6663

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

WINK

ААБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ

E4 - 6663

S.P.Ivanova, A.L.Komov, L.A.Malov, V.G.Soloviev

NONROTATIONAL STATES OF SOME TRANSCURIUM ELEMENTS

E4 - 6663

S.P.Ivanova, A.L.Komov, L.A.Malov, V.G.Soloviev

NONROTATIONAL STATES OF SOME TRANSCURIUM ELEMENTS

ОИ И БИБЛИСТ КА Submitted to "Изв. АН СССР" (сер. физ.)

Иванова С.П., Комов А.Л., Малов Л.А., Соловьев В.Г. Е4 - 6663

Неротационные состояния ряда транскюриевых элементов

В работе проведено исследование нижайших неротационных состояний ядер в области $250 \le A \le 261$ на основе полумикроскопического подхода. Приводятся энергии и структура основных и возбужденных состояний нечетных, четно-четных и нечетно-нечетных ядер, а также приведенные вероятности E2- и E3-переходов на вибрационные состояния четно-четных ядер.

Препринт Объединенного института ядерных исследований. Дубна, 1972

Ivanova S.P., Komov A.L., Malov L.A., E4 - 6663 Soloviev V.G.

Nonrotational States of Some Transcurium Elements

The lowest nonrotational states of nuclei in the region $250 \le A \le 261$ are investigated on the basis of the semi-microscopic approach. The energies and the structure of the ground and excited states of odd-A, doubly even and doubly odd nuclei and the reduced probabilities of E2-and E3-transitions to the vibrational states of doubly even nuclei are presented.

Preprint. Joint Institute for Nuclear Research. Dubna, 1972

I. Introduction

In the present paper the lowest nonrotational states of deformed nuclei in the region $250 \le A \le 261$ are investigated on the basis of the semi-microscopic approach^{1/}. The collective vibra tional states of doubly even nuclei are described in the one-phonon approximation, in the framework of the superfluid nuclear model with multipole-multipole residual interaction /1,2/. The ground and low-lying excited states of odd-A deformed nuclei are calculated by means of the method suggested in refs. /3/. in which the interaction of quasiparticles with the phonons of an even-even core and the mixing of one-quasiparticle states due to this interaction. are considered. The average nuclear field is described by the Saxon-Woods anisotropic potential. The one-particle problem is solved by a semi-analytical method proposed in refs. /4/. In a number of earlier papers $\frac{5-7}{1}$ the states of deformed nuclei were investigated in the region 234 ≤ A ≤ 250. A satisfactory description of the properties of the low-lying states of doubly even and odd-A nuclei was obtained.

Contrary to the nuclei of the region $234 \le 4 \le 250$ for which there is much experimental information, the nuclei of the region under consideration $250 \le A \le 261$ are scantily explored. One has measured an extremely small number of the lowest vibrational states of doubly even nuclei. In most odd-A nuclei only the spin of the ground state is known. There are also no data on electro-

magnetic transition probabilities and quadrupole moments. The masses of some nuclei have not been measured. The absense of the information of the kind impedes the improvement of the parameters of the model in question, that is, the parameters of the singleparticle problem (deformation parameters, spin-orbital interaction constant, etc.) as well as the pairing and multipole interaction constants.

One of the purposes of this paper is to give a description of the low-lying nonrotational states which may serves as a "reference point" in further experimental studies.

2. Parameters of the Model

Our choice of the parameters of the model is based on the results of similar investigations for nuclei of the region $234 \le A \le 250^{/5-7/}$ as well as for nuclei of the rare-earth region $150 \le A \le 190^{/8/}$.

