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1. Introduction.

Recently an algebraic scheme hos been derived, allowing the
calculation of generalized phese shifte 7, and correeponding
partial wave amplitudea A;, of a special non-sphericelly sym-
amstric potential, conaiasting of m eluster of non-overlapping
muffin-tin (MT) potentisls. The cass of pure s -scatteders,
naxt to considered by Demkov and Rudakov (1970), hes been genera-
1lized by John and Ziesche (1971) to acatterera with erbitrary
angular momenta, using the anslogy to the XKR method for band
structure calculations ( Korringa 1847, Kohn and Rostoker 1954).
The mentionsd quentities 7, end A,, are determined only
by the aites E.. and the phase shifte ?: of the scatter~
ers, The proposed scheme is useful for problems not only of the
theory of moleculen { electron scattering at molecules (Demkov
end Rudakov 1970), bound states of molecules { Smith and Johmson
1968)), but alsn of solid state theory. It was for example pos-
sible, ‘to derive the Lloyd-formula for the density of states of
arbitrary, extended KT-systems in a very eimple way via o gene-
ralized Friedel sum rule ( John and Ziesche 1971 b). The vse of
general propertiss of the cluster phase shifts 4, ( with ree-
pect to their Jependence of the MT-phase shifts }’ ) allows the
derivation of new gap criterim of Saxon-Hutner type aleo for
thres—dimensional biniry alloys (John 1972). Also the spplication
of the proposed msthod to band structurs calculations of lattices
with ssveral atoma per unit cell hss besn discusssd recently



{John, Lehmann and Zieache 1972). Clusters of MT-potentisls
have been used to describe shortrange order and pseudogaps in
elemental amorphous covelent semiconductora { Me Gill and Klima

1972).

Nonespheriecally symmetrio potential {( within the MT-apheres)
are important also in traneition =metals with partially filled
d - bands { Jacobs 1972) or semiconductors with covalent bonda
{Kane 1971), For such potentials { coupling finite sets of an-
gular momenta) Evans and Keller (1972) recently gsneralized the
usual methods for band structure cslculationa (KKR,KKRZ,APW).
They ealso used generalized, but slightly otherwise defined phass
shifts 7, (Z) . In (John, Lehmann &nd Zisache 1972) it has been
ahown, that the use of phase shifts %, and smplitudes Au ,
which by the way correspond to the sigenstates of the S-, T- or
K- matrix, represents probably the more appropriste and natural
deacription. Sa certain complicstions can be avoided for example
(John, Lehmann and Ziesche 1972}, obtained in ( Evans, Keller
1972) with reapect to the generalization of the APW method,.

In the following & mors general type of non-spharically
syametric potentials will be considered, being non-zero within
an arbitrary volume ( Section 2). The application of such poten~
tisls to the band structurs celculations ~f lattices within &
generalized EXR method allcws one in prinoipls, to take into

acoount a non-gonstant potential within the whole oell.



But here (Section 3) next to only finite clusters of such
generalized ( of course,non-overlapping) MT-potentials are
considered. The cluster equations, determining the scattering
properties of the cluster, are obtained by an appropriate

ansatz of the wave function ( linear combination of MT-orbitals},
aimilar to the original approach'of Korringa (1947) and ae
recently again used (John amd Ziesche 1971 a, Anderaen &nd
Kuaowski 1971, Andersen 1971}. In this connection a generali-
zation of recently derived addition theorems for the spherical
Bessel ( 2iman 1966) and Neumann ( John and Ziesche 1971, Ziesche
1872, Andersen 1871) functions is needed ( Appendix 2), The
decoupling of atructure { MT-sites) and potential ( MP-phase
shifts), which ia characteristic of clustera of spherically
symmetric MT-potentinls,is generally urfortunately last, al-
though the cluster esquations are of the seme type. This decoupl-
ing appears only in the csee, that the envelopping spheres
don't overlap. Only in this case the MT-potentials are complete~-
1y oharasoterized by their asymptotic scattering properties,

that means by their far fields. Otherwise, also the nesr fielda
appear ( mathematiceily via integrations over pairs of more

or less complicated MT-surfaces) , hindering the mentioned de~
goupling. As a first simple example of 'generanzed MT-potentials
(sub-) olusters of usual MT-potentials are considored (Seotion 4).
The elimination of the qulnlit:ieu, describing the acattering
properties of the subcluster, yiszlds just the equation for the

