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l. Introduction

To investigate the influence of a subshtutuonal |mpur|ty in a dilute alloy on the
electronic structure and on the transport properties ‘the perturbatlon of the crystal po-
. tential by the impurity must be known. Using the muffin-tin apprommahon of the crystal
potential a first approximation mcludes a spherical perturbation within the muffin-tin
sphere at the impurity site only. But there are perturbahons at the nenghbourmg sites,
too, arlsmg from the extension of the wave functions of the impurity valence electrons
into neighbouring Wigner-Seitz cells. Therefore a second approxnmatlon mcludes spherlcal
perturbatlons at_the first neighbour sntes too.

In the second approximation the whole perturbatlon is not a spherical one. That
means the perturbed cluster around the impurity has anisotropic scattering properties

not occuring in the first approximation, For the most symmetric case, twelve fcc
nearest neighbours, the extend of that anisotropy is investigated by means of the method
of generalized phase shifts for a cluster of muffin-tin potentials /1,2/ . According

to this method the scattering behaviour of a cluster is characterized completely by the
generalized phase_shifts 7 and an orthogonal and normalized set of partial wave
amplitudes Ay (n_ ) , which are found by calculating solutions of the Schrodinger
equation for the energy £ = « 2 with the asymptotic behaviour
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The phase~$hifts result as eigenvalues of the set of homogeneous linear equations
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for the coefficients 'A;,,\ . which characterize the wave function near the muffin-tins.
The indices i1 and 1" run over the different muffin-tin sites, L. and L over
those angular momenta for which the phase shift of a single muffin-tin, 77L L, s
different from zero. NZL , and Lli » are characterized by the sitess R; of
the muffin-tin potentials. After solving (1.2) the partial wave amplitudes can be calculated .
by L o
5 . —iKkn, R; N i
Ay (n')=iEL(_l) e Y, (n JA, , . (1.3)

2. Nearest Neighbour Cluster

In the fcc nearest neighbour cluster the muffin-tins are situated according to
Fig.l. All sites have equal distance R=]| ﬁi | from the origin. There are four distances
between different sites: Ry; =R for i =5,6, 11,12, R1i =v2 R
for {=2,4, Ry ,=/IR for 1=7,89,10 and Ry3=2R . The phase shifts of the
single muffin-tins are equal to each. .other in the problem considered here.

The evaluatlon is done for the snmple case, that only the - s -phase shift is different
from zero, 1]0 =7 . In th|s case only twelve coefficients A(;,\ apbear in equatibn
(1.2). They can be determined considering the cubic symmetry of the cluster, because
the partial wave amplitudes A,\ (n ) have to be irreducible representahons of the cor-
responding symmetry group Oh . The absolute value of AO/\ IS glven by the

normalization condition [dQ| 4y @)? =1, The realized representatlons A are listed
in Table I.
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Expanding the exponential function of eq. (1.3) similar as in eq. (3.8) into cubic harmonics
Y,\’ (n"r) the partial wave amplitudes ‘AI\ (ﬁ; ) result next to as a sum of all cubic
harmonics
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which guaréntees as a consequencé of Table | the amplitudes Ay (n,) tobe really
irreducible réprésentations of Oy , only those angular momenta f')\ contribute,
which belong to.the representation A . Therefore the normalized amplitudes take the
form
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If one takes into account only contributions up to ‘ f=2 , thén according to the angular
momentum expansion of the irreducible representations eq. (2.3) simplifies to
. . )
R Y > B ‘ o
A/\ (n )=(—=i) - Y, (n ) for A= 1,...,9. (2.4)
r’ Ay - :

The |',5 representation A=10,11,12 has no parts £< 2 . The normalization factor
of (2.3) is also approximated, so that the A) (ﬁ’,) of {2.4) are again normalized to I.
According to the realized irreducible representations (Table 1) each of the representations
occurs only one time. Using the connection between the coefficients AOI)\ (Table I}
equation. (1.2) leads to a linear equation for each of the four different eigenvalues Ny
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For low energies, as expected, 7, ~ «, Nys ~K and 7,5, ;7,5 ~K

- holds, expressing the monopole-, dipole- and quadrupole-character, respectively, of
the corresponding scattering states.

