}'|) \\ \text{and introducing via} \end{aligned}$$

$$\int_{\mathcal{G}} d\vec{r} \cdot V(\vec{r}, \vec{r}') \mathcal{Y}_{\lambda}(\vec{r}') = \int_{\mathcal{G}} d\vec{r} \cdot k(\vec{r}, \vec{r}') \mathcal{Y}_{\lambda}^{*}(\vec{r}') \qquad (2.7)$$

the K -metrix corresponding to the potential V. Reelly, inserting (2.7) and $\mathcal{G}^{*}_{\lambda}$ from (2.5) into (2.5)

$$\sum_{L} \left(J_{L}, K J_{L} \right) A_{L\lambda} = A_{L\lambda} \left(-\frac{1}{2} \right) t g \gamma_{\lambda}$$
(2.8)

turns out, showing the amplitudes $A_{L\lambda}$ and phase shifts γ_{λ} to be determined as eigenstates of the

K -matrix in its L -representation on the energy shell. As a consequence of the finite range Γ_o the emplitudes $A_{1\lambda}$ are small for $l > \chi T_o$, as shown for a simple example in Appendix 1. Because the K matrix is real and symmetric the (real) amplitudes $A_{L\lambda}$ form an orthogonal and complete set

$$\sum_{\lambda} \widetilde{A}_{\lambda L} A_{L \lambda'} = \delta_{\lambda \lambda'} , \sum_{\lambda} A_{L \lambda} \widetilde{A}_{\lambda L'} = \delta_{L L'}.$$
 (2.9)

Into the completeness relation of course also the trivial scattering states (with $5in\gamma_{\lambda}=0$) must be included, which can be obtained by a successive orthogonalizing procedure.

Thile the ssymptotic or fur field (2.1) outside the envelopping sphere and related to its centre is determined according to (2.8) by the K -matrix only on the energy shell, these matrix elements (j_{k_c}, K_{j_c}) are not aufficient for the wave function inside the envelopping sphere. Namely, inserting (2.7) into (2.6) yields (2.10)

$$\mathcal{G}_{\lambda}(\vec{r}) = \dot{J}_{\lambda}(\vec{r})\cos\gamma_{\lambda} - n_{\lambda}(\vec{r})\sin\gamma_{\lambda}$$

with the abbreviations

Indeed, expanding n_s seconding to (2.4), for $< f_s$ also expressions $< n_1, k' j_{\ell'} >$ appear, involving matrix elements off the energy shell, because the integral representation of $n_{\ell'}(xr)$ includes $\dot{j}_{\ell'}(x'r)$ for all positive energies $E' = x'^2$. This is related to the fact, that in the near field region outside the volume U^* and inside the envelopping sphere the wave function (although describing only free particle motion as in the far field region outside the envelopping sphere) is determined not only by the asymptotic quantities $\dot{\gamma}_{\lambda}$ and $A_{\ell\lambda}$, but also by the details of the distribution of scattering centres inside U^*

In the following, it is useful to assume, that besides γ_{λ} and $A_{L\lambda}$ also the wave function \mathscr{G}_{λ} and its normal derivative at the surface of \mathscr{V} is known (via (2.10) and (2.11)). These surface quantities determine then the wave function \mathscr{G}_{λ} outside \mathscr{V} via the equation

following itself from (2.3) by means of partial integration. Really, from (2.12) follows, that the wave function outside \dot{V} is again of the form (2.10) but with

.

$$\dot{J}_{\lambda}(\vec{r}) = \mathbf{z} \bigoplus_{\{\mathbf{v}\}} G \widetilde{F} \left[\left(\frac{\partial}{\partial \vec{r}}, \right)_{\vec{q}} - \left(\frac{\partial}{\partial \vec{r}}, \right)_{\mathbf{q}} \right] \dot{f}_{\vec{u}} \widetilde{J}_{\nu}(\mathbf{x} | \vec{r} - \vec{r} |) \mathcal{G}_{\lambda}(\vec{r}) \underbrace{s_{in}}_{(\mathbf{v})} (2.13)$$
(2.13)

$$n_{\lambda}(\vec{r}) = x \oint_{\substack{(\sigma)\\(\sigma)}} d\vec{f}' [(\frac{\partial}{\partial \vec{r}'})_{n} - (\frac{\partial}{\partial \vec{r}'})_{q}] \frac{1}{4\pi} n_{\bullet}(x | \vec{r} - \vec{r}' |) \mathcal{G}_{\lambda}(\vec{r}') \frac{1}{\sin \gamma_{\lambda}}.$$

These expressions are via (2.7) and (2.5) of course equivalent with (2.11). Finally, using the expansions (2.4), from (2.13) and the first line of (2.12) the relations

$$A_{i\lambda} \sin \gamma_{\lambda} = \chi \bigoplus_{(p)} d\bar{f} \left[\left(\frac{\partial}{\partial \bar{r}} \right)_{\bar{f}} - \left(\frac{\partial}{\partial \bar{r}} \right)_{\bar{g}} \right] \bar{f}_{i}(\bar{r}) \mathcal{G}_{\lambda}(\bar{r}), \quad (2.14)$$

$$A_{\iota\lambda} \cos \gamma_{\iota} = x \oint_{(\sigma)} d\bar{f} \left[\left(\frac{\partial}{\partial \bar{r}} \right)_{n} - \left(\frac{\partial}{\partial \bar{r}} \right)_{g} \right] n_{\iota}(\bar{r}) \quad g_{\lambda}(\bar{r})$$
(2.15)

3) The index st ∂/∂F shows, on which function it only acts. are obtained, connecting the asymptotic quantities γ_{λ} , $A_{\ell\lambda}$ with the surface quantities γ_{λ} , $\partial \gamma_{\lambda}/\partial n$. (2.14) follows also directly from (2.5) by partial wave integration.

By the way, with $ctg \eta_{\lambda} = i$ and $\mathcal{R} = i\overline{\mathcal{R}}$ also bound states $\mathcal{E} = -\overline{\mathcal{R}}^2$ can be included into the discussion.

3. Cluster

Now we consider a cluster of such suffinitions within non-overlapping volumes \mathcal{V}_i , each having orbitals $\mathcal{G}_{\lambda}^i(\vec{r})$, from which the cluster wave function $\mathcal{G}_{\lambda}^i(\vec{r})$ within \mathcal{V}_i and in the immediate environment of \mathcal{V}_i follows by an appropriate linear combination $\mathcal{G}_{\mu}^i(\vec{r}) = \sum_{\lambda} \left[\hat{\mathcal{J}}_{\lambda}^i(\vec{r}) \cos \hat{\mathcal{I}}_{\lambda}^i - n_{\lambda}^i(\vec{r}) \sin \hat{\mathcal{I}}_{\lambda}^i \right] \hat{\mathcal{G}}_{\lambda\mu}^i \sin \hat{\mathcal{I}}_{\mu}$. (3.1)

The cluster wave function $\mathscr{G}_{\mu}\left(\vec{r}\;\right)$ in the whole space is given by

$$\mathcal{Y}_{\mu}(\vec{r}) = \sum_{i,\lambda} \left[j_{\lambda}^{i}(\vec{r}) \cos \dot{\chi}_{\mu} - n_{\lambda}^{i}(\vec{r}) \sin \dot{\chi}_{\mu} \right] B_{\lambda,\mu}^{i}, \qquad (3.2)$$

This can be considered as an ansatz, corresponding to the

wished asymptotic bohaviour, but is also easily obtained from the integral equation (2.3).