whole cluster, This shows the consistency of the developed



formallsm and means, that a cluster oan be divided arbitrarily
into subclusters if one takes 1lnto acoount fully the multiple
scattering between the subclusters. Such divisions are of
interest also Ffor practical caloulatilonsy; besoause generally
some subcluster phase shifts are small for a given not too
high energy (Demkov and Rudakov 1970). This allows to reduoce
the dimenslon of the whole cluster problems — Finally, finite
sets of anguler momenta ooupling potentials V(. (r} are
discussed as a second simple example of generalized MT-potenw—
tials (Seotion 5), Clusters of suoh potentials are of interest
for the band struoture of ocovalent ssmloonductors with thelr
more open struotares of diamand type; beoause within a gene-
ralized KER-method both the non=spheriocity of the MT-potentials !
at the lattioe sites (due to the oovalent bonds) and the non-
constant potential in the interstitial region ocan be taken
into acoount. The latter has been approximated by Keller
(1971), installating additional spheriocally symmetrio MT—
potentials at interstitlal sites. But generally these inter-—
stitial potsntials are non-spherioally symmetrilo.

2, Non-spherically symmetrio muffin-tin potentials

A general muffin-tin potential 1s defined here to be
non=zero only within a certaln volume > (see Fig.l)‘
The scattering states Ya {r) of such a M7~ potential
are oharacterized by a behaviour outside the envelopping

sphexe ( r s> r, )



l;a)‘(?): % [3(F)Awcosh,— n, (F) Apasingy ], (2.1y2

containing genernlized phase ehifts 2 and real partiel
wave amplitudas A;n .+ A8 in ( John snd 2Zieache 3971 a)

the abbreviations

e - - o =_ T

& (Fy=3e@X, (), n,(F)= n,cer) (7, =y (2.2
are used., ;‘E snd Mg are the usual spherical
Bessel and Reumann functions, respectively. YL are real

spherical hermonics, L2 (€, m.) .

The non-trivial scattering states { with 5in 7,720 )
are detiermined by the Schr¥dinger integral equation
y(Fy=far SaP GE-FIV(T.F) ¥, (7)),
I g

- - C e (2.3)
G(T-F) s & [n(=IT-F1) - ctg 93, (2} T- T

2}
The fx  used here differ from those used in

{John and Zieache 1971 a) by a minua aign.



with the usual expansions

. . Gt (2.4)
[,_,,2,(’“" r'l):% gL[r);L(r) for rer
B R T) T A FVLF) g ror
and demanding
(0, V)= A, (%) sing, (29)

(2,3) realizea the asymptotic behaviour (2.1). For a given

energy E= ZZ the squation (2.3) posseases aolutions
only far certain phese shifts 7A .

This is seun rewriting (2.3) ea

By (F )= $LCF) + SAPJaF P (PP VT T) (77

v B )

(2.8)

RV 2 S0 (F) AL 08,5 GO(F-F)s @ IFF)

end introducing via

§af V(P ) f(F) = SF K(T,F) 93C(F) aum
14 v
the K -matrix correaponding to the potential V .
Really, inserting (2.7) and Y from (2,6) into (2.5)

%(j‘ ) KjL')AL'A: ALA (’i) 2\9 ?A (2.8)



turns out, showing the smplitudes A, and phase
shifts 74 to be determined as eigenstates of the

K -matrix in its L -representstion on the energy
shell. As a consequence of Lh; finite range I, the
amplitudes Au\ are emall for Loxr, ; 8a shown
for m simple exampls in Appendix 1. Because the K -
matrix is resl and symmetric the ( real ) amplitudes A“

form an orthogonal snd complete set

ZL_ ZLLALA' = Sk)\‘ 3 § ALAZAL‘ = ELL' . (2.9)
Into the completeness relation of course also the trivial
scattering states { with sin'z*: 0 ) must be included,
which cen be obtsined by & successive orthogonalizing proce-

dure.

Thile the saymptotic or far risld ( 2,1) outside
the envelopping sphere and related to its centre is determined
sccording to (2.8) by the K -patrix only on the energy
shell, thase matrix elements (j ,Kj.)are not suffioisnt
for tha wave funotion inside the envealopping sphere. Namely,
inserting (2.7) into (2.6) yislds

- — (2.10)
o (F)=d,(F)eosy — n,(F)siny,

with the abbravietions



éA F)= %j‘(ﬁ Ao
{2.11})

n (F)= Gaf ng'f, e (RIF-F) K (P TIBL(P) At =letg,
% ‘

Indeed, expanding I acc_arding to (2.4) , for <l
also expressions <n., ‘(jl> appsar, involving metrix
elements off the energy shell, because the integral repre-
sentation of n‘(xr) includea j,_ (x'r) for all
positive energies E'= %% ., This ie related to the fact,
that in the near field region outside the volume U and
inside the envelopping sphere the wave function ( although
describing only free perticle motion as in the far field
region autside -the envelopping sphere ) is determined not only
by the asymptotic quantities ‘2* and A s but
alsc by the detsils of the distribution of scattering centres
inside v . v

