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The scattering properties of spherically symmetric potentials are usually described · 
by phase shifts 11 f . To describe also the scattering properties of non-spherically 
symmetric potentials (molecules) Demkov and Rudakov I 1 I recently introduced genera­
lized phase shifts 11,\ and corresponding partial wave amplitudes 
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entering into the asymptotic behaviour of the scattering states as follows 
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This concept is useful also in electron theory of solids for both ordered and disordered 

systems. 
By means of such phase shifts 11 ,\ and amplitudes AL,\ the Korringa-Kohn-Rostoker-

scheme 12 I for band structure calculations can easily be generalized to non-spherically 
symmetric potentials within the (non-overlapping) muffin-tin spheres 131 : 

0 • (3) 
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The lattice structure is cont-ained only in the usual KKR-Structure matrices B LL ' ( k ) , 
while the MT -potential enters only via 11,\ and ALA , determined by a coupled set 
of differential equations for the radial parts RL)..(r) of the scattering wave functions 
¢,\ (r) . This generalization (3) allows to overcome both restrictions of the usual KKR-

method: 
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l.The assumption of constant potential between the MT-spheres is of course reason­
able only for close-packed structures. But in the case of the more open structure of 
diamond type non- constant interstitial potential must be taken into account, for example 
by installation of additional MT-potentials at interstitial sites between the atoms. This 
has been done first by Keller I 4 /using spherically symmetric potentials within the in­
terstitial spheres. But these interstitial potentials are generally non-spherically sym­
metric. Such interstitial potentials increase of course the number of scatterers in the 
unit cell. Although the method for lattices with several atoms per unit cell already exists, 
it is useful to consider all scatterers in the unit cell as a whole and to describe the scat­
tering properties of such clusters as in (3) by means of generalized phase shifts Tf A 
and amplitudes A L A . 

2. The assumption of spherically symmetric MT-potentials at the atomic sites 
must be corrected, if for instance transition metals with partially filled d-bands /5/ or 
semiconductors with covalent bonds /6/ are considered. In this case (3) can also be 
applied. 

In the case of a lattice with several atoms per unit eel l (with phase shifts Tf ~ 

at positions a->n ), the corresponding cluster phase shifts 1f A are as recently shown 
by John and Ziesche /7/ determined by an algebraic eigenvalue equation 

n ', L' 

.N nn, - ctP. Tf Inn, + ctP. Tf n o , o ,] An,'\= 0 • 
LL ' A . LL ' L nn LL L 1\ 

N nn ' and f nn 'are certain matrices depending only on the cluster structure within 
LL' . LL' 
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The amplitudes A L'A follow via. the solution of ( 4) from 

l l on A n 
. LL' L 'A n ",L' 

(5) 
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This approach is of interest for band calculations of lattices having complex unit cells 
with many atoms. The following advantages exist: 
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1. The eigenvalue problem ( 4) is independent of the Bloch vector. 
2. The number of essentially non-zero cluster phase shifts increases only with the 

linear dimension of the unit cell. This means, that some of the cluster phase shifts are 
very small for a given energy. This was shown by Demkov and Rudakov I 1 /tor the case 
of s-scatterers. The decrease of the number of phase shifts of course reduces also the 
dimension of the KKR matrices (3). 

3. Variations of the atomic sites or potentials within the unit cell can easily be 
handled. 

Besides this, by eliminating of 111. and A LA' the ·KKR-equations for a lattice 
with base immediately follow in a form recently derived by Lehmann Is/ in a different 
manner: 

Here the structure matrices for the corresponding Bravais lattice and for the cluster 
forming the base appear in a factorized manner. From (3) now follows the physical back­
ground of this factorisation, because into (3) there enter only the structure of the Bravais 
lattice and the asymptotic scattering properties of the cluster, assumed the sites an 
of its atoms are inside the incribed sphere of the unit cell. 

Another possible application of generalized scattering states could be the follow­
ing I 9 I : Introducing thin skins of zero potential along the unit cell surfaces, the whole 
crystal potential is split into a sum of non-overlapping, but generalized muffin-tin poten­
tials, each non-zero within the whole unit cell. Assuming the scattering states of a single 
unit cell are known, again modified, but rather complicated KKR-equations can be derived 
containing unfortunately not only the asymptotic scattering properties, but also certain 
near field properties along the unit cell surfaces. The loss of the rigorous separation 
of the crystal structure and potential properties is connected with this fact. 

Disordered systems are another field of application. For example the Lloyd - for­
mula I 1 O I for the density of states can be very easily obtained from ( 4) via a generalized 
Friedel sum rule I 11 I . Using general properties of the generalized phase shifts new 
gap criteria for binary alloys can be derived I 12 I . 

There are further possibilities for the application of generalized phase shifts. For 
example, the scattering properties of point defects, which are important in the theory 
of residual resistance, can be described by such phase shifts. 

Finally, it can be concluded, that generalized scattering states are useful not only 
in the theory of molecules but also in the theory of solids. 
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