Similar as in the case of spherically symmetric muffintins (John and Ziesche 1971 a, Andersen and Kasowski 1972) we get the cluster equations for $\hat{\gamma}_{\mu}$, $\hat{\beta}_{\lambda\mu}^{i}$, and $\hat{\delta}_{\lambda\mu}^{i}$ demending $\mathcal{I}_{\mu} : \mathcal{I}_{\mu}^{i}$ in the surrounding of \mathcal{V}_{i}^{i} . To this purpose the expansion of $\hat{\mathcal{J}}_{\lambda'}^{i'}$ and $n_{\lambda'}^{j'}$ around another volume $\hat{\mathcal{V}}_{i}$ is necessary

$$\dot{J}_{\lambda'}^{i'}(\vec{r}) = \sum_{\lambda} \vec{J}_{\lambda}^{i}(\vec{r}) \vec{J}_{\lambda\lambda'}^{ii'},$$

$$\dot{I} - \delta_{i\,i'}(\vec{r}) = \sum_{\lambda} \vec{J}_{\lambda}^{i}(\vec{r}) N_{\lambda\lambda'}^{ii'},$$
(3.3)

(

defining structure matrices $\overline{\partial}_{\lambda\lambda'}^{ii'}$, $N_{\lambda\lambda'}^{ii'}$, which are determined only by the wave functions $\mathcal{G}_{\lambda}^{i}$ and $\mathcal{G}_{\lambda'}^{i'}$, and their normal derivatives on the surfaces of the volumes \mathcal{V}_{ℓ}^{i} and $\mathcal{O}_{L'}^{i'}$, respectively (See Appendix 1, eq. (A2.3)). While the expansion (3.3) of $\hat{J}_{\lambda'}^{i'}$ is valid for all \vec{r} , the corresponding expansion (3.3) of $\eta_{\lambda'}^{i'}$ holds only within the volume \mathcal{V}_{i}^{i} and a certain environment of \mathcal{V}_{i} , described in more detail after (4.8). If to each volume \mathcal{V}_{i}^{i} this attached a site \vec{R}_{i} and if the partial wave amplitudes $A_{\ell\lambda}^{i}$ can be reduced to a simpler

structure matrix $\overline{J}_{ii'}^{ii'}$, containing only these sites $\overline{\mathcal{R}}_i$:

$$J_{\lambda\lambda'}^{ii'} = \sum_{LL'} \widetilde{A}_{\lambda L}^{i} J_{LL'}^{ii'} A_{L\lambda'}^{C'}$$
(3.4)

with $\widetilde{A}_{\lambda L}^{i} \equiv A_{\lambda \lambda}^{i}$. While (3.4) always holds, is the corresponding relation for $N_{\lambda \lambda'}^{ii'}$, nearly

$$N_{\lambda\lambda'}^{ii'} = \sum_{LL'} \tilde{A}_{\lambda L}^{i} N_{LL'}^{ii'} A_{L'\lambda'}^{L'}$$
(3.5)

valid only, if the volumes $\hat{\mathcal{V}}_i$ are within non-overlapping spheres ⁴⁾ around the sites $\bar{\mathcal{R}}_i$ (see Appendix 2, eq. (A.2.4)). As in (John and Ziesche 1971 a) the structure metrices appearing in (3.4) and (3.5) are defined by

$$\begin{aligned} J_{u'}^{ii'} &= 4\pi \sum_{t'} C_{u't''} \dot{L}^{t-\ell'-\ell''} \dot{J}_{t'}(\vec{R}_{ii'}) = \dot{L}^{\ell-\ell'} \int d_{\Omega} Y_{t}(\vec{n}) e^{i \frac{\pi}{\hbar} \vec{R}_{it'}} Y_{t'}(\vec{n}) \\ & (3.6) \\ N_{ll'}^{ii'} &= (1 - \delta_{\ell l'}) 4\pi \sum_{t'} C_{u't''} \dot{L}^{\ell-\ell'+\ell''} \sigma_{t''}(\vec{R}_{tt'}) \end{aligned}$$

⁴⁾ In fact this restriction can be softened slightly. It is only necessary, that the "essential" part of the generalized auffin-time is within non-overlapping spheres. Let us consider a cluster of ordinary muffin-time at sites \vec{a}_n as an example for a generalized muffin-tim. Then the asymptotic behaviour (2.1) is correct not only for $r > r_c$, but also for $r > max(a_n)$ and outside the muffin-tim spheres. That means, in this case with $\vec{R}_{il'} \in \vec{R}_i - \vec{R}_{i'}$ and with $C_{LL'L'} \equiv \int da \ V_L(\vec{n}) \ Y_{l'}(\vec{n}) \ V_{l''}(\vec{n})$ (3.7)

as Gaunt coefficients.

Inserting (3.3) into (3.2) and demanding $\mathcal{G}_{\mu} = \mathcal{G}_{\mu}^{i}$ we immediately obtain (see Appendix 2, eq. (A2.6))

$$\sum_{\substack{i',\lambda'\\i',\lambda'}} \left[\delta_{i,i'} \delta_{\lambda\lambda'} + tg \gamma_{\lambda}^{i} \left(N_{\lambda\lambda'}^{ii'} - ctg \gamma_{\mu} J_{\lambda\lambda'}^{ii'} \right) \right] B_{\lambda\mu}^{i'} = 0 \text{ for } \sin \gamma_{\lambda}^{i} \neq 0$$
(3.8)

and

$$\mathcal{B}_{\lambda\mu}^{i} = \begin{cases} \frac{4}{\sin^{2}_{\lambda}} B_{\lambda\mu}^{i} & \text{for } \sin^{2}_{\lambda} + 0 \\ \\ \sum_{\substack{\lambda',\lambda' \\ i',\lambda'}} \left[ctg \, 2_{\mu} J_{\lambda\lambda'}^{ii'} - N_{\lambda\lambda'}^{ii'} \right] B_{\lambda'\mu}^{i'} & \text{for } \sin^{2}_{\lambda} = 0 \end{cases}$$
(3.9)

These cluster equations, determining as many non-trivial cluster scattering states (with $5in 2_{\mu} \neq 0$) as non-trivial MT-phase shifts 2_{λ}^{i} exist , can be derived of course also by means of a Kohn/Rostoker (1954) treatment. only the spheres envelopping the sites of the ordinary muffinting must not overlap.