In the following, it ia uaseful to assume, that besides
7 and A, . also the wave function Y and
ite normal derivative at the surface of : is ¥nmown
{ via (2.10) and (2.11) ). Theass surface quantitiass
determine then :'.he wave function 5& outoide

via the equation



Felt

T2 - _3_ 2
(§§)df[(ar') a7l JA(F-FIR(F)= {5,( f Fev,
(2129

following itself from (2.3) by means of partial integration.
Really, from (2.12) fo¢llows, thet the wave function outside
v is again of the form (2.10) but with

. - 2 e
PR gg)df[(fp)é—(s*w),],,iﬁa.mr-r-n)y;(a) sk,
(2.13)
nA(F)neg)d'{’[(ar - (&) ]E,n.(xlr-rj)a‘;(r)m,z

These expressions are via (2.7) and (2.5) of course equivalent
with (2.11). Finally, using the expsnsions (2.4), from (2,13)

and the first line of (2.12) the relations

A, sinh =2 g)d? ((a%)j‘(a%)s,] 3.7 P (F),  (zaa

A, £osh, = xg)d?{(%),,—(g?)y] ad7) 5,(7)

(2.15)

L3} N R s N
The index at 3/3 F shows, on which function it

only acts.



are obtained, connecting the asymptotic quantities 4, Aux
with the surface quentities PG /3n . (2.14)
follows also directly from {2.5) by partisl wave integra-

tion.

By the way, with Cf} Ay=t and #®= L% also
bound states E="iz can be included into the discussion.

3. Cluster

e e

Now we consider a cluster of such muffin-tins within
non-overlapping volumes ¥ seach having orbitals
y’: (F) , from which the cluster wave function ‘f; (F)
within Ui  »nd in the immediate environmeny of U;

follows by an appropriate linear combinstion

tf}f(;):é[ji(r‘)ws?i—ni(F)sLn?i]@,isin? e

The cluster wave function ';f;, (F) in the whole space

is given by

% (F)'-é[?l“”fﬂs - ri(P)sing, ] Ban. (8.2

This can be considered as an ansatz, corresponding to the



wished asymptotic bohaviour, but is also easily obtained

fros the intsgral equetion (2.3},

Similar a3 in the case of apherically symmetric muffin-
tina ( John and Ziesche 1971 a, Andersen and Kusowski 1972)
- : é
we get the cluster.equntmns for 7” , BA; and &/4
demmnding Y, = y}f in the surrounding of % . To
this purpose the expansion of gf\ and n_{' around

another volume A is neceasery

@y THe Ly,
A

i e i (3.3)
(- 8 )y (F) = % d, <7} Ny
ii! 1% ;
defining structure matrices 3,“: s Ny s which are
detsrmsined  only by the wave functions '_-f)“ amd

and their normel derivatives on the surfaces of the volumes

l)i and Z}Lw , respectively ( See Appendix 1, eq .
(A2.3) ), While the expansion (3.3) of J;, is velia
for sl f , the corresponding expansion (3.3) of #}
holds only within the volume 0‘, and a certain snviron~
ment of % , described in more detail after (4.8}. If
to sach volume ¥; itfs sttached a site ﬁ,‘ and if the
partiel wave smplitudes A:‘A are related to these
sites ﬁ,‘ s then ;:, can be reduced to a simpler



L
structure matrix 3‘,.';. , containing only these sitea Ry ¢

3“ =1 A :L'L Acx (3.4)

A e M

with A5 = Aly. While (3.4) always holds, is the corres-
ponding relation for Nﬁv , numely

i NG
Niw = 2 Aac NpApw (8.5)
- LY
valid anly, if the volumes 7}1 sre within non-overlapping
spheres 4 around the aitea R" ( see Appendix 2, eq .