3. Scattering of a Plane Wave

The usual situation of scattering theory (incoming plane wave and outgoing spherical
wave) is obtained by an appropriate linear combination

> . 5> I - - £
by (F)=dn Xy (o N Af(ng), Ay =, k=x. @

Indeed, with the asymptotic behaviour (I.I) and with the completeness of the partial wave

amplitudes
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(3.4) shows, that the scattering states determined by the cluster equations (1.2) are si-
multaneously eigenstates of the scattering amplitude
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JdQ’ f(n n )A/\ (n)——— 51"77/\ A A/\(n), (3.5)



owing to the orthogonality of the partial wave amplitudes
. - ‘ i L2 B
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Deriving (3.3), the formula
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has been used, which follows from the expansion of a plane wave into spherical harmonics
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“and from the asymptotic behaviour of the spherical Bessel functions

sin(kr ~ 8—721-)

J'ﬂ (kr) -~ - for [ oo, . (3.9)

4. Calculations of the Scattering Amplitude and Discussion '

According to (3.4) the scattering amplitude f(r?r ,ﬁ'g ) can be calculated
from the generalized phase shifts 7 and the partial wave amplitudes A/\ (n"r) .
determined in Section 2. For low energies (considering [ < 2 only) the result is with
‘the notation (¢ = r‘z'i ﬂﬁ
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+Y_(n )Y, (mp )=, @, Y, (dy ) =Y, (a1 Y, (ny)
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)4 » Y,  and Y2x y YV, ¥ are the l‘l’/ and |/ representations, res-

2y’ " 22z 25°
pectively, of the £= 2 spherical harmonics. ) o i
Equation (4.1) shows that the f= 0 and 1—1 part of l’(r;,.nlt ) have an
angular dependence equal to that of a spherical scatterer. The [ - 2 part differs
according to the fact that the spherical harmonics combine to two different cubic represen-
tations 13, and I35 , o
Considering different wave vectors of the plane wave, & we find a different

’

angular behaviour and different absolute values of [(n . g ) - For £ A (1.0,0).

K= =2.(1,1,0) and K = _f':(l,l,l) , respectively, we find for the -2
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We see that for an incoming plane wave inthe (7,0,0) or (l.1.1) direction the
angular behaviour of the scattered wave is equal to that of a spherical scatterer, for
f=2 ,too. But the value of the amplitude is different for both directions. The difference
is characterized by the amount of 7]12-7]2'5 . For an incoming plane wave in the (7.1,0)
direc_t’ion an angular dependence not only characterized by the angie ¢ between 5 ,
and np occurs. ;

For low energy the difference between 7,, and 7,; can be calculated using

(2.5): 5 5
(«R) n- (kR)
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A numerical estimation leads to 17 /7712~2|n ‘the range \n/KR |< 1 , showing
that the / =2 part of the scatterlng amplitude can show a change of 100% comparing
different wave vectors £ ¢ and equal scattering angle £

The results of these investigations show, that in snmple metals where the wave
functions of the valence electrons contain S— and p- parts mainly an impurity may
be considered as a spherical perturbation. However in transition metals with . d -elec-
trons in the conduction band the perturbation at nearest neighbour sites must be taken
into account to explain the anisotropy of transport properties exactly.

The mvestlgatlons given here can be extended to higher angular momenta and to
muffin-tins with  p -and d-phase shifts. different from zero on the same iine ina
streightforward way. o . : ‘ ' :

_ We are indepted to Dr.W.John for stimulating discussions.
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Fig. I. Twelve nearest neighbour cluster.
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