The Saxon-Woods potential parameters do not strongly change with small changes of the mass number $A^{/6/}$. The most sensitive are the diffuseness \checkmark and the spin-orbital interaction constant. We use the single-particle energies and the wave functions calculated for the nucleus A = 255 with the following parameters: Neutron system:

> $V_c = 46.0 \text{ MeV}; \quad V_o = 1.26 \text{ fm}; \quad \measuredangle = 1.30 \text{ fm}^{-1};$ $\mathscr{Z} = 0.47 \text{ fm}^2.$

Proton system:

 $V_o = 62.5 \text{ MeV}; r_o = 1.24 \text{ fm}; \ \ \mathcal{L} = 1.55 \text{ fm}^{-1}; \ \ \mathcal{R} = 0.36 \text{ fm}^2.$

The equilibrium deformation parameters are chosen on the basis of the calculations of ref. $^{9/}$:

 $\beta_{20} = 0.26;$ $\beta_{40} = 0.035.$ Figures 1,2 show the behaviour of the single-particle energies of the neutron and proton levels as a function of the quadrupole deformation β_{20} at β_{40} = 0.035. In our calculations we have taken into account the single-particle levels starting with the five oscillator (N \ge 4) shell for neutrons and the fourth (N \ge 3) one for protons. The cutoff from above is performed at E = +5 MeV. This corresponds to 105 neutron and 75 proton levels located almost symmetrically with respect to the Fermi surface energy Ep. The number of the matrix elements of the matrix elements for certain multipolarities $\lambda\mu$ is as large as 1500. The value of the pairing interaction constant is chosen from the comparison of the calculated pairing energies with those obtained from the experimental nuclear masses utilizing the results of ref. /10/ For neu- $G_{1} \simeq 19/A$ MeV, for proton system $G_{2} \simeq 27/A$ MeV. tron system

For the multipole-multipole interaction constants one usually uses the following A-dependence: $-2\lambda+3$

 $\mathcal{X}^{(\lambda)} = \rho^{(\lambda)} \mathcal{A}^{-\frac{(\lambda+3)}{3}}; \quad \rho^{(\lambda)} = \text{const}$

In ref. /?/ it was indicated that this dependence for nuclei of the transuranium region is too strong, a better description of the experimental results is achieved with $\mathscr{X}^{(\lambda)} = \text{const.}$ For the nuclei considered in the present paper it is assumed that $\mathscr{X}^{(\lambda)} = \text{const.}$

In doubly even nuclei of the transcurium region the $K^{\pi} = 2^+$ states in ²⁵⁰Cf are measured to be 1032 keV and in ²⁵⁴Fm - 693 keV^{/11/}. These states are regarded as first excited quadrupo-

le states, and in the model suggested here to them there correspond the first roots of secular equations⁽²⁾. The location of these levels is well described for a chosen value of the constant $\mathcal{X}^{(2)} = 0.76 \text{ keV. fm}^{-4}$. Using this value, the energy and the structure of the lowest $K^{\pi} = 0^+, 2^+$ states for the most stable doubly even isotopes of transcurium elements have been calculated. This constant is by 10% smaller than $\mathcal{X}^{(2)}$ for nuclei in the region $232 \leq A \leq 254$ which corresponds to the same values of $\rho^{(2)}$ for both regions⁽⁵⁾.

The octupole states of the nuclei under consideration are presently known only in 250 Cf: the K^T = 1⁻ state is 1175.45 keV/12/ and the K^T = 2⁻ state is 871.4 keV/12,13/. The constant $\mathcal{X}^{(3)}$ is 9.6 x 10⁻³ keV.fm⁻⁶, it is by 20% smaller than for nuclei in the region 232 < A < 254, the $P^{(3)}$ - values being the same for both regions.

3. Doubly Even Nuclei

The calculations are performed in the framework of the method suggested in refs.^{/1,2/}. Table 1 gives the energies of the first quadrupole excitations and the reduced probabilities for electric transitions (in single-particle units) from the ground state to the I = 2, $K^{T} = 0^+$ and 2^+ levels $B(E2, Q \rightarrow I=2, K=0,2)$ with an effective charge $e_{eff}^{(2)} = 0.1$. As is seen from Table I the B(E2) values are of the order of a few units. This indicated that the first quadrupole states are of the collective nature. The second quadrupole excitations in the nuclei in question are collectivized far more weakly. In Table 2 we present the energies of the first octupole excitations and the reduced probabilities $B(E3, O_g \rightarrow I=3, K=0, 1, 2)$ in single-particle units. The effective charge $e_{eff}^{(3)}$ is 0.1.

