





1. Introduction
A _ Series of works have been euccessfullyv performed At“"
present, investigating the properties of the threecnncleon »
~ bound states by means of different epproeches. Most of them are
"quite well worked up and can be applied to the solution of the
~ three nucleon problems involving rather complicated realistic
{nteractions between the nucleons. .

Howeirer; when the total energy for the three-nucleon
i system is positive, each of the proposed approaches contains
its specific difficulties. For instance, using the variation
approaches or those baged .on ai expension in terms of K~-har- .
monics ,one is faced with the problem of the esymptotic behavi-_
our of the wave function in the configuretion 'space ) Further— L
more, in the integral equation formulation of the three-nucleon .
problem 2) the consideration of positivo energies leads to the
appearing of. moving singnlarities of. pure kinenatic origin,
"which rather complicates the solution of the corresponding in-
tegral equation. In spite of these serioue difficulties a cer-
* tain progress in solving “the Fadeev—equation at positive ener-
gles has recently been achieveda) '

possibilities of overcoming the above,-mentioned

difficulties vill be considered below. From a methodical point.
of view it is worth comparing some different methods of gol- o
ving the integral equation using a model equetion which has &
rether simple structure and contains at the same time all the ‘
' gingularitics of the realistic cage. The equetion of skornyekov—
Ter-Martirosyan for the s-wave quartet nd—scattering is- Just

- of thie type. This equation heas the followins form:
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where a( k, ko ) is the s-component of the quartet nd—soatteriné B P o As it is seen from ) the kernel of the integral equstion (2)

e

amplitude and ; . N : : - ) k ) . ' - has moving singularities of the losarithmic type defined by the L '
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where E = - &% + lK" stands for .the total energy of the - o 1 a - . 5 =
system and the quantities el and kv Z are given by.- : o ST 3= i..‘_g\[i.xz : ."': L
’ The position of the singularities of the kernel in the (z,y)-
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Let us now consider the .dimensjonless variables defined by ‘ o o ' . A st
' : - 2. The Expgnsion of the Jterated Kernel"‘ -
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. v e . -
. " - .of the kernel in the Paddeav equation can be weakened or abolished

and instead of the flmction a( I: K ) introduce a new func-
i ¢ performing a suitable number of iterations, Therefore, instead of

tion ' ‘ 1 o
: - e e - . equation 2 we shall consider an itoreted one? .
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' If ome considers in more details the stru.ctu.re of the
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and fo t
} he quantities R1 and R the following deeompoaitions
take place. :
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!l‘ald.ns into account the behavionr of the component nd(i) (x,2) of
the iterated kemel in the rey.on of the points 0. 1 lnd ol -of
» vthe variables X,y we introduce three qstm of . orthononal fun-~
. ctions for the expansion of tha intogral kemel. .
In the region [0, 1] the components n§ )(x.s) willibe
. expnnded in terms o.f. the tunctionl P (x) and \P,(x), while 1n
the regian l1, ov_] = 1n terms of tho runctions P (1/:) ‘Here
; the P (x) are tho nnal I.esendrq polynoninals and the ‘F(x) m
defihed by .
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where the P (1 2) are the Jacobi polynomials. The functiona N ;

W (;)are 1ntroduced for those components R(i)(x,z) which
contain the functions G(‘?‘) (x,y) as integrand. Using these o
three orthonormal functions for the expansion in’ eq. (4), one -

obtai.us for its solution.
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Here the unimown coefficients'c(i) and cy. are to be found as
a result of solving the corresponding system of algebraic ‘

‘e quation S.

3. The Ini:arpolation Method

-The second. approach for the solution“of eq.(2)'ia a..
well known standard method: for. solving integral eqnations.'
This method involves the transformation of the integral
equation to a get of algebraic equationa for the unknown fun~-
ction B(x) calculated at some knot points. However, because
of the presence of the singulerities in the kermel of eq.(2), -
thia solution procedure of an integral equation cannot be . °
applied. Providing that the solution of - eq (2) is & smooth ‘
function in each of the intervala 0,11 and [1 2] it cen -
be approximated within the intervals by means of a Lagrange .
polynomial. A similer approach was also nsed in Bef.;e) ~Con= :
sidering the above-mentioned the integral in the right hand :
side of eg. (2) can be decomposed as ‘a- sum of two. integrals :

PSrng(x.@B(g) &o\%\k(hg)ﬁ(3)+PSA§K(~/.3)B(33 @
A



where .

r— ;
L Gulng) i 2 Viz{z L
th) Y Zx;f. ey LRy

As it follows from expresikions (3) and’ (8) the first sum of the
right~hand side in (7) contains the moving logarithmic sing'ula-
“rities, while the second one contains that part, wh:lch corres-
ponds to the pole term. Now we can single out the sing'ular fag-
" tor G (x,y) in the first integral in (7?) and put down this in-
tegral as a sum of integrals over intervals h = i/, :
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Since it was supposed that the function @(y) is a smooth one
in the interval - [0; 1] , it can be approximated in each of

the subintervals by a Lapa.nge interpolation Polynomial with
a high: accuracy.

‘P(g)—z—[— /&)4)(30 o '(;n) .'

here @(yk)'are the values of the function @V(S’). at the inter~
polation knots. On inserting (11) into (9) one can see that
the corresponding integrals nay be obtained analytically. .