(A.2.4)). A8 in ( John and Ziesche 1971 a ) the structure
matrices appearing in (3.4) ond (3.5) are defined by

i = 4 ;c“.‘.z""" G (Re)=i®¥ Jan \/l(ﬁ)e"'”"‘wY,ag o

it N 2T -
Ny 2(1=8:0047 5 Copr s (R )
<

D In fact meatriction can be softened slightly, It is
only necessary , that the "essential® part of the generalized
auffin-tins 3is within non-(;vurllpping spheres, Let us consider
a cluster of ordinary muffin-tins at sites &, 48 an example
for a generalized muffin-tin, Then the asymptotic behaviour
(2.1) is correct not only for r»;, , but also for r>mar@,)

and outside the muffin-tin spheres. That means, in this cess



with R,.2 R;-Ri+  and with
Covr = Jda Y (7) Yy () V(T @.7

as Gaunt coefficienta.

Inserting (3.3) into (9.2) and demanding y}l = ’;/,’”"

we immediately obtain ( see Appendix 2, eq . (A2.6))

T [Beer S 494 (M - clg, JE50]B=0 for singiag 1 (3.9)

and
. i hE
+ gl for sin 7A:o
; sinpy M
-~ (3.9}
8, =
5 [ct y Zzz' u"]Bi' .
- ’ t
e 7 Gadnx "M B tor sinti=o,
These cluster equations, determining ms many non-trivial
cluster scattering states ( with  Sin 2,, 20 ) a8 non-
trivial MT-phase shifts 2;_ exist , can be derived of

course also by mesns of a Kohn/Rostoker ( 1954) treatment.

only the spheres envelopping the mites of the ordinsry muffin-

tins must not overlap,



(3.8) and (3.9) are the conditions for that the wave functione
(3.1) in the immediate surrounding of each muffin-tin have the
seme continuation(3.2) into the whole apace { outside the
volumes 17; ) with an asymptotic behaviour described by

cluster phase shifts 9, and cluster amplitudes Bj,, .

Similar se in the case of spherically symastric muffin-
tina ( Demkov and Rudakov 1970) the eigenvalues cfg 7,
of (3.8) can bes written in the form of expectation values,
the stationary propertiea of which with respect to samall
variations of the MT-phase shifts ‘Zi dirsctly leads

to
27 i . 2
—2_ = (8, sin 2 0. 3.10
CEH ( A Z" ) (@:10)
A il
This means, if one of the NT-phase shifts ’1; is increased

{decreased), then alao all cluster phase shifta ?}4

increass { decremse).

Again similear as in the case of spherically symmetric
muffin-tins ( John and Zieache 1971 a, Smith and Johnson
1969) (3.8) determines with df ‘?,."; and
also the bound states £= -Z <0 .

If the vingle muffin-tins heve apecisl forms and if
they are just touching along parts of their surfaces, forming
in this way a total ( connected) volume U"—; l?,; as shown
in Fig. 2, then the thin skins of zero potential along the



touching surface parts asre of course artificial. These skins
therefore can be eliminated, showing the consistency of the
developed formalism. To prove this we rewrite (3.2) by mesns
of the recently proved additioﬁ theorema for the spheriecal
Bessel (Ziman 1966) and Neumann (John end Ziesche 1971 a,
Ziesohe 1972, Andersen 1971) funotions in the following way

{for ryr, )

. .. . (3.21)
§ (F)=X [J, (yesy, - n(F)ysiny 1B
with
it i o
B, = %'x dor Aoy B . (3.12)

(3.11) corresponda to {2.1). Using the definition of jz:{F),
(3.1) and the Wronski relation (A2.2), we obtsin { in the last

atep the skins are eliminated )
. rpd d
By sinj, = % zé‘f)df[(%r)a' EINPAORAGY

(3.13)
= xdp df[(af) (a,)]J(f) % (7
)
corresponding to (2.14). To obtain also the formula, corres-

pending to (2.15), with (3,12}, (3.8) and (3.9), we can write:

By, c0s,= Z}. amA ',\[Nn'sm " & ’Sx'm?y]&;.. sln'z (3.14)

uh

17 .



r
Using sgain (3.1) and (A2.2), really

Buy €059, = xcfﬁ a{[(a,) (ar 'Jn (F) ) (3.15)

turns out, q.e.d.