In the nuclei considered, not only the first $K^{\pi} = 0^{-}$ states but also the first $K^{\pi} = 1^{-}$ states are found to be strongly collectivized. The first $K^{\pi} = 2^{-}$ are collectivized less strongly. This is seen from the comparison of the appropriate B(E3) values.

4. Odd-A Nuclei

The wave function of an odd-A nucleus which describes the state with a given K^{T} is^(1,3)

$$\begin{array}{l} H_{j}\left(K^{\pi}\right) = \frac{1}{\sqrt{2}} \left\{ \sum_{\sigma} \sum_{n} C_{g_{n}}^{j} d_{g_{n}\sigma}^{+} + \sum_{\lambda \mu i} \sum_{3\sigma} D_{g_{1}}^{\lambda \mu i j} d_{3\sigma}^{+} d_{3\sigma}^{+} Q_{i}^{+}(\lambda \mu) \right\} \Psi , (1) \end{array}$$

Here \measuredangle_{36}^+ is the quasiparticle creation operator, $\Im = \pm 1$, $Q_i(\lambda \mu)$ is the phonon operator of multipolarity $(\lambda \mu)$, Ψ is the wave function of the ground state of a doubly even nucleus. By $\Im_n \Im$ we mean the set of the quantum numbers characterizing an n number of the single-particle levels with a given \aleph^n and by $\Im \Im$ the remaining levels of the average field.

The normalization condition for the wave function (1) is

 $\sum (C_{g_n}^{j})^2 + \frac{1}{2} \sum_{\lambda \mu i} \sum_{s \in s} (D_{g_1 \dots g_n s \in s}^{\lambda \mu i j})^2 = 1.$ (2)

The quantity $\left(C_{g_n}^{J} \right)^2$ defines the contribution of the onequasiparticle component with a given g_n to the wave function of the state in question. The quantity $\frac{1}{2} \sum_{\sigma} \left(D_{g_1 \dots g_n \ \Delta \sigma}^{\lambda \mu \ i \ J} \right)^2$ defines the contribution of the component with quasiparticle in a state gplus phonon $\lambda \mu i$ to the wave function $\mathcal{U}_{J}(\mathcal{K}^{T})$.

In calculating the energies and the wave functions of the nonrotational states in odd-A nuclei one finds the average value of the Hamiltonian which describes the pairing and multipolemultipole interactions over the state (1). The condition of energy minimum is used to obtain the secular equation which defines the nonrotational state energies $^{/1,3/}$. In our calculations of lowlying nonrotational states of odd-A nuclei we take into account

the interaction of quasiparticles with quadrupole and octupole oscillations of a doubly even core. We take into account the contribution of only two first excitations of this type. That is, the summation in (I) is performed over $\lambda \mu = 20,22,30,31,32$ and over i = 1,2. The octupole oscillations with $\lambda \mu = 33$ little affect the states of odd-A nuclei up to 1.2 MeV excitation energy.

Tables 3-12 give the results of calculation of the nonrotational states for odd-N nuclei of ${}^{251}\text{cf}$, ${}^{253}\text{cf}$, ${}^{257}\text{Fm}$, ${}^{257}\text{Fm}$, ${}^{255}\text{102}$, ${}^{257}\text{102}\text{and}$ for odd-Z nuclei: ${}^{251}\text{Es}$, ${}^{257}\text{Md}$, ${}^{257}\text{O3}$. In these tables we give the $\overset{\text{K}}{\overset{\text{W}}}$ values, the experimental energies taken from refs. ${}^{(13-15)'}$, the calculated energies of all the nonrotational states up to 1.2 MeV, and the structure of these states, i.e. the quantities $(C_{gn}^{j})^2$ (in percent), provided that $(C_{gn}^{j})^2 \ge 0.01$ and the $(D_{gn}^{\lambda,\mu_{1}j})^2$ values for two largest components quasiparticle plus phonon.