(3.8) and (3.9) are the conditions for that the wave functions (3.1) in the immediate surrounding of each muffin-tin have the same continuation (3.2) into the whole space (outside the volumes \mathcal{V}_i) with an asymptotic behaviour described by cluster phase shifts γ_{μ} and cluster amplitudes $\mathcal{B}^i_{\lambda\mu}$.

Similar as in the case of spherically symmetric muffintins (Demkov and Rudskov 1970) the eigenvalues $ctg \lambda_{\mu}$ of (3.8) can be written in the form of expectation values, the stationary properties of which with respect to small variations of the WT-phase shifts χ_{λ}^{c} directly leads to

$$\frac{\partial \gamma_{\mu}}{\partial \gamma_{\mu}^{i}} = \left(\beta_{\lambda\mu}^{i} \sin \gamma_{\mu}\right)^{2} \ge 0. \qquad (3.10)$$

This means, if one of the MT-phase shifts χ_{λ}^{\prime} is increased (decreased), then also all cluster phase shifts χ_{μ} increase (decrease).

Again similar as in the case of spherically symmetric muffin-tins (John and Ziesche 1971 a, Smith and Johnson 1969) (3.8) determines with $ctg \gamma_{\mu} = i$ and also the bound states $E = -\bar{Z}^2 < O$.

If the single muffin-time have special forms and if they are just touching along parts of their surfaces, forming in this way a total (connected) volume $\hat{U} = \sum_{i} \hat{U}_{i}$ as shown in Fig. 2, then the thin skins of zero potential along the

touching surface parts are of course artificial. These skins therefore can be eliminated, showing the consistency of the developed formalism. To prove this we rewrite (3.2) by means of the recently proved addition theorems for the spherical Beasel (Ziman 1966) and Neumann (John and Ziesche 1971 a, Ziesche 1972, Andersen 1971) functions in the following way (for $r > r_0$)

$$\mathcal{G}_{\mu}(\vec{r}) = \sum_{L} \left[\dot{J}_{L}(\vec{r}) \cos \dot{\chi}_{\mu} - n_{L}(\vec{r}) \sin \dot{\chi}_{\mu} \right] \mathcal{B}_{L\mu}$$
(3.11)

with

$$B_{L_{\mu}} = \sum_{i'_{\ell},i'_{\lambda}} \overline{J}_{L_{\ell}}^{0i'} A_{L_{\lambda}}^{i'} B_{\lambda_{j_{\mu}}}^{i'} , \qquad (3.12)$$

(3.11) corresponds to (2.1). Using the definition of $\mathcal{Y}^{\mathcal{L}}_{\mu}(\vec{r})$, (3.1) and the Wronski relation (A2.2), we obtain (in the last step the skins are eliminated)

$$\begin{split} B_{i\mu} & \sin \gamma_{\mu} = \sum_{i} \mathbb{Z} \bigoplus_{(\theta_{i})} d\bar{f} \left[\left(\frac{\partial}{\partial \bar{r}} \right)_{j}^{-} \left(\frac{\partial}{\partial \bar{r}} \right)_{g} \right] \dot{j}_{l}(\bar{r}) \mathcal{Y}_{\mu}^{l}(\bar{r}) \\ &= \mathbb{Z} \bigoplus_{(\theta)} d\bar{f} \left[\left(\frac{\partial}{\partial \bar{r}} \right)_{j}^{-} \left(\frac{\partial}{\partial \bar{r}} \right)_{g} \right] \dot{j}_{l}(\bar{r}) \mathcal{Y}_{\mu}(\bar{r}) \end{split}$$

corresponding to (2.14). To obtain also the formula, corresponding to (2.15), with (3.12), (3.8) and (3.9), we can write:

$$B_{i,\mu}\cos\gamma_{\mu} = \sum_{\substack{i',\lambda''\\i',i'}} J_{ii'}^{oi} A^{i'}_{i'\lambda} \Big[N^{ii'}_{\lambda\lambda'}\sin\gamma_{\lambda'}^{i'} + \delta_{ii'}\delta_{\lambda\lambda'}\cos\gamma_{\lambda'}^{i''} \Big] B^{i''}_{\lambda\mu'}\sin\gamma_{\mu'} (3.14)$$

Using again (3.1) and (A2.2), really

$$B_{\mu} \cos \gamma_{\mu} = \mathcal{X} \bigoplus_{(v)} d\bar{f} \left[\left(\frac{\partial}{\partial \bar{r}} \right)_{\mu} - \left(\frac{\partial}{\partial \bar{r}} \right)_{g} \right] n_{L}(\bar{r}) \mathcal{I}_{\mu}(\bar{r}) \qquad (3.15)$$
turns out, q.e.d.

If on the other hand the muffin-tine are far enough from each other, so that the envelopping spheres of the muffin-tins (or at least of its " essential part", see footnote 4) don't overlap (see Fig. 3) then (3.5) is valid. That means, the muffin-time enter into the cluster equations (3.8) only vis the asymptotic behaviour of its scattering states $\mathcal{G}_{\lambda}^{i}$, described by $\dot{\chi}_{\lambda}^{i}$ and $\dot{A}_{\lambda\lambda}^{i}$. These properties of the far field (2.1) are sufficient, no near field properties (2.11) are necessary. This peculiarity allows also to transform the $i - \lambda$ -representation (3.8)

into en i - L -representation by means of (3.4) and (3.5):

$$\begin{split} \sum_{\substack{i'i', \mu'' \in L^{i'}}} \sum_{\substack{i' \in L^{i''} \in \mathcal{F}_{L^{i''}}}} \sum_{\substack{i'' \in \mathcal{F}_{L^{i''}}}} \left\{ g_{i'} \right\}_{i'\ell''}^{i} \left\{ \mathcal{N}_{i'\ell''}^{i\ell''} - c t g_{i'\mu}^{i} \right\}_{i'\mu''}^{i\ell''} \right\} B_{i'\mu}^{i'} = 0 \quad (3.16) \\ \text{with } B_{\ell\mu}^{i} = \sum_{\substack{\lambda' \sin j_{\lambda}^{i} \neq 0 \\ \ell \neq \ell'}} A_{\ell\lambda}^{i} B_{\lambda\mu'}^{i} \quad \text{and} \\ B_{LL'}^{i} = \sum_{\substack{\lambda(\sin j_{\lambda}^{i} \neq 0 \\ \ell \neq \ell'}} A_{\ell\lambda}^{i} \overline{A}_{\lambda\lambda''}^{i} \quad (3.17) \\ \left(t g_{\lambda}^{i} \right)_{\ell \ell'}^{i} = \sum_{\substack{\lambda}} A_{\ell\lambda}^{i} \quad t g_{\lambda}^{i} \overline{A}_{\lambda\lambda''}^{i} , \end{split}$$

