ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 ЯАEPHЫX
 ИССАЕАОВАНИЙ

АУ5HA
$\frac{C 36}{B-84}$

E4-7150
$2717 / 2-73$
J.G.Brankov, A.S.Shumovsky, V.A.Zagrebnov

ON MODEL SPIN HAMILTONIANS
INCLUDING LONG-RANGE FERROMAGNETIC INTERACTION

1973

ЛAEOPATOPИA
TEOPETИYECHOЙ

J.G.Brankov, A.S.Shumovsky, ${ }^{* *}$ V.A.Zagrebnov

ON MODEL SPIN HAMILTONIANS
INCLUDING LONG-RANGE FERROMAGNETIC INTERACTION

Submitted to Physics Letters

On leave of absence from Institute for Nuclear Research and Nuclear Energetics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
** Permanent address: Department of Quantum Statics, Moscow State University, Moscow, U.S.S.R.

Considerable interest has been expressed recently in the study of model Hamiltonians with competing short-range and infinitely long-range interactions $/ 1,2$. It has been assumed, on physical grounds, that the longrange part of the Hamiltonian can be treated by a meanfield theory. This suggested the present rigorous investigation of a general spin $\frac{1}{2}$ system described by the Hamiltonian:

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{s}+\mathcal{H}_{L}-N \sum_{a=1}^{3} h_{\alpha} I_{a} . \tag{1}
\end{equation*}
$$

Here \mathcal{H}_{s} is an unspecified N-body Hamiltonian satisfying the condition:

$$
\begin{equation*}
\left\|\left[\mathcal{H}_{s}, I_{a}\right]-\right\| \leq K \quad a=1,2,3 . \tag{2}
\end{equation*}
$$

where $\|\ldots\|$ denotes the norm of the commutator, $K<\infty$ does not depend on N, and

$$
\begin{equation*}
I_{a}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{a} \quad a=1,2,3 . \tag{3}
\end{equation*}
$$

with Pauli matrices σ_{i}^{a} standing for the components of the spin-vector operator at $i^{\text {th }}$ site, so that I_{a} obeys:

$$
\begin{equation*}
\left\|I_{a}\right\| \leq I ; \quad\left\|\left[I_{a}, I_{\beta}\right]_{-}\right\| \leq \frac{2}{N} . \tag{4}
\end{equation*}
$$

We assume the infinitely long-range part \mathcal{H}_{L} of the Hamiltonian (1) to be of a ferromagnetic type and take it in the form:

$$
\begin{equation*}
H=-\frac{1}{2} N \sum_{a=1}^{3} J_{a} l_{a}^{2}, \tag{5}
\end{equation*}
$$

where J_{α} are positive interaction parameters. The last term in the right-hand side of (l) is the magnetic energy of the system, placed in an external field $\left\{h_{a}\right\}$.

First we show how the Thermodynamically Equivalent Hamiltonian method /3.4/ can be rigorously applied to the present case * .

We introduce a set of variational parameters $\left\{C_{a}\right\}$ $(a=1,2,3)$ into (1) and rewrite the Hamiltonian in the form:

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{o}\left(\left\{C_{\alpha}\right\}\right)+\mathcal{H}^{\prime}\left(\left\{C_{\alpha}\right\}\right) \tag{6}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathcal{H}_{0}\left(\left\{C_{a}\right\}\right)=\mathcal{H}_{s}-N \sum_{a}\left(h_{a}+J_{a} C_{a}\right) I_{a}+\frac{1}{2} N \sum_{a} J_{a} C_{a}^{2} \tag{7}\\
& \mathcal{H}^{\prime}\left(\left\{C_{a}\right\}\right)=-\frac{1}{2} N \sum_{a} J_{a}\left(I_{a}-C_{a}\right)^{2} \tag{8}
\end{align*}
$$

The canonical free energy per spin $f[\mathcal{H}]$, associated with \mathcal{H}, is defined by:

$$
f[\mathcal{H}]=-\frac{1}{\beta N} \ln \operatorname{Tr} e^{-\beta H}
$$

where $\beta=\frac{1}{\theta} \quad$ is the inverse temperature.
In order to investigate the contribution from the residual Hamiltonian \mathcal{H}^{\prime} to the free energy of the system $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}$, we use Bogolubov's theorem (see the proof in ref. /6/) which yields:

$$
\begin{equation*}
-\frac{1}{N}\left\langle\mathcal{H}^{\prime}\right\rangle_{0} \leq f\left[\mathcal{H}_{0}\right]-f[\mathcal{H}] \leq-\frac{1}{N}\langle\mathcal{H}\rangle^{\prime} \tag{9}
\end{equation*}
$$

Here $\langle\ldots\rangle_{0}$ and $\langle\ldots\rangle$ denote thermal average with respect to \mathcal{H}_{0} and \mathcal{H} correspondingly.