The mixing of the one-quasiparticle levels due to the interaction of quasiparticles with phonons results in that in the structure of a state with given K^{Π} there appear several onequasiparticle components $g_1 \dots g_n$. As is seen from the tables in the nuclei under consideration there are states to which the contribution comes from two or even three one-quasiparticle com-

ponents. The energy shifts, taking into account this effect, are, as a rule, small, i.e. some dozens of keV. However, they turn out to be important if there are states close in energy and this may lead to a change in the order of the levels. For example, in nuclei 257 Fm and 261 Ku the K^{π} =9/2⁺ state becomes ground only after the 615 \downarrow and 604 \uparrow level mixing has been taken into account. Their subsequent separation leads to that the energy of the first K^{π} = 9/2⁺ state becomes lower than the energy of the first K^{π} = 3/2⁺ state. The level 622 \downarrow is mixed with the level 611 \uparrow but this affects weakly the energy of the first K^{π} = 3/2⁺ state.

A similar effect is especially essential for nuclei with $\mathcal{A}\sim$ 230 due to the large level density.

5. Doubly Odd Nuclei

The properties of the lowest states of doubly-odd nuclei are not a subject of a special study in the present paper. However, some semiguantitative remarks can be made here concerning the location and the structure of certain levels of these nuclei.

For example, taking into consideration the results of our calculations and the experimental data for $10^{+4}d_{156}$, $253_{0}Cf_{155}$ and $257_{102}d_{155}$ it may be expected that the most low-lying states of $256_{101}Md_{155}$ should be the 0⁻ and 7⁻ states with $n7/2^{-}$ 613[†] $p7/2^{-}$ 514[‡], as in 166 Ho. At an energy 200-300 keV, this nucleus can have the 8⁻ and 8⁺ states the structure of which is: $n9/2^{+}$ 615[‡] $p7/2^{-}$ 514[‡] and $n7/2^{+}$ 613[†] $p9/2^{+}$ 624[†], respectively.

If we take into consideration the results of calculations for 257 muclei 100 mm 157 and 104 Ku 157 then it may be asserted that in the nucleus ${}^{258}_{10}$ Md₁₅₇ the 8⁻ level and the 1⁻ isomer with structure $10^{2^+} 615_{10}^{177}$ 514¹/₂ lie very low (possibly the first one is the ground state).

An analogous analysis can be performed for all doubly-odd nuclei of the region under consideration. In nuclei $\frac{252}{99^{E8}153}$ and $\frac{254}{99^{E8}155}$ it may be expected that low-lying be either 7⁺ or 0⁺ state with structure $h7/2^+$ 613[†] p7/2⁺ 633[†] one of which is an isomer; to an energy 500-600 keV for $\frac{254}{E8}$ and 700-800 keV for $\frac{252}{E8}$ there will correspond the 8⁻ state with structure $n 9/2^+$ 615[‡] p7/2⁻ 514[‡].

The doubly odd isotopes of element 103 have still been studied little experimentally. There is some information on obtaining isotopes with A = 256 and 258. However, we know nothing about the spins and parities of the ground states of these nuclei. On the basis of these calculations it may also be expected that the ground state of the nuclei $^{256}103$ and $^{258}103$ is the 5⁺ state with $1/2^+$ 620↑ p9/2⁺ 624↑ or 8⁺ state with n 7/2⁺613↑ p9/2⁺ 624↑ and there is the isomeric 1⁺ state. At low excitation energies (~400keV), we have the following levels 9⁻ n 9/2⁻ 734↑p9/2⁺ 624↑, 10⁻ $n 11/2^-$ 725↑ p9/2⁺ 624↑ and 5⁻ n 9/2⁺ 615↓ p1/2⁻ 521↓ for $^{256}103$. In the nucleus $^{258}103$ the first of these states (9⁻) appears to lie higher (~600 keV), and two others (10⁻ and 5⁻)-somewhat lower than in the nucleus $^{256}103$.