If on the other hand the muffin-tine are far anocugh
from each other, ao that the enveloppiig spheres of the
puffin-tins ( or at least of ita " easentisl part", see
footnote 4) don't overlap ( see Fig. 3) then (3,.§) is valid.
That means, the muffin-tins enter into the cluster equations
(3.8} only via the asymptotic behaviour of its pcnttering
atates f\i , described by ’z':\ and A‘“ . Theae
propertiea of the far field (2,1) are eufficient, no near
frield properties (2.11) are necessary. This peculiarity

allows alao to transform the (- A ~reprssentation (3.8)

into an [ - [ -represantation by mearna of (3.4)
and (3.5):
(3.18)

’L' 13 R [ Bt (1‘5?)“,( ar ﬁ‘i?f' "'z“)]BLJ” =0
. - Al BL
with B[// ;Z’—'*i"?:sn) 12 Orp and

¥ - Pl (3.17

‘= Z A A; )

LE o aGing! z0)

), = 3 AL B4 B



F:f, projects the non-trivial scattering statea (siHQi.tD) .
Asauming 81l MT-phase shifts ‘2; non-trivial, that is
P[i,: Ju’ , & system of equatiom,(s.ls), arimes very aimilar

to the equations for a cluster of sphericslly symmetric muffin~
tina ( Jobhn end Ziesche 1971 a), The only differences are,
thet the acettering properties of the single muffin-tins

ars nere described by non- diegonsl matrices (7¢ 7); R
instead of d, tg Ql_" and thet the dimesnsion of the system
of equationa, (3.16), is in principle infinite. Numerical
caleulations require of course the restriction to finite
numbers of angular momenta. But, because (3.16) breaks down,
if the envelopping epheres overlap, the influence of the
parts of a simgle muffin-tin ¢ is deacribed the woraa the
more far they ere from their corresponding aite P: «That
mesns for a better epproximation more angular momenta are

necessary than it ocorresponds to the linear dimension

owing to the combinstion of (7g} )f‘. with NL:‘

» )
and L‘L’ + = If we hava only a few non~trivial NT-
phese shifts 4 , that is /?_:, # 5;_,_- , then the

solutions of
i?,:u[sii' G 2 (g% ) (Nef -cty ?I,Z“L B0 (aam

i
owing to the definition of B,_J,



must obtain the additional condition % L, BL‘/‘ = Bl‘/, s

sepsrating physical and unphysical solutions. = The advantage
of the (-1 -representation (3.16) compared with the
L= A -representation (3.B) conaists in that the MT-poten-

tials enter in & compsct menner only vie the quantitiee (3.17).

First example: Cluster of subclusters

As a first simple exsmple of non~spherically symmetric
muffin-tins we consider clusters of usual muffin-tine with
phsae shifts ‘25"‘ and centres /?[,,‘. = k.l * 5:’:-, { see
Fig. 4). In this cese the surface integrations (2,13} yield 5)

H =7, 9, () AT
. - i ne (4,1)
RE(F) = ZL n (fn ) ALY

I)) RPN . . ;
Becausa the non-trivial scattering states { Sin ?)‘\ =0 )

in,

heve only non-vanishing near field emplitudes " for
the snguler momenta [ with non-trivial KT-phase shifts
’]:"" , the sums over [ in (4.1...5) snd (4.10,11)

are correspondingly raestricted.



ing
. with near rield amplitudes A, determined together
#ith the subcluster phase shifts 7: by { see John
and Zieache 1971 a}

. ‘ in?
[etgnim M™%~ ceg 4l dn 1Ak =0,

,,‘:

{4.7)
cnt in, g
M: ¢ d;1n‘ d‘u'_*ti’ZL‘Nu.‘
The amplitudes At;‘ are "orthogonal®™ snd " complete”
in the following sense
~ing oD} in; - 5 ,
"Z.’:LA“ Iy Ay M
> A‘.n‘. Ein; _ (3_1),1‘”' {4.38)
)(sln?ito) LA re
allowing the following reformulation of (4.2)
in; LH, ) int
Z A tg BEAY = (M) e Y (4.3b)

The details, are given in Appendix 3. The " aurface"
atructure matrices of the whole cluster defined in (3.3)

or (A2.3) reduces via

it iy kg L 4 nd
ii T X
3“. = HZL A JL g '4m' ’
i {4.4)
it
il .n‘ in ¥R}y, i
N = ) Axe Lo AL’A’
n,'L'

to the "point™ structure metrices defined ir (3.6).

21



The consistency of the developed formalism 1s to be
seen in the following way: Elinination of the quantities
'ZA . ,_L , @escribing the aubclusters, lead hy mesns of
(4.3) to equations for the whole cluster
LN

in' in; Lﬂ,' r.lh Unl ping
[ctg 2, M, - et 3. 7185 %0, s
cng g _ . £ng pglng 050
MY L.' = 6y ’fn[ng G+ 920 M
which are of the same type as the equations (4.2) for the
subelusters only with a ( now of couras artificial) double

enumerstion of the single muffin-tins by a subcluster index i

and an index n[ within the subcluater. In (4.5) tha
o ingpd
stbrevistion 8, g mzm’;”)A“ 8. 1is used.