Due to the explicit form (8) of \mathcal{H}^{\prime}, we have:

[^0]\[

$$
\begin{equation*}
0 \leq f\left[\mathcal{H}_{0}\left(\left\{C_{a}\right\}\right)\right]-f[\mathcal{H}] \leq \frac{1}{2} \sum_{a} J_{a}<\left(l_{a}-C_{a}\right)^{2}> \tag{10}
\end{equation*}
$$

\]

It is readily seen from (10) that the best approximation to the exact thermodynamic potential $f[\mathcal{H}]$ is obtained when trial parameters $\left\{C_{a}\right\}$ obey the condition for absolute minimum of $f\left[\mathcal{H}\left(\left\{C_{a}\right\}\right)\right]$ with respect to $\left\{C_{a}\right\}$:

$$
\begin{equation*}
f\left[\mathcal{H}_{0}\left(\left\{\bar{C}_{a}\right\}\right)\right]=\min _{\left\{C_{a}\right\}} f\left[\mathcal{H}_{0}\left(\left\{C_{a}\right\}\right)\right] \tag{ll}
\end{equation*}
$$

This yields the following self-consistent field equations:

$$
\begin{equation*}
\bar{C}_{a}=\left\langle I_{a}\right\rangle_{0} \quad a=1,2,3 \tag{12}
\end{equation*}
$$

where the thermal average is taken with $\mathcal{H}_{0}\left(\left\{\bar{C}_{\alpha}\right\}\right)$.
Now the essential problem is to prove rigorously that $\mathcal{H}_{0}\left(\left\{\bar{C}_{a}\right\}\right)$ is thermodynamically equivalent to \mathcal{H}. To this end we make use of the majoration technique of N.N.Bogolubov (Jr.) /7/.

From (l0) and (ll) we see that:

$$
\begin{align*}
& 0 \leq f\left[\mathcal{H}_{0}\left(\left\{\bar{C}_{a}\right\}\right)\right]-f[\mathcal{H}] \leq f\left[\mathcal{H}_{0}\left(\left\{<I_{a}>\right\}\right)\right]-f[\mathcal{H}] \leq \\
& \leq \frac{1}{2} \sum_{a} J_{a}<\left(I_{a}-<I_{a}>\right)^{2}> \tag{13}
\end{align*}
$$

Hence, following ref. $/ 7 /$, we find that the difference of the normalized free energies:

$$
\begin{equation*}
\Delta\left(\theta,\left\{h_{a}\right\}\right) \equiv f\left[\mathcal{H}_{0}\left(\left\{\bar{C}_{a}\right\}\right)\right]-f[\mathcal{H}] \tag{14}
\end{equation*}
$$

is majorized by:

$$
\begin{align*}
& \frac{1}{2} \sum_{a} J_{a}\left\langle\left(I_{a}-\left\langle I_{\alpha}\right\rangle\right)^{2}\right\rangle \leq \frac{\theta}{2 N} \sum_{a} J_{\alpha}\left(-\frac{\partial^{2} f[\mathcal{H}]}{\partial h_{a}^{2}}\right)+ \\
& +\left(\frac{1}{2 N}\right)^{2 / 3} \sum_{a} J_{a}\left(\left\|\left[\mathcal{H}, l_{a}\right]-\right\|\right)^{2 / 3}\left(-\frac{\partial^{2} f[\mathcal{H}]}{\partial h_{a}^{2}}\right)^{2 / 3} \tag{15}
\end{align*}
$$

An upper bound on the average of $\Delta\left(\theta,\left|h_{a}\right|\right)$ over a small region Ω_{ℓ} in (h_{1}, h_{2}, h_{3})-space

$$
\Omega_{\ell}=\underset{a}{0}\left[h_{a}, h_{a}+\ell\right]
$$

surrounding the point $\left|\xi_{a}\right| \in \Omega_{\ell}$ is then given by:

$$
\begin{align*}
& \left.\Delta\left(\theta, \mid \xi_{a}\right\}\right)=\frac{1}{\ell^{3}} \iiint_{\Omega_{\ell}} \prod_{\beta} d t_{\beta} \Delta\left(\theta,\left\{t_{a}\right\} \leq\right. \\
& \leq 3 J_{\max }\left\{\frac{\theta}{\ell N}+\left[\frac{K+2\left(J_{m a x}-J_{m i n}\right)+4(|h|+\ell)}{\ell N}\right]^{2 / 3}\right\} \tag{16}
\end{align*}
$$

if the following relations are used.