Thus, the experimental study of doubly-odd nuclei may give rich additional information on the levels of the average field of the region considered. The detection of the levels with high spins in these nuclei is important for performing further theoretical investigations. Insufficient amount of experimental data makes it impossible to carry out a more detailed comparison of the

results of our calculations with experiment and restricts the possibility of choosing unambiguously the parameters of the model. We hope that this paper will, to a certain extent, stimulate further comprehensive study of the nuclei of the transcurium region and may serve as a certain guide in making investigations.

In conclusion we would like to thank A.A.Korneichuk, K.M.Zheleznova,N.Y.Shirikova and G.Schulz who have participated in making the routines.

References

- 1. V.G.Soloviev. Theory of Complex Nuclei. "Nauka", Moscow, 1971.
- 2. V.G.Soloviev. Atom. En. Rev., 3, 117 (1965).
- V.G.Soloviev. Phys.Lett., <u>16</u>, 308 (1965).
 V.G.Soloviev. P.Vogel, Nucl.Phys., <u>A92</u>, 449 (1967).
- 4. F.A.Gareev, S.P.Ivanova, B.N.Kalinkin, Izv.Akad.Nauk SSSR, ser. fiz., <u>32</u>, 1690(1968);
 - F.A.Gareev, S.P.Ivanova, Communication JINR, P4-5221, Dubna 1970.
- A.L.Komov, L.A.Malov, V.G.Soloviev. Communication JINR F4-5126, Dubna, 1970.
- F.A.Gareev, S.P.Ivanova, L.A.Malov, V.G.Soloviev, Nucl. Phys., <u>A171</u>, 134 (1971).
- 7. A.L.Komov, L.A.Malov, V.G.Soloviev. Izv.AN SSSR, ser.fiz. <u>35</u>, 1550 (1971).
 - A.L.Komov, L.A.Malov, V.G.Soloviev. Cimmunication JINR P4-5692, Dubna, 1971.
- 8. A.A.Korneichuk, L.A.Malov, V.G.Soloviev, S.I.Fedotov, G.Schulz, Yad.Fiz. 9, 750 (1969).
 - L.A.Malov, V.G.Soloviev, U.M.Fainer, Dokl.Akad.Nauk SSSR 186, 299 (1969).

V.G.Soloviev, S.I.Fedotov, Izv. AN SSSR, ser.fiz. <u>36</u>, 706(1972). V.G.Soloviev, U.M.Fainer. Izv. AN SSSR, ser.fiz.<u>36</u>, 698 (1972).

- 9. F.A.Gareev, S.P.Ivanova, V.V.Pashkevitch, Yad.Fiz. <u>11</u>,1200 (1970).
- 10. A.I.Vdovin, A.L.Komov, L.A.Malov, Communication JINR, P4-5125, Dubna (1970).
- 11. C.M.Lederer, I.M.Hollander and I.Perlman, Table of Isotopes (John Wiley and Sons, INC., New York, 1967) 6th ed.
- R.A.Meyer, R.W.Loncheed, J.E.Evans, R.W.Hoff, Bull.Am.Phys. Soc., s.II, <u>17</u>, 464 (1972).
- F.S.Stephens, F.Asaro, S.Fried, I.Perlman. Phys. Rev. Lett., 15 420 (1965).
- 14. I.Ahmad, R.K.Sjoblom, R.F.Barnes, et al. Nucl. Phys., <u>A140</u>, 141 (1970);
 - F.Asaro, S. Bjørnholm end L. Perlman, Phys. Rev., 133, B291(1964);
 - T.S.Sikkeland, A.Ghiorso, R.Latimer, and A.E.Larsh, Phys.Rev., 140, B277 (1965);
 - P.Eskola, K.Eskola, M.Nurmia and A.Ghiorso, Phys.Rev. C, 2, 1058 (1970);
 - I.Ahmad, F.T.Porter, M.S.Freedman et al., Phys.Rev. C., 3, 390 (1971);
 - A.Ghiorso, T.Sikkeland, A.E.Larsh, R.M.Latimer, Phys.Rev. Letters, <u>6</u>, 473 (1961);
 - G.N.Flerov, Y.S.Korotkin, V.L.Mikheev et al., Nucl. Phys. <u>A106</u>, 476 (1968);
 - C.E.Bemis, Jr, P.F.Dittner, D.C.Hensly et al., Proceedings of the International Conference on Heavy Ion Physics. Dubna 11-17 Febr. 1971;

I.Ahmad, A.Friedman. Phys. Rev., 164, 1537 (1967);

C.E.Bemis, private communication.

