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Considerable interest has been expressed recently 
in the study of model Hamiltonians with competing 
short-range and infinitely long-range interactions I 1, 21. 
It has been assumed, on physical grounds, that the long­
range part of the Hamiltonian can be treated by a mean­
field theory. This suggested lhe present rigorous inves­
tigation of a general spin 7 system described by the 
'Hamiltonian: 
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J{ = }{5 + J{L - N I ha Ia . (1) 
a= I 

Here }{ s is an unspecified N -body Hamiltonian 
satisfying the. condition: 

a=1,2,3. (2) 

where 11···11 denotes the norm of the commutator, K < "" 
does not depend on N , and 

1 N a 
I =- I a 
a N i=I i 

a=1,2,3. (3) 
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a 
with Pauli matrices a 1 standing for the components 
of the spin-vector operator at i'h site, so that Ia obeys: 

2 
Ill a II ~ 1 ; II [ Ia • I 13J -11 ~ N · ( 4) 

We assume the infinitely long-range part }{ L of the 
Hamil ton ian (l) to be of a ferromagnetic type and take it 
in the form: 

I 3 2 
}{ =--.y-N}:, J I, 

_ u--Jaa 
(5) 
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where J a are positive interaction parameters. The last 
term in the right-hand side of (1) is the magnetic energy 
of the system, placed in an external field I h a}. 

First we show how the Thermodynamically Equivalent 
Hamiltonian method /3.4/ can be rigorously applied 
to the present case * . 

We introduce a set of variational parameters I C a I 
(a == 1 , 2, 3) in to (1) and rewrite the Hamil ton ian in the 
form: 

}{ == J< 0 (1Ca !) + H'(ICa}), (6) 

where: 

1 2 
}{ 0 (f C a I) = }{ 5 - N I ( ka + 1 a C a )I a + -

2 
N I 1 a C a , (7) 

a a 

J<'(ICal)==-~N I!a0a-Ca) 2 

a (8) 

The canonical free energy per spin f[ }{], associated 
with }{ , is defined by: 

1 -{3J< 
f[}{] == - {3N ln Tr e , 

1 
where f3 = 0 is the inverse temperature. 

In order to investigate the contribution from the 
residual Hamiltonian }{' to the free energy of the system 
}{ = }{0 + }{' we use Bogolubov's theorem (see the proof 
in tef. /6/ ) which yields: 

- -
1
- < }{ ' > < f[ }{ o ] - f [ }{] < - ~ < }{ '> · 

N o - - N ' (9) 

Here < ... >0 and < ... > denote thermal average with 
respect to J<0 and }{ correspondingly. · 

Due to the explicit form (8) of }{ ', we have: 

-------------------------
* It should be noted that a system giyen by J(L- N I h I a 

has been treated rigorously in ref. rs!. a a 
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1· 2 
O~f[}{ 0 (1Ca 1}]-f[}{] _:T ~ la<(la-Ca) > · (10) - J,· 

It is readily seen from (10) that the best approximation 
to the exact thermodynamic potential f[}{ 1 is obtained 
wh~n trial parameters I Cal obey the condition for absolute 
minimum of f[}{ (I Ca IJ1 with respect to I Cal: 

f[J< 0 ({Cal)] = min f[J< 0 ({CalJ]. 
!Cal 

(11) 

This yields the following self-consistent field equations: 

ca= <la>o a== 1,2,3, (12) 

where the thermal average is taken with J<0 (I ca lJ. 
Now the essential problem is to prove rigorously 

that J< 0 (I C a lJ is thermodynamically equivalent to }{ . 
To this end we make use of the majoration technique 
of N.N.Bogolubov (Jr.) /7/. 

From (10) and (ll) we see that: 

0 ~ f[J< 0 (1Ca !)] - f[}{] S f[J< 0 (1<1a >I)]- f[}{] S 

1 2 
~ 2 I ] a <(Ia - <Ia >) > . (13) 

a 

Hence, following ref. /71, \Ve find that the difference 
of the normalized free energies: 

~(e, lha lJ = f[J<il ca I)]- f[}{J (14) 

is majorized by: 
1 2 

- I fa <( Ia -<I > / > < _!.._ I J ( _ a f[J{] ) 
2 a a - 2N a a ah2 + 

a (15) 
1 2/3 2 

+ ( 2 N J ; 1 a (II [ J<, I a L II / 13 
(.,.. a f[ }{ 1 
· ah 2 

//3 
a 
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An upper bound on the average of !l((}, lh al) over 
a small region 0 e in (h1 , h 2 , h 3 ) -space 

Oe = e [ ha, Ia a + f) 
a 

surrounding the point I ea I ~ n e is then given by: 

!l(O,Ie IJ = -/rJJf n dt{Ji\(O,It l) < 
a f fJ a -ne 

(} K + 2( /rnu -/ m 1,.)+4 (I hi +f) < 3 I 1- + [ __ ....;;,;.;;;.:;.___...;:::.::.:.. 
~ rnu fN tN 

] 2/31 (16) 

if the following relations are used. 

2 
1 a t£ J< l 1 

o ~3 fff'll dt (- 2 J=-;;-:r ff n dtfJ[<la>l
11 

+C - e a ta e fJ .Ja a 

2 
-<la>lha] ~ T' 

I![J<,/aLII ~K + 2(!rnu:-fmin) + 41/al = L(h), 

(where I mas (I mtn ) stands for the" maximum (minimum) 
value of Ia ) and applying Holder's integral inequality 
to the last term in (15). 

Now according to the majorization: 

3 a i\ 
i\ ( e, I h I J ~ I max I --I · I h a - e a I + i\ ( o, I e a I J ~ 

a a=l aha 

< 6t + i\ re, leulJ 
(17) 

we find combining it with (16): /: 
(} L (h) 4 2 3 

I i\ ( o, I h a IJ I;. 6f + 31 mu [1N + (--err-+ NJ 1 · 

Since the last inequality holds for all e > 0 , the 
left-hand side being independent of e. it can be optimized 
by the choice of e . We choose: 
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]max 

f = N2fs 

and finally obtain the bound: 

3] 
li\(0, lha IJI ~ 

3(} 

mas 
~ 

N 21s 

L (h) 4 2/3 
[2+( + ~) J (18) 

/max N 

+ ---.::rTs 
N 

which proves the uniform convergence of f[}{Q.(I Ca IJ] to 
{[J(] as N ... ..., in anycompactsetin (O,h 1,h2 ,h3 )-space. 

The authors wish to express their sincere gratitude 
to Prof. N.N.Bogolubov (Jr.) for valuable remarks and 
useful discussions. 
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