$$
\begin{aligned}
& 0 \leq \frac{1}{\ell^{3}} \iiint \Pi d t\left(-\frac{\partial^{2} f[\mathcal{H}]}{\partial \ell_{a}^{2}}\right)=\frac{1}{\ell^{3}} \iint \prod_{\beta \neq a} d \ell_{\beta}\left[\left.\left\langle I_{a}\right\rangle\right|_{h_{a}}+\ell^{-}\right. \\
& \left.-<I_{a}>\left.\right|_{h_{a}}\right] \leq \frac{2}{\ell}, \\
& \left\|\left[\mathcal{H}, l_{a}\right]_{-}\right\| \leq K+2\left(J_{\max }-J_{m i n}\right)+4|h| \equiv L(h),
\end{aligned}
$$

(where $J_{m a x}\left(J_{m i n}\right)$ stands for the maximum (minimum) value of J_{a}) and applying Hölder's integral inequality to the last term in (15).

Now according to the majorization:

$$
\begin{align*}
& \Delta\left(\theta,\left\{h_{a}\right\}\right) \leq \sum_{a=I}^{3} \max \left|\frac{\partial \Delta}{\partial h_{a}}\right| \cdot\left|h_{a}-\xi_{a}\right|+\Delta\left(\theta,\left\{\xi_{a}\right\}\right) \leq \\
& \leq 6 \ell+\Delta\left(\theta,\left\{\xi_{a}\right\}\right) \tag{17}
\end{align*}
$$

we find combining it with (16):

$$
\begin{aligned}
& \text { find combining it with (l6): } \\
& \left\lvert\, \Delta\left(\theta,\left\{h_{a}\right\} \left\lvert\, \leq 6 \ell+3 J_{\max }\left[\frac{\theta}{\ell N}+\left(\frac{L(h)}{\ell N}+\frac{4}{N}\right)^{2 / 3}\right] .\right.\right.\right.
\end{aligned}
$$

Since the last inequality holds for all $\ell>0$, the left-hand side being independent of ℓ, it can be optimized by the choice of ℓ. We choose:

$$
\ell=\frac{J_{\max }}{N^{2 / 5}}
$$

and finally obtain the bound:

$$
\begin{align*}
& \left.\mid \Delta\left(\theta, \mid h_{a}\right\}\right) \left\lvert\, \leqq \frac{3 J_{\max }}{N^{2 / 5}}\left[2+\left(\frac{L(h)}{J_{\max }}+\frac{4}{N^{2 / 5}}\right)^{2 / 3}\right]\right. \tag{18}\\
& +\frac{3 \theta}{N^{3 / 5}}
\end{align*}
$$

which proves the uniform convergence of $f\left[\mathcal{H}_{0}\left(\left\{\bar{C}_{a}\right\}\right)\right]$ to $f[\mathcal{H}]$ as $N \rightarrow \infty$ in any compact set in $\left(\theta, h_{2}, h_{2}, h_{3}\right)$-space.

The authors wish to express their sincere gratitude to Prof. N.N.Bogolubov (Jr.) for valuable remarks and useful discussions.

References

1. J.F.Nagle. Phys.Rev., A2, 2124 (1970).
2. J.S.Hoye. Phys.Rev., B6, 4261 (1972).
3. G.Wentzel. Phys.Rev., 120,1572 (1960).
4. M.Girardeau. J. Math.Phys., 3, 131 (1962)
5. J.G.Brankov, A.S.Shumovsky. JINR P4-6893, Dubna, 1973.
6. S.V.Tyablikov. The Methods of Quantum Theory of Magnetism (Nauka, Moscow, 1965).
7. N.N.Bogolubov (Jr.). A Method for Studying Model Hamiltonians (Pergamon Press, 1972).

Received by Publishing Department on May 8, 1973.

[^0]: * It should be noted that a has been treatem giyen by

 $$
 \mathcal{H}_{L}-N \sum_{\alpha} h_{\alpha} I_{a}
 $$

