
COOBIUEHl1H 
OB'bE~l1HEHHoro 

l1HCTl1TYTA 
H~EPHhlX 

l1CCJIE~OBAHl1H 
.LlyCSaa 

E4 - 6746 

~ P. Rennert, P .Ziesche 
:s -:s • ·:I: s 
:= SCATTERING PROPERTIES ::::r 
;! OF A NEAREST NEIGHBOUR CLUSTER .... 
Ao • .... ... 
Cl: 
:I: 
A, • ... 
z • IA 

~ 1972 

+ 



E4 - 6746 

P .Rennert: P .Ziesche 

SCATTERING PROPERTIES 

OF A NEAREST NEIGHBOUR CLUSTER 

* Central Institute for Solid State Physics and 
Material Science, Dresden, GDR. 



I. Introduction 

To investigate the influence of a substitutional impurity in a dilute alloy on the 
electronic structure an.d on the transport properties the perturbation of the crystal po'­
tentia I by the impurity must be known. Using the muffin-tin appr~ximation of the crystal 
potential a first approximation includes a spherical perturbation within the muffin-tin 
sphere at the impurity site only.· But there are perturbatio~s at the neighbouring sites, 
too, arising from the. extension of the wave functions of the impurity valence electrons 
into neighbouring Wigner-Seitz eel ~s. Therefore a second approximation includes spherical 
perturbations at the first neighbour sites, too. 

In the second approximation the "'.'hole perturbation is not a spherical one. That 
means the perturbed cluster around the impurity has anisotropic scattering prope~ties 
not occuring in the first approximation. For the most symmetric case, twelve fee 
nearest neighbours, the extend of that anisotropy is investigated by means of the method 
of generalized phase shifts for a cluster of muffin-tin potentials / 1 • 2/ . According 
to this method the scattering behaviour of a cluster is characterized completely by the 

generalized phase ➔shifts 71 ,\ and an orthogonal and normalized set of partial wave 
amp I itudes A,\ ( n, ) , which are found by calculating solutions of the Schri:idinger 
equation for the energy E = K 2 with the asymptotic behaviour 

➔ • ➔ r 
+ c.c., n -

T r 
(I.I) 

... 
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The phase shifts result as eigenvalues of the set of homogeneous linear equations 

i ii' ii' ;' 
I. [o .. , 8 ,ctgT/ + NLL' - ctg T/ J ,) A ,\= 0 

, , II LL L A LL L I\ 

i ,L 

(1.2) 

for the coefficients 'A~ A , which characterize the wave function near the muffin-tins. 
The indices •i and •i' run over the different muffin-tin sites, L and L' over 
those angular momenta for which the phase shift of a single muffin-tin, T/ i , is 

different from zero. Ni[~ , and 11r, are characterized by the sites Ri of 
the muffin-tin potentials. After solving (1.2) the partial wave amplitudes can be calculated 

by ➔ 

➔ f -i Kn; Ri 
AA ( n ) = I. (-i ) e 

r i,L 

➔ i 
YL(nr)ALA ' (1.3) 

2. Nearest Neighbour Cluster 

In the f cc nearest neighbour cluster the muffin-tins are situated according to 
Fig.I. All sites have equal distance R= I Ri I from the origin. There are four distances 
between different sites: Rt i =R for ii =5,6, 11, 12, R Ji = y2 R 
for :i'=- 2,4, · .R1i;=;_y.J1?. for •i = 7,8,9, 10 and R13 ,,,,2 R . The phase shifts of the 
single muffin-tins are equal to each. .other in the problem considered here. 

The evaluation is done for the simple ca~e. that only the s -phase shift is different 

from ~era, T/ ~ =.TJ • In thi~ case only twelve coefficients Aj A appear (n equation 
(1.2). They can be determined considering the cubic symmetry of the cluster, because 

the partial wave amp I itudes AA (ii r) have to be irreducible repres~ntations of the cor­
responding symmetry group Oh ·. The absolute value of A O A is given by the 

normalization condition f dO \ AA (n)\2=l'. The realized representations A . are listed 
in Table I. 
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- ----- -----------------

Table I 
Realized irreducible representations 

X f 2 J 4 5 6 7 8 9 10 If IZ 

1 -t + + + + + + + + + + + } r; monopole s 
2 + + - - 0 0 0 0 - - + + 
3 + - - + -+ + - - 0 0 0 0 