 $P_{\mu'}^{i}$ projects the non-trivial scattering states $(sin \chi_{\lambda}^{i} \neq 0)$. Assuming all MT-phase shifts γ_i^i non-trivial, that is $P_{LL'}^i = \delta_{LL'}$, a system of equations (3.18), arises very similar to the equations for a cluster of spherically symmetric mulfintins (John and Ziesche 1971 a). The only differences are, that the scattering properties of the single muffin-tins are more described by non- diagonal matrices $(tg 2)_{ii}^{i}$ instead of $\delta_{\mu'}$ ty γ_{i}^{i} and that the dimension of the system of equations, (3.16), is in principle infinite. Numerical calculations require of course the restriction to finite numbers of angular momenta. But, because (3.16) breaks down, if the envelopping spheres overlap, the influence of the parts of a single muffin-tin i is described the worse the more far they are from their corresponding site $ec{\mathcal{R}_{s}}$.That means for a better approximation more angular momenta are necessary than it corresponds to the linear dimension with $N_{\mu'}^{ii}$ owing to the combination of $(t_{g} t_{i_{i_{i_{j}}}})^{i_{i_{j_{i_{j}}}}}$ $\mathcal{J}_{ac}^{il'}$. - If we have only a few non-trivial MTand phase shifts γ_{k}^{i} , that is $P_{\mu'}^{i} \neq \delta_{\mu'}$, then the solutions of

 $\sum_{i,l} \left[\delta_{il'} \ \delta_{ll'} + \sum_{L} \left(tg \ l \right)_{ll''}^{i} \left(N_{LL'}^{il'} - Ctg \ l_{\mu} \ J_{lL'}^{il'} \right) \right] B_{l'\mu}^{i'} = 0$ (3.18)
owing to the definition of $B_{L\mu}^{i}$

must obtain the additional condition $\sum_{i} P_{i\ell}^{i} B_{\ell,\mu}^{i} = B_{\ell,\mu}^{i}$, separating physical and unphysical solutions. - The advantage of the $i-\ell$ -representation (3.16) compared with the $i-\lambda$ -representation (3.8) consists in that the MT-potentials enter in a compact menner only via the quantities (3.17).

4. First example: Cluster of subclusters

As a first simple example of non-spherically symmetric muffin-tine we consider clusters of usual muffin-tine with phase shifts $2_{L}^{i,n_{i}}$ and centres $\overline{R}_{i,n_{i}} = \overline{A}_{i} + \tilde{a}_{i,n_{i}}$ (see Fig. 4). In this case the surface integrations (2.13) yield ⁵)

$$\begin{aligned} \dot{J}_{\lambda}^{i}(\vec{r}) &= \sum_{n_{i,L}} \tilde{J}_{L}(\vec{r}_{in_{L}}) A_{L\lambda}^{in_{i}} \\ R_{\lambda}^{i}(\vec{r}) &= \sum_{n_{i,L}} n_{L}(\vec{r}_{in_{i}}) A_{L\lambda}^{in_{i}} \end{aligned}$$

$$(4.1)$$

5) Because the non-trivial scattering states ($\sin \chi_{\lambda}^{i} \neq 0$) have only non-vanishing near field amplitudes $A_{i\lambda}^{in_{\lambda}}$ for the angular momenta L with non-trivial MT-phase shifts $\dot{\gamma}_{L}^{in_{i}}$, the sums over L in (4.1...5) and (4.10,11) are correspondingly restricted.

with near field amplitudes $A_{L\lambda}^{i,n_{L}}$ determined together with the subcluster phase shifts χ_{λ}^{i} by (see John and Ziesche 1971 a) $\sum_{\substack{n_{1L'} \\ LL'}} \left[c t_g \gamma_{L}^{i,n_{L'}} M_{LL'}^{n_{L'}n_{L'}} - c t_g \gamma_{\lambda}^{i} \gamma_{LL'}^{n_{L'}n_{L'}} \right] A_{L'\lambda}^{i,n_{L'}} = 0$, $M_{LL'}^{n_{L'}n_{L}} \equiv \delta_{n_{L}n_{L}} \delta_{LL'} + t_g \gamma_{L}^{i,n_{L}} N_{LL'}^{n_{L'}n_{L'}}$. The amplitudes $A_{L\lambda}^{i,n_{L}}$ are "orthogonal" and " complete" in the following scale $\sum_{\substack{n_{i,L'} \\ n_{i,L'} \\ n_{LL'} \\ n_{L'} \\ n_$

$$\sum_{\lambda(\mathbf{s}|n_{i}^{j}\neq 0)} A_{L\lambda}^{in_{\ell}} \widetilde{A}_{\lambda \ell'}^{in_{\ell}'} = (J^{-1})_{L\ell'}^{n_{\ell}n_{\ell}'}$$
(4.3e)

allowing the following reformulation of (4.2)

$$\sum_{\lambda} A_{L\lambda}^{i n_{i}} tg \gamma_{1}^{i} A_{\lambda L'}^{i n_{i}'} = (M^{-1})_{LL'}^{n_{i} n_{i}'} tg \gamma_{L'}^{i n_{i}'}, \qquad (4.3b)$$

The details are given in Appendix 3. The " surface" structure matrices of the whole cluster defined in (3.3) or (A2.3) reduces via

$$J_{\lambda\lambda'}^{i\ell'} = \sum_{\substack{\sigma_{\ell,L} \\ \sigma_{\ell'},L'}} \widehat{A}_{\lambda L}^{i\sigma_{\ell}} J_{L-L'}^{i\sigma_{\ell},L'} A_{L'\lambda'}^{i\sigma_{\ell'}} , \qquad (4.4)$$

$$N_{\lambda\lambda'}^{(i')} = (1 - \delta_{i(i')}) \sum_{n_{i,k}} \widetilde{A}_{\lambda L}^{(n_i)} N_{L L'}^{(n_i \ell n_i)} A_{L'\lambda'}^{(n_{i'} \ell n_i)}$$

to the "point" structure metrices defined ir (3.6).

The consistency of the developed formelism is to be seen in the following way: Elimination of the quantities γ_{A}^{i} , $A_{LA}^{in_{i}}$, describing the subclusters, lead by means of (4.3) to equations for the whole cluster

$$\sum_{\substack{i',n'_{1},i'\\L}} \left[ctg \, \dot{\gamma}_{L}^{i\,n'_{1}} \, M_{L}^{i\,n_{L}\,i'n'_{1}} - ctg \, \dot{\gamma}_{\mu} \, J_{L}^{i\,n_{L}\,i'n'_{2}} \right] B_{i'\mu}^{i'n'_{1}} = 0, (4.5)$$

$$M_{L}^{i\,n_{L}\,i'n'_{2}} \equiv \delta_{i\,i'} \, \delta_{n_{L}\,n'_{L}} \, \delta_{LL'} + tg \, \dot{\gamma}_{L}^{i\,n_{L}} \, M_{L}^{i\,n_{L}\,i'n'_{1}} ,$$

which are of the same type as the equations (4.2) for the subclusters only with a (now of course artificial) double enumeration of the single muffin-time by a subcluster index i and an index Ω_i within the subcluster. In (4.5) the abbreviation $\mathcal{B}_{L,\mu}^{(O_i)} \equiv \sum_{\lambda (i \alpha \beta_{L,\mu}^{(i)})} \mathcal{A}_{i\lambda}^{(O_i)} \mathcal{B}_{\lambda,\mu}^{(i)}$ is used.