Received by Publishing Department on October 4, 1972

Table 1.

Energies of quadrupole states (in MeV) and reduced probabilities $B(E2, O_g \rightarrow I=2^+, K=0,2)$ for electric transitions (in single-particle units $B_{SPU}(E2) = O, 3 \cdot A^{4/3}$

Nuclei	============ لا ^{.7}	= 0 ⁺	κ = 2 ⁺				
	Energy theor.	B(E2)	Ei exp.	hergy theor.	B(E2)		
248 Cf	0.87	6.3		I.20	4.8		
250	0.91	5.3	I.032	0.93	5.2		
25 2	I.05	6.I		0.71	5.7		
250 Fm	0,90	4.3		I.26	4.0		
252	0,97	3.2		I.08	3.6		
254	I.I0	3.I	0.693	0.78	4.6		
256	0.93	5.0	,	0.65	5.9		
252 ₁₀₂	I.04	2.8		I.33	3.5		
254	I.06	2.2		I.12	3.3		
256	I.20	3.0		0.92	3.3		
256 Ku	0 .9 I	4.5		I.23	2.5		
I58	I.08	4.5		0.95	3.0		
260	0.90	6.5		0.83	3.2		

z★zęoszał fakoasona zerodzezżźkie katerze zakodze bekterze zakozzerozaterze zako

Table 2.

Energies of the octupole states (in MeV) and reduced probabilities $B(E3, Q_{g}^{+} \rightarrow I^{\pi} = 3^{-}, K = 0, 1, 2)$ for electric transitions (in single-particle units $B_{3,p,4}$ (E3) = 0.42 A²)

$\kappa^{\pi} = 0^{-}$	$K^{\pi} = I^{-}$	K [™] = 2 [™]

Nuclei

5 } ;
3
5
\$
5
•
[
[
5
2
5
.9
.3

Table 3.

Energy and structure of the ground and excited states in 251 Cf

κ ^π	Ener exp.	the	eV)_ Dr.		Str	uc	ture				
1/2+	0	0	620 +	86%			6221+Q1(55)	5%	620 + Q ₁ (20)	2%	
7/2+	106	50	613	89%	624↓	5%	611 +Q_1(22)	2%	- 725 +Q ₁ (32)	2%	
3/2+	178	170	622	84%			6201+Q1(22)	9%	752 ++Q1(30)	2%	
9/2	434	320	734 1	91%			7341+Q1(20)	3%	622 ++Q1(32)	2%	
9/2+	426	370	615 i	75%	604 1	3%	6151+Q ₁ (20)	11%	613 +Q ₁ (22)	3%	
11/2	370	380	725 	94%			613 ¹ +Q ₁ (32)	2%	615 +Q ₁ (31)	1%	
7/2+		390	624 +	89%	613 1	5%	7341+Q ₁ (31)	2%	743 ++Q1(30)	1%	
1/2		630	761 t	61%			7611+Q ₁ (20)	10%	6201+Q1(30)	9%	
5/2+	· 544	840	622 4	65%	633 🖌	2%	734 +Q1(32)	22%	622 +Q1(50)	5%	
1/2+		860	631 1	73%			6311+Q ₁ (20)	19%	633 +Q ₁ (22)	2%	
7/2		940	743 1	65%			624 +Q ₁ (30)	15%	7431+Q ₁ (20)	14%	
3/2+		970	611	27%			613 +Q1(22)	63%	622 +Q ₁ (20)	4%	
3/2		1010	752	42%			620 +Q ₁ (31)	19%	622/+Q ₁ (30)	18%	
1/2		1140	770 1	67%			7701+Q1(20)	12%	7521+Q ₁ (22)	11%	
5/2		1150	503	11%			734 ++Q1(22)	84%	6241+Q ₁ (31)	2%	
13/2		1160	716 4	4%			734 +Q ₁ (22)	96%			
9/2-		1170	734 1	2%			734 +Q ₁ (20)	94%	6241+Q ₁ (31)	3%	

Table 4.

