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ON THE USE
OF GENERALIZED PHASE SHIFTS
IN SOLID STATE THEORY




The scattering properties of spherically symmetric potentials are usually described -
by phase shifts np . To describe also the scattering properties of non-spherically
symmetric potentials (molecules) Demkov and Rudakov /1/ recently introduced genera-
lized phase shifts n) and corresponding partial wave amplitudes
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entering into the asymptotic behaviour of the scattering states as follows
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This concept is useful also in electron theory of solids for both ordered and disordered
systems.

By means of such phase shifts 7 ) and amplitudes Ap ) the Korringa-Kohn-Rostoker-
scheme 72/ for band structure calculations can easily be generalized to non-spherically
symmetric potentials within the (non-overlapping) muffin-tin spheres 3/ . -
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The lattice structure is contained only in the usual KKR-structure matrices By ‘ ( I? ),
while the MT -potential enters only via 1) and Ap), determined by a coupled set
of differential equations for the radial parts R Lk(t) of the scattering wave functions
o} A (7) . This generalization (3) allows to overcome both restrictions of the usual KKR-
method:



1.The assumption of constant potential between the MT-spheres is of course reason-
able only for close-packed structures. But in the case of the more open structure of
diamond type non- constant interstitial potential must be taken into account, for example
by installation of additional MT-potentials at interstitial sites between the atoms. This
has been done first by Keller / 4/using spherically symmetric potentials within the in-
terstitial spheres. But these interstitial potentials are generally non-spherically sym-
metric. Such interstitial potentials increase of course the number of scatterers in the
unit cell. Although the method for lattices with several atoms per unit cell already exists,
it is useful to consider all scatterers in the unit cell as a whole and to describe the scat-
tering properties of such clusters as in (3) by means of generalized phase shifts 7
and amplitudes Ay ) . '

2. The assumption of spherically symmetric MT-potentials at the atomic sites
must be corrected, if for instance transition metals with partially filled d-bands /5/ or
semiconductors with covalent bonds /6/ are considered. In this case (3) can also be
applied.

In the case of a lattice with several atoms per unit ce!l (with phase shifts 1;2
at positions &’ ), the corresponding cluster phase shifts 7 A are as recently shown

n
by John and Ziesche /7/ determined by an algebraic eigenvalue equation
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N™  and J ™ ,are certain matrices depending only on the cluster structure within

the unit cell:
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The amplitudes A ;; follow via the solution of (4) from
A, =3 7™ a" . (6)
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This approach is of interest for band calculations of lattices having complex unit cells
with many atoms. The following advantages exist:



1. The eigenvalue problem (4) is independent of the Bloch vector.
2. The number of essentially non-zero cluster phase shifts increases only with the

linear dimension of the unit cell. This means, that some of the cluster phase shifts are
very small for a given energy. This was shown by Demkov and Rudakov /1/tor the case
of s-scatterers. The decrease of the number of phase shifts of course reduces also the
dimension of the KKR matrices (3).

3. Variations of the atomic sites or potentials within the unit cell can easily be
handled.

Besides this, by eliminating of m), ‘and ‘A L\’ the 'KKR-equations for a lattice
with base immediately follow in a form recently derived by Lehmann / 8/ in a different
mahner:
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Here the structure matrices for the corresponding Bravais lattice and for the cluster
forming the base appear in a factorized manner. From (3) now follows the physical back-
ground of this factorisation, because into (3) there enter only the structure of the Bravais
lattice and the asymptotic scattering properties of the cluster, assumed the sites & n

of its atoms are inside the incribed sphere of the unit cell.

Another possible application of generalized scattering states could be the follow-
ing /9/ - Introducing thin skins of zero potential along the unit cell surfaces, the whole
crystal potential is split into a sum of non-overlapping, but generalized muffin-tin poten-
tials, each non-zero within the whole unit cell. Assuming the scattering states of a single
unit cell are known, again modified, but rather complicated KKR-equations can be derived
containing unfortunately not only the asymptotic scattering properties, but also certain
near field properties along the unit cell surfaces. The loss of the rigorous separation
of the crystal structure and potential properties is connected with this fact. .

Disordered systems are another field of application. For example the Lloyd - for-
mula /20/ for the density of states can be very easily obtained from (4) via a generalized
Friedel sum rule /1I/ . Using general properties of the generalized phase shifts new
gap criteria for binary alloys can be derived /12/

There are further possibilities for the application of generalized phase shifts. For
example, the scattering properties of point defects, which are important in the theory
of residual resistance, can be described by such phase shifts.

Finally, it can be concluded, that generalized scattering states are useful not only
in the theory of molecules but also in the theory of solids.
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