This consistency property of the cluster equations should be of interest also for practical calculations, because generally the subcluster phase shifts γ_A^i are in part very small for a given (not too high) energy. The number of the essentially non-zero phase shifts γ_A^i is determined via $\mathcal{R} a_s^i$ by the energy $f = \mathcal{R}^4$ and by the linear dimension $a_s^i = max(a_{ia_l})$ of the subcluster. Therefore the dimension of the whole cluster equations (3.8) reduces.

Now, we discuss the expressions of the wave functions, especially $\mathcal{Y}_{\mu}^{i}(\vec{r})$. The region in which (3.1) holds,

is determined by the validity of the expansion (3.3) of $n_{A}^{(2)}(\vec{r})$. The latter can be written with (4.1), (A3.2) and (4.4) as

$$\begin{aligned} (\lambda - \delta_{i,i'}) n_{L}(\vec{\tau}_{i'n_{i'}}) &\simeq \sum_{\substack{n_{i',i''} \\ n_{i',i''} \\ n_{i',i'''}}} \vec{J}_{i'}(\vec{\tau}_{i'n_{i'}}) (\vec{J}^{-i})_{L_{*}L_{*}}^{n_{i'}'n_{i'}'} N_{L_{*}L_{*}}^{L_{*}'i'n_{i''}'} \\ &= \sum_{L_{*}} \vec{J}_{L_{*}}(\vec{\tau}_{i'n_{*}}) N_{L_{*}L_{*}}^{Ln_{i'}'n_{i''}'} . \end{aligned}$$

$$(4.6)$$

In the last step $\hat{J}_{\ell_{1}}(\vec{r}_{in_{\ell}})$ has been expanded around the muffin-tin n_{ℓ} . From the addition theorem of the spherical Neumann functions follows, that (4.6) is valid within a sphere around $\vec{R}_{\ell n_{\ell}}$ just touching $\vec{R}_{\ell' n_{\ell'}}$. Because this consideration is valid for each muffin-tin n_{ℓ} of the subcluster ℓ and because in (3.3) the muffin-tins

 $\mathcal{D}_{i'}$ of the subcluater i' are summed up, holds the expansion 3.3) of $\mathcal{D}_{i'}^{i'}(\vec{r})$ within that region, which consists of spheres around the muffin-tins \mathcal{D}_i of the subcluater just touching one of the muffin-tin centres of the subcluater

 ι' . - Therefore in the general case of Section 3 we have to blow up spheres around each surface point of v_i^i , so that it just touches one of the surface points of $v_{i'}^i$. The sum of all these spheres is exactly that part of space, in which the expansion (3.3) of $\sigma_{\lambda'}^{i'}(\vec{r})$ is valid. -Returning again to the special case of subclusters we can write the wave function in the described surrounding of the subcluster i in the following way:

$$\begin{aligned} \mathcal{Y}_{\mu}^{i}(\vec{r}) &= \sum_{\vec{n}_{i},L} \left\{ \left[n_{L}(\vec{r}_{i,n_{i}}) - \sum_{\vec{n}_{i}',L'} j_{L'}'(\vec{r}_{i,n_{i}'})(\vec{J}^{*}N)_{L'L}^{n_{i}'n_{i}} \right] \sin l_{L}^{i,n_{i}} \\ &- \sum_{\vec{n}_{i},L'} j_{L'}'(\vec{r}_{i,n_{i}'})(\vec{J}^{*})_{L'L}^{n_{i}'n_{i}'} \cos l_{L}^{i,n_{i}} \right\} \mathcal{E}_{L\mu}^{i,n_{i}} \end{aligned}$$

$$(4.7)$$

$$\mathcal{B}_{L,\rho}^{i,n_{i}} = \begin{cases} \frac{1}{sin\gamma_{L}^{i,n_{i}}} B_{L,p}^{i,n_{i}} & \text{for } sin\gamma_{L}^{i,n_{i}} \neq 0 \\ \\ \sum_{i'_{i},n'_{i},r'_{i}} \left[ctg \dot{\gamma}_{p} \overline{J}_{L,r'}^{i,n_{i}'} - N_{L-r'}^{in_{i}',n_{i}'} \right] B_{L,p}^{i',n_{i}'} & \text{for } sin\gamma_{L}^{i,n_{i}} = 0 \end{cases}$$

$$(4.8)$$

This results from (3.1), (3.9) and (3.9) eliminating the quantities χ^i_{λ} and $A^{i_{R_i}}_{\lambda}$ with (4.1), (4.2) and (A3.2). If we expand \mathcal{G}^i_{μ} (\vec{r}) around the muffin-tin $n_{i_{j_1}}$ then

$$\mathcal{G}_{\mu}^{i\,n_{i}}\left(\vec{r}\right) = \sum_{L} \left[n_{L}\left(\vec{r}_{i\,n_{L}}\right) \sin \dot{\zeta}_{L}^{i\,n_{i}} - \dot{J}_{L}\left(\vec{r}_{i\,n_{L}}\right) \cos \dot{\zeta}_{L}^{i\,n_{i}} \right] \mathcal{B}_{i,\mu}^{i\,n_{i}} \sin \dot{\zeta}_{\mu}$$

$$(4.9)$$

turns out, again with the eliminable double onumeration i, n_i (4.9) is valid within a sphere around \vec{R}_{in_i} just touching the next muffin-tin centre (belonging to the subcluster i or not). This shows the consistency of the formalism also with respect to the wave function .

Finally we consider the special cose of subclusters being so far from each other, that the opheres with radii a_o^i around the subcluster sites $\vec{R_i}$ don't overlap. In this case the far field properties of the subcluster described by $\vec{\gamma_i}$ and

$$A_{L\lambda}^{i} = \sum_{\eta_{L}^{i},L^{\prime}} \overline{J}_{L}^{o} \eta_{L}^{i} A_{L^{\prime}\lambda}^{L^{\prime}}$$

$$(4.10)$$

are sufficient, no near field properties as described by A_{LR}^{inc} are necessary. This allows - as discussed in Section 3 - to pass from the $i - \lambda$ -representation (3.8) to the $i - \lambda$ representation (3.

$$\mathcal{P}_{LL'}^{i} = \sum_{\substack{n_{i}, L, \\ n_{i}', \ell_{4}}} \mathcal{J}_{LL_{q}}^{o\,n_{i}} \left(\mathcal{J}^{-1}\right)_{L_{1}\ell_{2}}^{n_{i}\,n_{i}'} \mathcal{J}_{L_{2}L'}^{n_{i}'\,0} , \qquad (4.11)$$

