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1. Introduction 

A new approach to the theory of the spin-phonon 
interaction in the ferromagnetic crystals, based on the 
assumption that the exchange integral is a function of the 
instant disposition of the atoms, which change beca,Y,se 
of their thermal movements, has been proposed in ref. 11. 
As compared to the conventional approach (see, e.g. 
ref /2/ ), this method is not restricted only to considera­
tion of the linear terms in the expansion of the exchange 
integral, but allows one to consider in self-consistent 
manner the effects of the anharmonicity in lattice vibra­
tions, which can be substantial in some definite cases. 

This approach gives us a possibility to investigate 
in self-consistent manner the phonons and the magnetic 
excitations in the crystals hi. On the basis of this method 
using the theory of anharmonic crystals /4,s/, in ref./6f 
the equation of state of the ferromagnetic crystal has been 
derived, which makes it possible to consider in a unique 
way its thermal, magnetic and mechanical properties. 

The purpose of the present work is to investigate the 
ferromagnetic crystal under a constant pressure and at 
low temperature, to find out the explicit expressions for 
the temperature dependence of the lattice constant and 
its contribution to the magnetization. We use the pseudo­
harmonic approximation I 4/ for the phonon system and 
the mean field approximation /7/ for the spin system, 
which at low temperatures gives us the corre<:tJemperature 
dependence of the magnetization. In ref. It within the 
framework of the Ising model a similar approach was 
used to investigate the magnetization in the vicinity 
of the Curie point. 
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In Section 2 the Hamiltonian and the equation of state 
of the anharmonic ferromagnetic crystal and the magnetic · 
excitation spectrum in the mean field approximation and 
at low temperatures are discussed. In Section 3 an analysis 
of the spectrum and the magnetization with the thermal 
expansion of the lattice taken into account is given. 

2. Hamiltonian of the System. Green Function 
and Approximate Calculation of the Spectrum 

Let us consider a ferromagnetic crystal, consisting 
of N magnetic atoms, which form a simpleBravais lattice. 
We assume that the spin-spin interaction can be described 
by the Heisenberg Hamiltonian and the interaction between 
the atoms determines the potential energy U (R1 .• • , RN).The 
total Hamiltonian of the system can be written in the 
form 

}{ =H + H + H , 
L s 1 

a a 
I FE R e· 

E,a 

(1) 

(la) 

(lc) 

Pe and R e are the conjugate momeqtum arid coordinatP 
of the atom in the lattice site E, fl. is the Bohr magneton, 
H - the external magnetic field, ....Se - the spin of the 
atom in the lattice site E, 1 (Re -R m J - the exchange 
integral, which we assume to be positive. H1 describe~ 
the effect of the external forces Fe, Which deform the 
crystal lattice.· · 

The equilibrium positions of the atoms in the lattice 
points e a are determined by the equality: 

a a 
Re = <Re> t u£= fa+ Uf' (2) 
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}( =H + H + H , 
L s 1 

iPe .... .... 
H L = l: -- + U( Rl' ... , RN), e 2M 

z 1 .... .... .... .... 
H s = - p. H ~ S e - 7 l: I ( R e - R m) Se • S m , 

e. m 

Hl 
a a 

l: Fe R e· 
e.a 

(1) 

(la) 

(lb) 

(lc) 

If and R e are the conjugate momeqtum arid coordinat~ 
of the atom in the lattice site e, p. is the I Bohr magneton, 
H - the external magnetic field, 3e - the spin of the 
atom in the lattice site e' J ( R e - R m) - the exchange 
integral, which we assume to be positive. H

1 
describes 

the effect of the external forces Fe, which deform the 
crystal lattice. 

The equilibrium positions of the atoms in the lattice 
points e a are determined by the equality: 

a a a 
Re = <Rp> 1- ue= fa+ up , (2) 
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where the statistical average < ... > is calculated at the 
equilibrium state of the crystal by the Hamiltonian I 1/ 

}( }( • 
' · S ( T ) • c• ( - T} ·, ... / = • p e . . . 1 ·'P e . (3) 

Applying the expansion of the potential energy in powers 
of up - the thermal displacements of the atoms, we can 
write: 

f12 
::£ - r "' 

~ II ,_ r :Til' "~ o n! 
~ <Jl I II It 1 . . . II n , 

1 ... 11 

where we introduce u 1 

al ... an 

<I> =:: <l> 
1. · · n o o 

l 1 ... r n 

a, ur 1 . etc. and 

a 1 a, 
= V ... V Uo ro o ) p1 r, ., .... ,r, . 