.. The second intesral in eq. (?) can be treated in the
same. manner by decomposing the interval L1 °°_] into two parts.

i
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In eo doing the integral for the first interval can be taken

' by the method deacribed above and to evaluate the integral for )

the second interval we use the Gauss quedrature approximation. :
A simpler method uaually ueed for eolving the principal value o
of an integral can be applied'
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‘In the firet integral at the right-hancl aicle of (12) the intes—'

rand is a snooth function at y 7 1 and therefore it can be cal-
culated using again the Gauea quadrature approximation. It N
should be noted that the function 4.7 (y) in (10) at y = 1 has

a derivative which becomes infinitive and therefore, in seneral,-_
it is impoesible to use the approximation “11). However, in -

the sense of integrals the appromation(“) 1is eufficiently

good. We have a.nalosous situation for the function F(x.y) in -
the expression (12). )

4. Results and Discussions

Using the two- approachea described above, the soluti- '
ons of the integral equation . (2) have been obtained for. some _
incident neutron energies from 4-20 MeV. The’ en_paneion coef-
ficients, dﬁiningaccording to (6) the eolution%of equation
(2), obtained by the first proposed method, are 'givenin'lfable
1. As it is seen all coefficiente ‘decreaae rather rﬂapid:h"‘_



with increasing the number of expansion functions. loreover,

considering that the orthonormal polynomials are bounded.

the coefficients in the Table indicate a good convergence

of this method. The solution ot eq (2) for the real and

imaginary part for two different incident neutron energies
6.7 MeV and 13.4 Iev,respectively, is given in Fig.z.

Using the second approach for the solution of eq (2)

the number of subintervalsg in’ the interval [0,11 in the
expression (9) has been varied from N = 6 to N = 30. lore- o
over, the desired solution. according to (11) has been appro-.
ximated for each subinterval by a Lagrange interpolation ‘poly-
nomial of the 4th degree. Representation (12) has been used '

“for the interval from 1 up toao ', whose regular part ‘has ,'
been again evaluated by means of the Gauss quadrature appro-.
ximation with 18 knots. It vas “found out from the calcula-
tions that the differences between the solutions for' the cases
with N = 20 and N.= 30 do not exceed 1%. ‘

The relative differences between the solutions of
eq. (2) predicted by the two approaches proposed are shown in
Fig.}. ‘As it can be seen the agreement between the two solu-
tions is rather satisfactory and in all cases the difference
does not exceed a few percents. » » :

In Pig.4 we show the dependence of I<Ciﬁsi “on"the
incident neutron energy, where S;_ is the.real part of the

s-wave phage. The relative differences of  the phases predic-

ted by the two approsaches asmount to one percent. 4s 1t cen be

seen in'the'figure, the curves obtained by calculations with -

the;s ~function potential reproduce the shape of the experi-

mental dependence of the quartet phase on the energy.

5. Conclusions Vel . L

In the present paper we have shown that the two comple-
tely different approaches’ to the solution of the singular equa-

_tion (2) result in practical coincidances. It is worth noting

that the second approach which is based on a polynomial approxi-
mation of the resultant function is simpler to use than the one,
based on an expansion of the iterated kernel of the equation (2)
in terms of orthonormal functions. The uae of the iteration for
the solution of the equation (2) should be considered as a
methodical -task in' order to check the simpler second approach;'

-We appreciatefDr.AP.Beregi’for the valuable discussi--
ons and relarks. One of us (E.G.T.) is grateful to Prof. N.A:-
Perfilov for the permanent interest in the work. 7’
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, . Tabl?“ .
The resl and imsginary part of the coefficients, defined
By expression (6) for equation (2) and calculated by the

" first described expansion method are given for two diffe-

rent energies of the incident neutrons.

N-=11

-

E = 6,69 MeV

E= 13,36 MeV

m Re C Jm Cy Re Cm Im Cm
I 0.84103 ~0.38700 4,01040 ° 0.03696
2 0.12392 ° ~0.00261 0.31427 0.28413
3 0.01796 «+0.01098 -0.00055 0,05450
4 - -0.001I3 0.0I256 ~0,00I29 0.03361
5 ~0.0006 -0,01100 0.00861 0.04133
6 0.00178 -0.02047 0.0II124  0,07027
7 0.00073 ~0.0I079 0.00469 0,03526
8. 0.00002 -=0,00I81 . '0.000I9  0.00390
9 «0.00009 0.00199 -0.00I54  -0,00559
" 10 0.00071 - 0.00I67 10.00287  =0.00388
11 0.00145 " m0.00024 10,00744 - -0,00281
n re c{¥) Im (V) re ¢\ I clt)
1 ~1.07984 ~0.62621 -0.52708 =3.25708
3 " 0.23443 ~0,79817 1.82421  -2.78396
5 0.08427 0.05823 0.47234 - 0.40002
7 “0.05157 0.0I127 0.28566 .  0.I5426
9 0,020I9 ~0.00625 0.I7916  -0,09864
I 0.02006 ~0,00017 0.I3068 ~ 0.00383
n Re 0527 Im Céz) Re cgf) Im Céz)
1 -0.81169 ~0.46209 0.57243  -2.13414
3 0.04888 -0.51804 -0.13947  ~1.96408
5 ~0.07325 ~0.05446 0.30938  ~0,14I51
7 +0.09528 -0.03261 0.I5722 . -0.11516
9 ~0.08445 -0.0I350 0.1II04  -0.04I4T
I 0.07735 ~0.01220 0.07377  .~0.04765
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Fig.1: The position of the moviﬁgAlogarithnic singulerities of -
' the integral kernel of eq. ' ‘ '
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. ?15.4: Curve 1 is'that obteined by the authors while the seéond
;_4 ) , e w . . . _ , one is the result of Ref, 5.  The results of a phase
‘ ‘; S : .i i _anelysis are from.Ref. 6. .. =~ '
"~ Fig.3: The relative deviationskobtained by thelproposed two i
o ‘methods for the solution of eq.(2) .
— real part of the ‘deviation - : ‘ A

~—=i-ee insginary part of‘the deviation
1o - By = 13,4 MeV ‘
2. =~ En = 6.7 MeV