 $(tg t)_{Ll'}^i = \sum_{\substack{n_i, \ell_i \\ n_i, \ell_z}} \mathcal{J}_{LL}^{on_i} (M^{-t})_{L_i L_z}^{n_i n_z'} tg_{L_z}^{in_i'} \mathcal{J}_{L_z L'}^{n_i'o},$

avoiding an extra calculation of γ_{λ}^{i} and $A_{i,\lambda}^{i}$ (but requiring the inversion of the matrices \mathcal{J} and \mathcal{M}). - In the considered case also the $io_{i} - L$ -representation (4.5) simplifies itself, because the structure matrices split in the following way

$$J_{L_{L'}}^{in_{L'}} = \sum_{L_{q}, L_{2}} J_{L_{1}}^{n_{L}} J_{L_{q}, L_{2}}^{jn_{L'}} J_{L_{q}, L'}^{jn_{L'}}, \qquad (4.12)$$

$$N_{L_{t'}}^{in_{i}i'n_{t'}'} = \sum_{l_{i},l_{i}} \mathcal{J}_{LL_{t}}^{n_{i}o} N_{L_{t}L_{t}}^{il} \mathcal{J}_{L_{t}L_{t'}}^{on_{t'}} + \delta_{ii'} N_{L_{t'}}^{n_{i}n_{t'}'},$$

separating the cluster structure $(\vec{R_i})$ and the subcluster structure $(\vec{a_{ia_i}})$ from each other. - A certain advantage of all three representations is, that variations of the sites or potential within the subcluster can be treated easily.

5. Second example: Cluster of potentials with finite sets of angular moments.

As a second simple example of a non-spherically symmetric muffin-tin we consider the following (generally non-local) potential

$$V(\vec{r},\vec{r}') = \begin{cases} \sum_{l,l'} Y_{l}(\vec{n}) V_{ll'}(\vec{r},r') Y_{l'}(\vec{n}') & \text{for } r < r_{\bullet} \\ 0 & \text{for } r > r_{\bullet} \end{cases}$$
(5.1)

as recently with respect to band structure calculations discussed by Evens and Keller (1972). The sums over L, L' are running up to a certain maximum angular momentum ℓ_o . Then the Schrödinger equation is transformed with an ansatz $\Psi(\vec{r}) = \sum_{L} Y_{L}(\vec{n}) R_{L}(r)$ into a set of $(\ell_o r t)^2$ coupled differential equations

$$\left[\frac{1}{r}\frac{a^{t}}{dr^{t}}r - \frac{\ell(\ell+i)}{r^{2}} + \varkappa^{2}\right]R_{L}(r) = \sum_{L'}\int_{0}^{r_{0}}r^{\prime 2}dr' \,V_{LL'}(r,r')\,R_{L'}(r')\,, \quad (5.2)$$

Demending regularity at r=0, from (5.2) a set of $(l_o+l)^2$ linearly independent solutions $\hat{R}_{LR}(r)$ next to arises, having outside the MT-sphere the behaviour

$$R_{Ln}(r) = J'_e(\boldsymbol{x}r)\boldsymbol{\alpha}_{Ln} - n_e(\boldsymbol{x}r)\boldsymbol{\beta}_{Ln} \quad \text{for } r_7 r_o \tag{5.3}$$

with coefficients

$$d_{Ln} = \varkappa r_{s}^{2} \left[\frac{dn_{e}}{\sigma r} R_{Ln} - n_{e} \frac{dR_{Ln}}{\sigma r} \right] r_{s} r_{o},$$

$$\beta_{Ln} = \varkappa r_{s}^{2} \left[\frac{dj_{e}}{dr} R_{Ln} - j_{e} \frac{dR_{Ln}}{\sigma r} \right] r_{s} r_{o}.$$
(5.4)

From this the scattering states $\mathscr{G}_{\lambda}(\tilde{r})$ are obtained by an appropriate linear combination $\sum_{\alpha} \mathscr{G}_{\alpha} \mathscr{G}_{\alpha\lambda}$ demanding

$$\sum_{n} d_{in} \gamma_{n2} = A_{L2} \cos \gamma_{2}, \quad \sum_{n} \beta_{in} \gamma_{n2} = A_{i2} \sin \gamma_{2}, \quad (5.5)$$

Therefore a set of algebraic equations arises

$$\sum_{n} (\alpha_{in} - ctg \gamma_{\lambda} \beta_{in}) \gamma_{n\lambda} = 0, \qquad (5.6)$$

yielding $(\ell_0 + i)^2$ solutions λ_λ and $A_{i\lambda}$. By the way of course elso bound state E < 0 can be obtained; only the replacements $Z - i \bar{Z}$ and $c t g \lambda_\lambda + i$ are necessary, the latter guaranteeing the wave function to remain finite. Then (5.6) determines certain energies $E_0 = -\bar{x}_{\Lambda}^2$

Now we consider a cluster of such potentials (5.1), each characterized by quantities γ_{λ}^{i} and $A_{L\lambda}^{i}$ and β_{i}^{i} which are obtained from the matrices d_{in}^{i} Because the potentials don't overlap, besides (3.4) also (3.5) is valid. That means, the structure matrices $\mathcal{J}_{11}^{ii'}$ Nii, appearing in the cluater equations (3.8) and completely reduce to the matrices $J_{ii}^{ii'}$, $N_{ii'}^{ii'}$,containing only the centres \vec{R}_i of the potentials, and the (asymptotic or far field) amplitudes $A_{i,k}^{i}$. Because the potentials (5.1) involve only finite sets of angular momenta, the sume over 4 in (3.4) and (3.5) are correspondingly restricted.-Passing from the $i - \lambda$ - representation (3.8) to the i - L representation (3.16), there are no difficulties with respect to the projection operator $P_{u'}^{i}$, because the amplitudes A., obtained from (5.5) and (5.6), form itself (that is,

without the trivial scattering states) a complete set. That means we have $P_{tt'}^i = \delta_{tt'}$ in difference to the situation discussed in Section 4. Besides this, the only notential depending quentity $(tg \gamma_{tt'}^i)$, entering into (3.18), can be obtained directly from the original matrices \mathcal{A}_{tr}^i and β_{tr}^i

$$(tgt)_{LL'}^{i} = \sum_{n} \beta_{Ln}^{i} [(\alpha^{i})^{-t}]_{nL'},$$
 (5.7)

avoiding an extra calculation of 2^{i}_{λ} and $A^{i}_{i\lambda}$ (but requiring the inversion of the metrices $\alpha^{i}_{i\alpha}$). (5.7) follows immediately from (5.5).

The author is grateful to Dr. W.John and Dr. K.Elk for useful discussions.

Appendix 1. Angular momentum dependence of the partial wave amplified.