(4) 

(5) 

A similar expansion of the exchangP intPgral in powers 
of u r1 gives us: 

, . Z I . ":' I . · ' 
11. -1dl ~ .\1 - --:y ~ ~ -- ~ ./ (f-m)u ... 11 .'\ 0 ;.'\ • 

.'i I' 1 - n n ! 1 I · 11 I 11 r rn 
t t m n=-=0 .• 11 

(6) 
where 

.r 
I ... n 

• .... a 1 ... a .... -> u 1 an -> .... 

( P- m) ~ ! n (P- m) =V ... V .I 
0 

fP-m) = 
p 1 ... en e 1 en 

n a 1 an .... .... 
JJ( 8. - 8 ) V o ... V n !o rp-m). 

(n zm t [ ~ 

i =1 
(7) 

To take into account the anharmonicity of the atom 
vibrations, we will keep every term in the expansion 
in (4) and (6) unlike the common harmonic approximahon 
for the lattice Hamiltonian and the linear approximation 
for the spin-phonon interaction /21, 

Taking into account that the average force acting 
on every atom is equal to zero and assuming the spin­
phonon interaction to be small enough in the case of 
isotropic pressure r we get for the equation of state 161: 
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_I_ I 
P =- 3 ~e,a 

a 1 .... .... .... .... 
<--U> +--I (e-m)a<S 0 .S > x a R a 6V 0 m L m f L,m,a 

a .... .... 
x<---J(Ro-R )>. 

aRa L m e 
(8) 

This expression determines the dependence of the equilib­
rium lattice parameters on the temperature and the 
external forces. 

To find the magnetic excitation spectrum we will use 
the Green function method and consider the two-time 
Green function composed by the spin operato-rs S l = 
- s X + . s y I 9/. - e -' e · + -

Gee' (t-t')==«Se(tJISf,(t')». (9) 

Using the equations of motion for the operators in 
Heisenberg representatiop we get the following equation 
for the Green function (9):: . 

(i a~ - p.H)Gfi,(t-t') = 2<Sz>8w.)>(t-t') + (10) 

00 1 .... .... z + z + -
+ I --;;! I ~ ... nre-m)«ul ... u/SmS e -Se Sm)(t) ISe,(t')». 

n=O m,l ... n 

Taking into account the spin-phonon interaction in 
the lowest order only, we get a renormalization of the 
exchange integral in the mean phonon field and for the 
Green function in (lO)we can write /I, 3, Io/: 

z z - z + -
« u I .. • u n s m s e I 5e , » "" < u 1 ... u n > « s m s e I Se , » . ( ll) 

For the spin Green function we usk also the mean 
field approximation /7/, which does not take into account 
the inelastic spin-spin interactions: 

+ z - + -
<< s e ~ m I Se, » = A em «S e I s e, » ' (12) 

where 
1 z z z 

A 0 =S+--12<(50 -S)(S -S)>-2S(S-<S >)+ 
Lm 2<SZ> L m 

(13) 

- + 
+ <SeS >1. 

m 

6 

J 

f .. 

}, 

Aft~r Fourrier transformation of the Green function 
according to: 

1 
oo 1 -i~:rr-i)-iuJ(t-t'J 

GP£, (t-t') '-" -:2; IN I r G/c")dctJ (14) 
-00 q 

from (10) we get the following expression: 

2<5 ·-. 
G (ui) cc ----q --

(I)- p.H - E(q) ' (15) 

"" "" 1 "" "" E(q) = S(!0 -1 ) + -N I cp(q')(f, -1 ,), (16) 
q ' q q -q 

where 

1 !. 
¢( q)= N < s z > e. Dl 

q 

.... 
-iq ..... rf_;, . z z e I<(Se -S)(S m -S)> + 

+ ~ <S;s:>-SrS-<Sez>)l (17) 

and J ( q) .is the Fourrier transform of the renormalized 
exchange integral: 

"' .... .... "" I 1 a f3 
] 0 =<f(Rn-R )>,.,!. - -;-l<(uo-u ) (uo -u )> x (18) 

r m . r m n f 2 r. m L m 
n=O 

fL (:3 -+ -+ 
x VrVylf0 (f-m). 