This consistency property of the cluster equations
should be of interest also for praciical calculations, because
generally the subcluster phase shifts 'Z: are in part
very small for a given ( not too high) energy. The numbsr of
the essentially non~zero phese shifts ']{ is determined
via xaﬁ by the energy £:= x? and by the linesr dimen=-
sion al = max(ain‘) of the subcluster. Therefore the

dimension of the wholes cluster equmtions (3.8) reduces.

flow, we discuss the exprsssiona of the wave functionsa,

especially 9},‘ (F) « The region in which (3.1) holds,



is determined by the validity of the expansion (3.3) of
mé (F) . The lattér can be written with (4.1) (A3.2)

and (2.4) as

(A= 8 )y (Fen,. >:%.L,ji‘( Fin,‘ on )IZ“’;_(Z N‘:j:in"
mite (4.8)
=T AR NS
L
In the last step 911 (T‘,;,,;) hea been expanded around the

muffin-tin « From the addition theorem of tihe apheri=~
cal Neumann functions follows, that {4.6) is valid within a
sphere around R.L.n( just touching éln‘, .
Because this consideration is velid for each muffin-tin 77,
of the sutcluster L and because in (3.3) the muffin-tins
M- of the subcluater ¢~ are summed up, holds the
expanaio: .3.3) of ﬂ;:(F) within that region, which consiasts
of spheres around the muffin-tins n; of the subcluaier

Just touching one of the muffin-tin centres of the subcluster

¢’ . - Therefore in the general caaz of Section 3 we have
to blow up spheres around each surface point of ¥ s 80
that it just touches one of the surface pointa of 7}1 .

The sum of sll these spheres is exactly that part of space,
in which the expansion (3.3) of néi (F) is velid., -
Returning agein to the spacial case of gubclusters we cen
write the wave function in the deacribed surrounding of the

subcluster ‘ in the following way:



% (7 {[mcrm) S GG )TNy, Joim !

i in, .
3 AT sy J
ae
with
4 ing . in,
§myine B;J._, for sinpi%. g
ing
6, = (4.8)

LI1 i piniing i
z [djz/’ C NS ]Bl'/l‘ for 5(.)'12:"‘=0
l, "
This results from (3.1}, (3.9) and (3.9) eliminating the

; e
quantities 2; and Al* with (4.1), (4.2) and
(A3.2), If we expand f)j,‘ (F) around the muffin-tin n, ,
then

V‘"‘(r) 5["’: Fip) SL70 - J(n,,,)cos;ﬂ"l]@ sin g,

(4.9)

turns out, agein with the eliminable doudble onumeration i,7;
(449) is valid within a sphers around Rin,— Just touching
the next auffin-tin centre ( bslonging to the



subcluster 3 or not). This shows the consistency of

the formalism also with respect to the wave function .

Finally we consider the apecial cose of subclusters
being ao far from esch other, that the aopheres with radii
a,," around the subcluster sitea ﬁ( don't overlep.

In this case the fu_r field properties of the subcluster

i
described by ?‘ and

Z Ja n} Am.

{4.10)

are sufficient, no near field properties as described by

Ai';" ere necessary. This allows - as discussed in Section 3
~ to pass from the (- A -representation (3.8) to the ¢-£-
representation (3.16) or (3.18), which contains the sub-
cluster quantities in the more compect form (3.17). By the

way these quantities (3.17) can be calculated straightforward-
1y ( see Appendix 3)

acni I'h" o

pL‘ - Z Jam(g-’L,Lz YA

”: .11

(4.11)

(‘f?)u’ : ,;Z g""' (M’)‘""Ln; % thﬂ

:‘,lz



avoiding an extra calculation of ’z; and Af, { but
requiring the inversion of the matrices J end M ),
- In the considered case also the i~ - L -representation
(4.5) simplifies itself, because the structure matrices split
in the following way
R i it '

3‘: ez Lz JL”‘L? LL-L L:’Z;,

“ (4.12)

imi'n, - nio J L N
N,_ ‘f, = g‘ g“,, Ntu.z Lzu &Li Nu_' Y
Il

separating tha cluster structure (I?.[) and the subcluster
structure (d;,, ) from each other. - A certain advantage
of all three representations is, that variations of the sites

or potential within the subcluster cen be treated easily,

§. Second example: Cluat otentials with finite

asta_of anguler mogenta.