As a simple example we consider two S -scatterers with equal phase shifts 2, and a distance Q. Then the cluster equations (4.2) produce only two non-trivial scattering states $\lambda = \pm$

$$ctg \, \dot{\gamma}_{\pm} = \frac{ctg \, \dot{\gamma}_{0} \pm n_{0}(\mathbf{z}a)}{1 \pm \dot{j}_{0}(\mathbf{z}a)} ,$$

$$A_{0\pm}^{4} = \frac{1}{\sqrt{2[1\pm j_{0}(\mathbf{z}a)]^{2}}} , \quad A_{0\pm}^{2} = \pm A_{0\pm}^{4} , \quad (A1.1)$$

yielding with respect to the centre the following far field amplitudes

$$A_{i, :} = \sum_{n', i'} J_{i, i'}^{on'} A_{i':}^{n'} = \left[1 \le 1\right]^{c} \delta_{m_{c0}} \frac{\sqrt{2t' r} J_{c}(\pi a/2)}{\sqrt{2[1 \le J_{c}(\pi a/2)]}} \cdot (A1.2)$$

The ℓ -dependence of A_{ct} is essentially determined by $j_e^{(2A/2)}$, which tends for $\ell > 7 \pi A/2$ to zero as

$$\vec{J}_{\ell}(\pi a/2) - \frac{(\pi a/2)^{\ell}}{(2\ell+1)!!} - \ell^{-\ell} \vec{c}_{\ell} \ell$$
(A1.3)

Appendix 2. Wronski relations and addition theorems of non-spherically symmetric muffin-tin orbitals.

Next to we define with the suplitudes $A_{L\lambda}$ of the trivial scattering states arising from an orthogonalizing procedure a function

$$\chi_{\lambda}(\vec{r}) = \begin{cases} n_{\lambda}(\vec{r}) & \text{for } \sin \gamma_{\lambda} \neq 0 \\ \\ \sum_{L} n_{L}(\vec{r}) A_{L\lambda} & (\lambda 2.1) \\ & \text{for } \sin \gamma_{\lambda} \neq 0, \end{cases}$$

Then $\vec{J}_{\lambda}(\vec{r})$ and $X_{\lambda}(\vec{r})$ fullfill relations $\mathscr{X} \bigoplus_{\vec{(\nu)}} \vec{dr} \left[\left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda} - \left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda'} \right] \vec{J}_{\lambda}(\vec{r}) \cdot \vec{J}_{\lambda'}(\vec{r}) = 0$, (A2.2a) $\mathscr{X} \bigoplus_{\vec{(\nu)}} \vec{dr} \left[\left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda} - \left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda'} \right] X_{\lambda}(\vec{r}) \times K_{\lambda}(\vec{r}) = 0$, (A2.2b) $\mathscr{X} \bigoplus_{\vec{(\nu)}} \vec{dr} \left[\left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda} - \left(\frac{\partial}{\partial \vec{r}} \right)_{\lambda'} \right] \times (\vec{r}) \cdot \vec{J}_{\lambda'}(\vec{r}) = \delta_{\lambda\lambda'}$, (A2.2c)

which correspond to and generalize the well-known Wronski relations of the spherical Bessel and Neumann functions. This is proved in the following way: Using, that \hat{J}_A and X_A are solutions of the homogeneous equation, we can deform the integration surface (\mathcal{P}) into the envelopping sphere

 $r = r_0$. Now $\sigma_{\lambda} = \xi \sigma_k A_{k\lambda}$ holds also for $\sin \dot{\gamma}_{\lambda} \neq 0$. Then with the orthogonality of the $\dot{\gamma}_k$ and $A_{k\lambda}$ and with the ordinary Wronski relations immediately (A2.2) results.

With these relations explicit expressions of the structure matrices defined in (3.3) can be obtained. Really from (3.3) follows with (2.13), (A2.2e and c) for $\sin 2\frac{i}{A} \neq 0$ (needed in (3.8))

$$N_{\lambda\lambda'}^{ii'} = (t - \delta_{ii'}) \overset{\text{gr}}{\longrightarrow} d\vec{f} \begin{bmatrix} \frac{\partial}{\partial \vec{r}} \\ \partial \vec{r} \end{bmatrix}_{\lambda'} - \begin{pmatrix} \frac{\partial}{\partial \vec{r}} \\ \partial \vec{r} \end{pmatrix}_{\lambda'} \end{bmatrix} \frac{g_{\lambda'}^{\epsilon}(\vec{r})}{\sin t_{\lambda'}} n_{\lambda'}^{i}(\vec{r})$$
(A2.3a)

and with (A2.1) and (A2.2c) for $\sin \frac{1}{\lambda} = 0$ (needed in (3.9))

$$N_{\lambda\lambda'}^{ii'} = (1 - \delta_{ii'}) \approx \bigotimes_{(U)} d\bar{f} \left[\left(\frac{\partial}{\partial F} \right)_{L} - \left(\frac{\partial}{\partial F} \right)_{\lambda'} \right] \sum_{L} \tilde{A}_{\lambda L}^{i} \eta_{i}(\bar{f}) \eta_{\lambda'}^{i}(\bar{f}) (A2.3b)$$

 $\Pi_{\lambda'}^{i'}(\vec{r}')$ is given generally by the surface integral (2.13), but in the case of non-overlapping envelopping spheres (2.13) reduces simply with (2.4), (2.14) and (2.15) to $(\vec{t}_i \in \vec{r} - \vec{k}_i)$

$$n_{\lambda'}^{i'}(\vec{r}) = \sum_{L'} n_{L'}(\vec{r}_{L'}) A_{L'\lambda'}^{i'} = \sum_{L_{L'}} j_{L}(\vec{r}_{L}) N_{LL'}^{il'} A_{L'\lambda'}^{i'}.$$
 (A2.4)

In the second step the addition theorem of the spherical Neumann fucntions has been used. Inserting (A2.4) into (A2.3) then (3.5) turns out. Because there are no restrictions for the expansion (2.4) of J_{P} , the corresponding expression of $\tilde{J}_{A'}^{L'}$ (\tilde{r}) is slways true; therefore the "homogeneous" structure matrices $J_{AA'}^{LL'}$ are given by (3.4), also in the case of overlapping envelopping spheres.

By the way, with

$$\begin{array}{c} \mathbf{x} \underbrace{\mathfrak{S}}_{(\mathbf{v})} d\vec{f}' \left[\left(\frac{\partial}{\partial \vec{r}}, \right)_{\lambda}^{-} \left(\frac{\partial}{\partial \vec{r}} \right)_{\rho} \right] \frac{1}{4\pi} \eta_{\sigma}(\mathbf{x} | \vec{r} - \vec{r}' |) X_{\lambda}(\vec{r}') = \begin{cases} 0 \text{ for } \vec{r} \in \mathcal{V} \\ (X_{\lambda}(\vec{r}') \text{ for } \vec{r} \notin \mathcal{V}, \end{cases}$$

which is proved . by appropriate deformations of the integration surface, the function $\mathcal{F}_{\lambda}/\sin^2\lambda$ in (2.13) and (A2.3a) can be replaced by $-\pi_{\lambda}$.