4 0 0 0 0 + - - + + - - + 
} r,s dipole p 

5 + + + + - - - - 0 0 0 0 

6 + + + + 0 0 0 () - - - -
7 + - + - 0 0 0 0 0 0 0 0 

-s 0 0 0 0 + - + - 0 0 0 0 

9 0 0 0 0 0 0 0 0 + - + -

} r;z 
91.1adrupo!e] 

} I 

~s 
10 + + - - 0 0 0 0 + + - -
II + - - -+ - - + + 0 0 0 0 

(2 0 0 0 0 + - - + - + + -
} Tz5 octupo!e F 

Expanding the exponential function of eq. (1.3) similar as in eq. (3.8) into cubic harmonics 

Y,\, ( n➔r ) the partial wave amp I itudes A,\ (n; ) result next to as a sum of all cubic 

harmonics 

(2.1) 

But with 

(2.2) 

' which guarantees as a consequence of Table I the amplitudes A,\ (n,) to be really 

irreducible dipresentations of Oh , only those angular momenta r ,\ contribute, 

which belong t6 .. the representation ,\ . Therefore the normalized amplitudes take the ,· 
form 

(2.3) 

... 
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If one takes into account only contributions up to £'"" 2 , then according to the angular 
momentum expansion of the irr":ducible repres~ntations ~q. (2.3) simplifies to 

• r,\ ➔ 
A,\ fn,)~(-i) · Y,\ (n,) for A= 1, .•• ,9. (2.4) 

The 1' 25 representation ,\=10,11,12 has no parts e~2 . The normalization factor 
of (2.3) is also approximated, so that the A,\ (ii,) of (2.4) are again normalized to I. 
According to the realized irreducible representations (Table I) each of the representations 
occurs only one time. Using the connection between the coefficients Ao\ (Table I) 
equation (1.2) leads to a linear equation for each of the four different eigenvalues TJ 1 

11 11 and 11' 
15 ' 12 25 

C(l5 I/ J ~, 

t'(l5 I/ 15 

ctg11 + 4n0 (KR) +2n0(\f2 KR)+4nqCv·T K R)+n O (2KR) . , 

1 1 ..Ji (KR J + 2 i ( v·T KR J + 4i ( \fJK R J + i (2 KR J 
0 0 · 0 0 

ctg11 + 2 n 0 (K R)-2noCv:Ji<R )- n 0(2" R) 
---

1 + 2 j ( K R ) - 2 j ( 'v 3 K R ) - j (2 K R) 
0 0 0 

ctg,,-2n 0(K R )+2n 0 (v2KR)-2 n0 (y'YKR) + n r2K R) 
ctgTJ = ------=-----"-----.a:-------::.o_· __ 

1.2 
I - 2 j 

O 
( K R) + 2 j 

O 
( v 2 KR J - 2 j 

O 
(v' 3 K R) + j O (2 K R) 

ctg,,' ,,, ctg17 -2n 0(\'2 KR)+ n 0 (2K R) 
25 

1-2 j 
O 

(\· 2 .K R) + j 
O 

(2 KR ) 

6 
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For low energies, as expected, 71 1 ~ K, 1115 
holds, expressing the monopole-, dipole­

the correspond,ing scattering states. 

3 5 
- K and T/ 1 2 , T/ ; 5 - K 

and quadrupole-character, respectively, of 

3. Scattering of a Plane Wave 

The usual situation of scattering theory (incomin9 plane wave and outgoing spherical 
wave) is obtained by an appropriate linear combination fl/ : 

➔ 

➔ ➔ 11/A ➔ ➔ K 
<pi (r):ATTr<pA(r)e At(n&), nk -r· (3.1) 

Indeed, with the asymptotic behaviour (I.I) and with the completeness of the partial wave 

amplitudes 

from (3.1) follows 

·• i&r 
➔ 1Kt ... e 

¢ ( ( r J ➔ e + f(nr , nK J----;-

with the scattering amp I itude / 1 I , 

➔ 

nr 
r 

:=:::-
r 

for r ➔ oo 

f(n➔ ➔ ) 4rr ...- A- ( ➔ ). IT/A A*( ➔ ) , n O = - .:.. n r s1n T/ e , n O • 
rt< KA A A I\ 1< 

(3.2) 

(3.3) 

(3.4) 

(3.4) shows, that the scattering states determined by the cluster equations (1.2) are si­

multaneously eigenstates of the scattering amplitude 

fd ,..,f( ... ➔ ')4 r➔ ') 4rr . ITJA Ar ➔) u n,n • A 1n = -:_-sm11Ae A1n, (3.5) 
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owing to the orthogonality of the partial wave amp I itudes 
•, 