As 8 second simple exemple of e non-spherically symmetric
ouffin-tin we conaider the following { generaily non-local)

potential

LZL' Y(A)Ver (W)Y () for ren
VET)E (5.1

0 for ror,



88 recently with respect to band structure cslculations dis-
cussed by Evens and Keller (1972). The sums over L.’

oare running up to a certain mm.:imum angular momentum (o .
Then the Schridinger equation is tranaformed with an ansatz
y(r)= % Yo(A) Ry (r) into a set of (€,+1)° coupled

differential equations

. I,

! z E(L+1 - ° 2 .

1L —er)«‘)ez RL(r)—%jr dr Ve () R (), (5uay
F]

Demending regularity at r=0 , from (5.2) a set of (£, *1)}

linearly independent solutions Rin (r) next to arises,

having outside the MT-sphere the behaviour

RLDU) :J; (=r)oc,,- Ne(2r)p,n for ¥7r, (5.9)
with coefficienta
= 21 %’,lf Rip- fle 5’7/",‘—”] e,
: 4Rir (5.4)

i, ,
pt.n B 25 ar Rin de or r:g .
From this the scattering states 4 (7 are obtained

-by an appropriete linear combination Z ‘f,., J’:,;
il
demanding

;o(mxnl :ALA ch?l ¥ é.ﬁlﬂ n = 'An sin 71 . (5.5)



Therefors a set of algebraic equations arises

5,
% (o = €Y 25 fin) ¥nr =0, &
yielding (&~ 1)? aolut:lon.s 'Z, and A o
By the way of course slao bound state E<0 can be

obtained; only the replacements Z--{ & and cz‘j 2~
are necessary, the latter guarsnteeing the wayve function
to remain finite. Then (5.6) determines certain energies
Enz- 2

Now we consider a cluster of such potentisls (5.1),
each characterized by quantities ‘l: and A, .
which sre obtsired from the matricea o(i,, and ,6";" .
Because the potentlals don't overlap, basides (3.4) alsec
(3.5) is valid, That means, the atructure matrices J: i:
and N:i;' sppearing in the cluater equations (3.8}
completely reduce to the patrices 3::-’ B N,f,f sconteining
only the centres R., of the potentials, and the ( asysp-
totic or far field) amplitudes Af; . Because ths potentials
(S.1) involve only finite sets of angular momenta, the auma
over L in (3.4) and {3.5) sre correspondingly restricted.-
Paoning from the (- A - repreasentation (3.8) to the ¢ - /- -
representation (3.16), there ara no difficulties with respect
to the projection operator P,: » because the smplitudes
Al, , obtained from (5.5) and (5.6), form itself ( that is,



without the trivial acattering states) a complete net. That
means we have L- = JLL in difference to th: situation
discussed in Section 4. Beaides this, the only rotential
depending quentity ( g ?i,) , entering into (3.18),
can be obtained directly from the original metrices Jin

sna B/,

(tg‘z):;, = 2 ﬁf,, [(u‘)"]nl. , (5.7)

{ £
avoiding sn extra calculation of ?; and A
i
( but requiring the inversion of the mstrices cten ).

(5.7) follows immediately from (5.5).

The author is grateful to Dr, W.John and Dr. X.Elk

for useful discussjono.



Appendix 3. Angular momentum dependence of the partial

wave amplii'los.

A8 @ simple example wa consider two S -scatterers
with equal phase shifts 2, =and a distance a .
Then the cluster equations (4.2) produc2 only two non-trivial
scattering atates A=2%

cheh = ctg to ACIIN
* 1t J,(xa)
2 1

./-\:¢:_L— Aagzt Ao: ) {Al.1)

= Nerir f, (ea)]
yielding with respect toc the centre the following far field

smplitudes

YAg Je (xa/z)

- an' AN _Ta.nt .
AL,:_nz,IL,JL 2 Au: - [1 1) ]Emcn 2[4t jn(za)] (41.2)

The £ -dependence of A, is essentially determined
by Je (xa/2) , which tends for £ »>xea/2 to zero as

(*ar)t _ tene

4 (mal2) = =5

(41.3)



Appendix 2. Wronski relations and addition theorems of

non-gpherically symmetric muffin-tin orbitals,

Next to we define with the amplitudes A, of the
trivial scattering states arising from an orthogonslizing

procedure a funetion

M(F) for sin =0
r)=
XA(F) £ n () Ao TERA
for sin a0,
Then J:\(F) and X, (F)  full1fill relations
-, B 2 o (A2,2a}
x 9t [(57),- (57), ] g =0
(s) A A
~rr .2 2 - - .
x ‘(%)d{[(gf)}\— (57 ) Ja(F)xe(F)=0, (A2.2b)

x g)d?[(a—af))‘ - <%)A’] XA(F)jA'<F) = 8w , (A2.2¢)

which correapond to snd generalize the well-known Wronski
relstions of the spherical Beasel snd Neumenn functions. This
ia proved in the following way: Ysing, that J'A and Xy
are solutions of the homogeneous equation, we can deform

the integration surface ( 7¥} into the envelopping sphere

.8



Y=1, « Now 2= 2 A, holda also for Sin hr?0 .
Then with the orthogonality of the Y, end A,; am
with the ordinary Wronski relations immediately (A2.2) results.