The approximate expression (18) represents the renor­
malized exchange integral in pseudoharmonical approxi­
mation Is/. 

If we consider the low temperature limit of the spect­
rum (16), using the Holstein-Primakoff representation h 1/. 
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sz=s-n,, 
f 

+ 
n

1
= a 1 a

1 
- + + 

<Se Sm>.., 2S<ae am >(1 + O(n 1)) 

[a 1 ,a;,] = Bff' 

(19) 

and keeping the terms up to the first order in excitations 
number N : ... 

q 1 j~:re--:.) 
<a+a >=-If Nq . f m N q 

we obtain for the spectrum (16) the expressions: 

... "" "" 1 E( q) ~, 5(!
0 

- J ) - -N I N ,(!
0 

+1 , -1 -1 , ) . (20) 
q q q -q q q 

I q, 

This expression coincides with Dyson's expression /I zl, 
but instead of J q here '1 q appears because of the 
anharmonicity of the lattice vibrations and the spin-phonon 
interaction. 

3. Analysis of the Spectrum and Magnetization 
Taking into Account the Thermal Expansion 
of the Lattice 

Here and throughout this part we shall suppose that the 
lattice potential can be described by two-body interactions: 

-+ -+ 1 ... -+ 

U(R
1

, ... ,RN) =2 I cp(Rm-Rn) (21) 
n,m 

and we shall consider the spin and the phonon systems in 
the nearest neighbour approximation. Under these assump­
tions the equation of state (8) takes the form: 

z e "' "). ... ... 
p =-- 1¢'0) - I {e)..: Se. 50 > l , (22) 

6V 

where z is the number of the nearest neighbours, e is 
the separation between the nearest neighbours, V is the 
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1 

Jl 
ij 

' ( 
i 

volume of the elementary cell, the prime implies diffe­
rentiation with respect to f . 

The separation between the nearest neighbours under 
a constant pressure depends on the temperature and the 
equation of state at zero pressure takes the form: 

-... -i' _. ~ 

¢'(f) - <S e . S 
0 

> J '(f) ,~ 0. (23) 

The renormalized pair potential and exchange integral 
in pseudoharmonic approximation /s/ can be represented 
like this: 

"" ¢(e) I-1-( ~2/cp(2n)(e), 
n=O n! 2 

"' !(e) 
00 1 -2 (2 ) 
I -, ( __!!_)" J n(e}' 

n=O n. 2 

(24) 

- - """* -+ ..... 2 2 
where u 2 = uj = < [f.(u e -u )] >If .At low temperatures we 
have "U 2="ii~"';;f=o+ e. wlfere f,, T 4 (see, e.g. ref/ 51). 
Then (24) takes the form: 

:::::: ::::: :::::: 

¢reJ "' ¢0 rv + e ¢'~ (fJ. 

"" 
:::::: :::::: (24a) 

J (e) "" fo m + f, J ;' (f) , 

where the expressions for ¢"'0 (f) and l 0 (fJ can be obtained 
from (24) by means of substitution u2 = u-;.=O . 

The separation between the nearest neighbours f can 
be expressed like f = f( T) = fo + Bf(T), where fo is the 
equilibrium separation at zero pressure and zero tempe­
rature, determined by the equation: 

; , re J - s 2 1, rf J = o . 
0 0 0 0 (25) 

Using (24a) and taking the terms up to T 4 , from the 
equation of state (23) we get: 

- - -+ -+ 2 -
oe(T)~~e0)-S

2/;'(e0Jl=(<Se.S0 > -S .) i; (f
0
J + 

2"" "' 
+ ~ 1 s 1 ,, r e J - ,~.. ,, r f J 1 

~ o o 'f'o o · 
(26) 
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Using the results of ref. Is/ and (19) from (26) we 
obtain: 

5 
- 4 

MrTJ =, AT 2 + B T , 

where for simple cubic lattice: 

p.H "' "' s/2 
A= -217525/2 r-T )!~ re

0
)/[4175]0 re

0
)] {re

0
) 

B = 17 4 [5 2 J~"re 0)- ;;;'re
0
)]/10w

3

0 
¢"re0 ) frfoJ 

rrr J = ; , r e J - 5 
2 7, r e J 

0 0 0 0 0 , 

w
0 

= 1,05 y8¢"re 0 )/M. 