Finally, (3.8) and (3.9) are derived from $\mathscr{G}_{\mu} = \mathscr{G}_{\mu}^{c}$ by means of (A2.2). The difference takes the form

$$\mathcal{Y}_{\mu}(\vec{r}) - \mathcal{Y}_{\mu}^{i}(\vec{r}) = \sum_{\lambda} \pi_{\lambda}^{i}(\vec{r}) d_{\lambda\mu} + \sum_{\lambda} \tilde{J}_{\lambda}^{i}(\vec{r}) \beta_{\lambda\mu} , \qquad (A2.6)$$

With (A2.2) immediately follows $\alpha'_{\lambda\mu} = 0$ and $\beta_{\lambda\mu} = 0$;

these are the equations (3.8) and (3.9).

<u>Appendix 3:</u> Orthogonality and completeness of the partial wave amplitudes of a cluster.

Owing to the relation between far field amplitudes $A_{\rm LA}$ and near field amplitudes $A_{\rm AA}^{\,\prime}$,

$$A_{L_{\lambda}} = \sum_{n', l'} \mathcal{J}_{LL'}^{*n'} A_{L'\lambda}^{n'}$$
 (A3.1)

from the orthogonality and completeness of the far field amplitudes $A_{z\lambda}$ there follow immediately corresponding relations for the near field amplitudes $A^{\alpha}_{z\lambda}$:

$$\sum_{\substack{n_{1} \\ n_{2} \\ n_{2}'}} \tilde{A}_{\mu \nu}^{n} J_{\mu \nu}^{nn'} A_{\nu \lambda'}^{n'} = \delta_{\lambda \lambda'} , \qquad \sum_{\lambda} A_{\nu \lambda}^{n} \tilde{A}_{\lambda \nu'}^{n'} = (J^{-1})_{\mu \nu'}^{nn'}$$
(A3.2)

Because the near field amplitudes $A^{a}_{\mu\lambda}$ of the nontrivial scattering states are non-mero only for angular momenta with non-trivial phase shifts χ^{a}_{μ} (this can be explicitly expressed by $A^{a}_{\mu\nu} = \sin \chi^{a}_{\mu\nu} a^{a}_{\mu\nu}$),

$$A_{L_{\lambda}}^{n} = 0 \quad \text{for sin } \eta_{\lambda}^{\pm 0} \quad \text{and} \quad \sin \gamma_{L}^{n} = 0, \quad (A3.3)$$

the amplitudes of the trivial scattering states fulfill

the following condition as a consequence of the orthogonality:

$$\sum_{n',L'} \overline{\partial}_{LL'}^{nn'} A_{L'\lambda}^{n'} = 0 \quad \text{for } \sin \dot{\chi}_{\lambda} = 0 \quad \text{and } \sin \dot{\chi}_{\lambda}^{n} \neq 0 \,, \quad (A3.4)$$

From (A3.3) and (A3.4) follows, that the projection operator of the non-trivial scattering states can be written as

$$\sum_{\substack{\lambda(3in\gamma_{\lambda}\neq 0)}} A_{\lambda\lambda'} \widetilde{A}_{\lambda\lambda'} = \sum_{\substack{n_{\alpha}>\\ L_{\alpha}(3in\gamma_{\lambda_{\alpha}}>n)}} J_{L_{\alpha}}^{n_{\alpha}} (J^{-1})_{L_{\alpha}L_{\alpha}}^{n_{\alpha}n_{\alpha}} J_{L_{\alpha}L'}^{n_{\alpha}0}, \quad (A3.5)$$

Interting (A3.1) into (A3.5) yields this projection operator in n-L -representation

$$\sum_{\lambda} A_{L\lambda}^{n} \widetilde{A}_{\lambda L'}^{n'} = \begin{cases} (\overline{d}^{-1})_{LL'}^{nn'} & \text{for } \sin \lambda_{L}^{n} \neq 0 \text{ and } \sin \lambda_{L'}^{n'} \neq 0 \\ (\sin \lambda_{10}) & (A3.6) \\ 0 & \text{for } \sin \lambda_{L}^{n} = 0 \text{ or } \sin \lambda_{L'}^{n'} = 0 \end{cases}$$

Finally, with the orthogonality (first equation of (A3.2)) and the "incompleteness" (A3.6) the cluster equations (4.2) can be reformulated as

$$\sum_{\lambda} A_{\lambda\lambda}^{n} tg \lambda_{\lambda} \widetilde{A}_{\lambda\lambda'}^{n'} = (M^{-1})_{LL'}^{n'} tg \lambda_{L'}^{n'}$$
(A3.7)

or with (A3.1) as

$$\sum_{\lambda} A_{L\lambda} \frac{t}{g} \gamma_{\lambda} \widetilde{A}_{\lambda L'} = \sum_{m_{L}} J_{LL_{*}}^{\sigma, n} (M^{-1})_{L_{*} L_{*}}^{m_{L}} \frac{t}{g} \gamma_{L_{*}}^{n_{L}} J_{L_{*} L'}^{n_{L'}} , \qquad (A3.B)$$

References:

- / Andersen 0 K 1971 in Proc.Conf. on "Comput.Meth. in Band Theory", May 1970, Plenum, New York (p.488), see also P.Lloyd 1969 " Electrons in Metals and Multiple Scattering Theory", University of Bristol, unpublished notes and P. Lloyd 1972 Adv. Phys., 21, 69-142.
- Andersen OK and Kasowski R.V 1971, Phys.Rev., <u>B4</u>, 1064 Rudakov Yu N and V S Rudakov 1970, Zh.exp.teor. Fiz.59, 2035 ¹ Evans R and Keller J 1972 J.Phys., C4, 3155 (Jacobs R L 1970 Phys.Lett., 33A, 414 5 John # 1972 phys.stat.sol. (b) 49, K57 John W and Ziesche P 1971a phys. stat.sol. (b) 47,555-64 John W and Ziesche P 1971bphys.stat. sol. (b) 47, K 83-5 ' John W Lehwann G and Ziesche P 1972 physitat. sol.(b) 53, 287-93 Xane E 0 1971, Phys.Rev., B4, 1917 Keller J 1971, J.Phys. C4, L85 Kohn W and Rostoker N 1954 Phys.Rev. 94, 1111 Korringa J 1947 Physica (Utrecht) 13, 392 ¹ Mc Gill T C and Klima J 1972, Phys.Rev., <u>B5</u>, 1517-28 "Smith F C and Johnson K H 1969 Phys.Rev. Lett. 22, 1168 Diesche P 1972 ZAMM 52, 375 ^[] Ziman J M 1966 Proc. Phys. Soc., <u>88</u>, 387, see alao // Lehmann G 1970 phys. stat. sol. 38 . 151 or Williams A R 1970 Phys.Rev., B1, 3417.

Received by Publishing Department on June 25, 1973.

Fig. 1. A general MT-potential and its envelopping sphere with respect to an arbitrary centre.

Fig. 2. A cluster of general MT-potentials, touching along parts of their surfaces,

Fig. 3. A cluster of general MT-potentials with non-overlapping envelopping spheres.

Fig. 4.

A cluster of subclusters.