With these relations explicit expreasions of the
structure matrices defined in (3.3) can be obtained. Really
from (3.,3) follows with (2.13), (A2.2a and ¢) for sin 7} =0
{ needed in (3.8))
L s .
PRTPTE T C ONICOM L S

and with (A2.1) and (A2.2¢c) for sin?:=0 ( needed in
{3.9))

N = (1= 8.0 ) 8 F1CEs),~ (B ] 3 Alnntoua.an
nﬁ.”(i’) is given generally by the surface integral (2.13),

but in the case of non-overlapping envelopping spherss
(2.13) reduces simply with (2.4), (2.14) amnd (2.15) to {r,‘-sF-A"'.-)

o % et
NGEPR TS A= £ 307 INE Apar . (A2.0)

In the second step the addition theoream of the spherical
Neumann fucntions has besn used. Inserting (A2.4) into (A2.3)

then (3.5) turns out. Because



there Are no restrictions for the , expansion (2.4) of do,
the correaponding expreasion of 3; (F) is always true;
therefore the "homogeneous “ siructure matrices 3,\‘: are
given by (3.4), also in the case of overlapping envelopping
apheres.

By the way, with

for Felf

FRME) - () V4 mugar pud o [ (7
X(@% f[ar)a (’a“)A]an(z” "')Ja(’){ or for TqU

-3 . . o forFew (AZ.5)
* 8 dF[(55.), @), ] 5 e x07)= {
@) Xa(F) forFg v,

which ie proved . by appropriate deformations of the integ-
ration surface, the function ¥,/$i72;  in (2.13) and
(A2.,3a) can be replaced by - 7 .

Finally, (3.8) end (3.9) are derived from ¥, = 7‘/’:
by means of (A2,2) . The difference takes the form

Ef;,(?)—bf,,"cr‘)=§ "f(’)"‘y"%rﬁ F) P (A2.6)

With (A2.2) iemediately follows olay =0 sd f,,20;



these are the equations (3.8) and (3.9).

Appendix 3: Orthogonality and completenses of the partiml
wave amplitudes of a cluster.

Owing to the relation between far field amplitudes A,_,\

and near field amplitudes A, ,

en’

Ay d, . Al (43.2)

- n’t'
from the orthogonslity and completenesa of the far fisld
amplitudes A, there follow immediately ocrresponding relations

for the pear field amplitudes Als s

nn' ~ . '
ZA“ b Al = Oan s T ALRT=(I (A3.2)
I'll.'
Because the near field amplitudes A:; of the non-

trivia_l scattering states are non-zsro only for aAngular
momenta with non-trivial phese ahifts '[: ( this oun be

explioitly expressed by A", = sin D al Yo

ALi=0 forsing s0 and sinp]:0, (40.3)

the amplitudes of the trivial scattering states fulfil)



the following condition es a consequence of the orthogona-

lity:

,,Z.L.ar:’:. g for 5[,,?‘:0 and sin 7;;0, (A3.4)

From (A3.3) and (A3.4) follows, that the projection operator

of the non-trivial scattering states can he written as

~ - n,rrz rn;o
An AAL’ = ,:Z LL,(J )L L, LZL’ . (A8.5)
A(sing, wo) '*(amy"n 20)
Ingerting (A3.1) into (A8.5) yields this projection operator
in pn- L -representation
f n inht!
@) for 5£n?ki0 and s‘"?t' .;‘:D

(¥

~at

Z An AAL’ -

(smz‘w) (43.6)

0 for sin)?-0 or sin g7

Finally, with the orthogonality ( firat equation of (A3.2))
and the “incompletemesa" (A3.6) the cluster equations (4.2)

can be reforaulated as



% A:x ff ?a Ko\nl. =(M.‘):17 iy 2:,‘ (A3.7)
or with (A3.1) as

;Angmw:% A O R F S A P

He
inthiaeg)
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Fig. 3. A cluster of general MT-potentials with
non-overlapping envalopping spheres.



Fig. 4. A cluster of subclusters.