00 

Z PrxJ = I 
n =I 

-p -nx 
n e 

(27) 

In the expression (27) for the thermal expansion of the 
lattice constant besides the usual term BT 4 a supplemen-" · 
tary term Ars/2 appears because of the spin-phonon inter­
action. ,Obviously in the low temperature region ro = 

:= T /4175!
0 

reo) « 1) this term is the dominating one. 
In the considered case for ferromagnet we have A> 0 
a,nd 8>0. This is a consequenc~ of the fact that usually 
J~re 0 ) <0, {re

0
)>0(because¢';re

0
)>0 and ¢'~rf0 )> 

2- ~ 
5 1 ,, (f ) and ¢ ,, r e J < o . 

0 0 • 0 0 

From (27) for the thermal expansion coefficient we 
get: 

1 d 
'I = - -- 5e(T) 

e0 dT 

1 5 3/2 
-t- r 2 AT + 4 8 T 3) . 

0 

(28) 

To obtain the expression for the relative magnetization 
at low temperature 

a = 1 -
1 H .... 

5N I [exp p. + E(q} -1 
q T - 1] 

(29) 

10 

we have to calculate the spectrum (20) which in the 
nearest neighbours approximation for the simple cubic 
lattice when q .... 0 and T .... 0 takes the form: 

... 2 2 2 "' 1 ~, r eo J lo re oJ 
ErqJ = 5 q eoJoreo)[1 +' "' + 5e(T)--;;- --]x 

J 0 ( eo ) J 0 reo ) 

X [1 - 17 - Q(S) ( T ) S/2 z ( p.H) ' 
S 4175! (f ) s/2 T 

0 0 

(30) 

-1 -1 -I 
where Q(S) = (1 + 0,03 S ) /(1 -0,1 S ) + 0,17 5 . 

The second term in the last brackets in (30) is caused 
by the integral term in (20) (see, e.g. (18) in ref. /13/ ). 
Using (27) and (30) for the relative magnetization (29) 
we obtain: 

3/2 4 4 
a= l-aO -{30 -yO , (31) 

where we introduce: 

1 uH 
a=- z ;· r~J 

5 3 2 T 

f3 
= __!_ Q.(S) z (p.H ) z ( p.H ) 

2 11 S 3/2 T s/2 T 

H H "" 2 "" 
y=317Z3/2(p.T)Zs/2(I!:.TJ[f~ Oo)] /lo (eo){(eo). 

In the expression (31) besides the Bloch term (a 0 
312 

) 
and. the Dyson term ( f3 0 4 

) there appears a third term 
(yO 4 ) due to the dependence of the lattice constant on the 
temperature. 

4. Discussion 

The principal result of the present paper is the 
microscopic derivation of the thermal expansion of the 
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lattice constant, where the coefficients are explicitly 
expressed by the spin-phonon interaction constant. The 
temperature dependence in (27) coincides with the result 
obtained in the phenomenoloo/cal way in ref. I 2/. There 
the. term proportional to 1' 5 2 appears not from taking 
into account the thermal expansion of the lattice constant, 
but from the renormalization of the magnetic excitation 
spectrum. 

The exp!ession (27) indicates that at low temperatures 
( 0 "· 1'/ ·ITT.'i .I o (f 0 ) << 1) the spin system exerts an 
ess~ntial influence on the thermal expansion. The first 
term of (27) introduces in the magnetization an addition 
proportionaL to T 4 , the coefficient y of which contains 
the factor ri ~ (f0 J F playing in our case the role of the 
effective coupling constant. 

The influence of the thermal expansion on the magne­
tization at low temperatures can be comparable with 
the spin-spin interaction eff~ct. It is S!!en from (31) 
that y "{-3 if the condition [.7~ (I' 0 JI 2

-c .~ (f0 Jf(f 0 ) is 
fulfilled, i.e. if the spin-phonon interaction is strong 
enough. 

We point out that the method of the present paper can 
be used in the investigations of the solid 1 II t' which 
represents a nuclear antiferromagnet and at the same 
time a strongly anharmonic crystal. 

Analogous investigations for the temperatures in the 
vicinity of the Curie point will be carried out elsewhere. 

We wish to thank Dr. N.M.Plakida for suggesting this 
problem and for many valuable discussions. 
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