"' 
➔ ➔ a, f dil A~ (n)A,\, (n) = ,\,\, (3.6) 

,,, 
> 

Deriving (3.3), the formula 

it ➔ ➔ 
if< r 4 iT l o ( n r 

e ➔ 2.i Kt 

-• lir ➔ 4 -ilr 
-n f ) e - o ( n r + n R) e ] (3.7) 

has been used, which follows from the expansion of a plane wave into spherical harmonics 

.... 
,.r.;> · e .... ➔ 

e ~477 I ii ie (Kt)Y (n )Y (n R) 
L L r L · 

(3.8) 

and from the asymptotic behaviour of the spherical Bessel functions 

j£ (Kt) ➔ 

• ( £77 ) sm Kt - 2 
Kt 

for r ➔ oo • (3.9) 

4. Calculations of the Scattering Amplitude and Discussion 

According to (3.4) the scattering amplitude f(n, ,ni ) can be calculated 

from the generalized phase shifts 7/ ,\ and the partial wave amp I itudes A,\ (n➔ 
1

) , 

determined in Section 2. For low energies (considering r ~2 only) the result is with 

· the notation ' ,,;, i( n R 

f( ➔ ➔ 1 171 n ,n 0 )=-le 1 
T f, K 

17/t 5 
·sin71

1
+3e sinTJ15 P1 (() 

i i , 
+ 2.. ( e 7112 sin TJ 

1 
+ e T/25 sin TJ' ) P ( () 

2 2 25 2 (4.1) 

. . , 
4 77 17/ J ;!_ l~ ➔ -> 

+--(e sinTJ -e 5 sin71' )xlY (n )Y (n 0 )+ 
2 12 25 2 + t 2 + f« 
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➔ ➔ -• -) ) .. 

+Y2_(n,)Y2_(n,K )-Y2x (nr )Y2 _, ( n .~ j ·-Y2 /,1,J~/11() 

-Y2z (n t )Y 2z(n; )] I, (4.1) 

are the I~:! and I ', :!5 ' 
representations, res-

pectively, of the e = 2 spherical harmonics. 
Equation (4.1) shows that the E== ·O and I'.,., 1 part of I( t; .n'( 

angular dependence equal to that of a spherical scatterer. The I'·· 2 
J have an 

part differs 
according to the fact that the spherical harmonics combine to two different cubic represen-
tations lt2 and f'2s . 

Considering different wave vectors of the plane wave, · 1: , we find a different . ) . 
angular behaviour and different absolute values of f ( n r ,n k ) . For K 1,. ( .1 , 0, 0). 

-~ 
and .K = _!::_ (1,1,1) , respectively, we find for the I'· 2 

yJ 
part of f (n r ,i;K ) : 

5 iTJ 12 • 'TJ2's 
f 2 (i:r;1,0,0)=-;;_{2e sm71

12 
-e sinr1;

5 
)P2 ((). 

5 iTJ iTJ l1J : . 'f xy 
f
2

(nr ,1,1,0)=-;[e 12 sin71
12

P
2

(()-(e 12sin71
12

-(• 2 \inr1;_,,F2 -;/14.2) 

We see that for an incoming plane wave inthe (1,0,0) or {l.1,1; directionthe 
angular behaviour of the scattered wave is equal to that of a spherical scatterer, for 
f= 2 ,too. But the value of the amplitude is different for both directions. The difference 
is characterized by the amount of TJ12-r1;5 . For an incoming plane wave in the ( 1.1,U J 

direction an angular dependence not only characterized by the angle ~- between h 
➔ r 

and n K occurs. , 
For low energy the difference between 7/ 12 and 1/ 2 5 can be calculated using 

(KR) 
5 
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A numerical estimation leads to 71;5 /7112-2 i_n th~_ range \ 71 / K. R I< J , showing 
that the f -= 2 part of the scattering amp I itude can show a change of 100% comparing 

different wave vectors { • and equal scattering angle · <: . 
The results of these investigations show, that in simple metals where the wave 

functions of the valence electrons contain s- and p- parts mainly an impurity may 

be considered as a spherical perturbation. However in transition metals with d -elec­

trons in the conduction band the perturbation at nearest neighbour sites must be taken 

into account to explain the anisotropy of transport properties exactly. 

The investigations given here can be extended to higher angular momenta and to 
muffin-tins with p ~and d-phase shifts different from zero on the same line in a 

streightforward way. 

We are indepted to Dr.W.John for stimulating discussions. 
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Fig. I. Twelve nearest neighbour cluster . 
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