Energy and structure of the ground and excited states in 253 Cf

K.	Ener exp.	gy (k th	eV)		Sti	ructu	ГÐ		
7/2+	0,	140	613	9 2 %	624	2%	611++Q1(55)	2%	503++Q1(30) 1%
1/2+		• • •	620 	8 7 %			622 +Q ₁ (22)	4%	752++Q ₁ (31) 1%
3/2+		90	622 	86%			6201+Q1(55)	6%	7521+Q ₁ (30) 2%
9/2+	242	150	615 1	76%	604 🕇	4%	615 +Q ₁ (20)	9%	6131+Q1(22) 3%
11/2		240	725 +	95%			615++Q ₁ (31)	1%	613 +Q ₁ (32) 1%
1/2		340	761 1	64%	· : ·		761 t +Q ₁ (20)	9%	6201+Q ₁ (30) 7%
9/2		590	734 i	88%			7344 +Q ₁ (20)	4%	624 +Q ₁ (31) 3%
7/2+		670	624 †	87%	613 1	3%	734++Q ₁ (31)	3%	7431+Q ₁ (30) 2%
3/2+		810	611	28%			613 +Q1(55)	66%	600 +Q1(55) 2%
3/2		820	752 🕴	49%			622 ++Q1(30)	28%	6201+Q ₁ (31)8%
5/2+		950	622	20%	613 🕴 8%	633 ¥ 1%	620\$+Q ₁ (22)	56%	6151+Q1(22) 7%
5/2+		1040	613	36%	622 1	7%	615 +Q ₁ (22)	38%	6201+Q ₁ (22) 9%
1/2+		1090	611	64%	600 1	2%	611 +Q ₁ (20)	11%	761 +Q ₁ (30) 8%
1/2+	· · ·	1150	600	13%			622 +Q1(55)	79%	611 +Q ₁ (22) 3%
7/2		1170	743	28%	· · ·		725 +Q ₁ (22)	50%	624 +Q ₁ (30)10%

Table 5.

Energy and structure of the ground and excited states in $^{253}\mathrm{Fm}$

κ ^π	Energy (k exp. th	eV) Heor.	St	ructur	8		
1/2+	(0) 0	620190%		622i +Q1(22)	3%	76Ii+Q _L (30)	I%
7/2+	40	613193%	624 🕯 3%	6III+Q ₁ (22)	1%	725++Q ₁ (32)	I%
3/2+	180	622 187%	1.15	6201+Q1(22)	5%	76I †+ Q ₁ (3I)	2% -
9/2	250	734 192%		624 ¦+ Q ₁ (3I)	3%	734∮+Q ₁ (20)	2%
II/2 ⁻	300	725 95%		$615t + Q_1(31)$	I,0	6I3++Q ₁ (32)	1%
7/2+	340	624 90%	61314%	734 1+ Q1(3I)	3%	743++Q1(30)	I%
9/2+	480	615 79%	604 † 2%	6I5 +9 <mark>1</mark> (20)	8%	725++Q ₁ (3I)	3%
1/2-	670	76I t 57%		622++Q1(3I)	II%	6201+Q ₁ (3I)	11%
5/2+	880	622 77%	633 2%	734 1+ Q ₁ (32)	9%	743++Q ₁ (3I)	4%
7/2-	940	743 69%		624 + Q ₁ (30)	I4%	7431+Q1(20)	9%
1/2+	960	63I + 79%		631+91(20)	I4%	6331+Q ₁ (22)	2%
3/2	1000	752 34%		$6201 + Q_1(31)$	47%	6221+Q1(30)	II%
3/2+	1120	6II + 27%		6I3++Q1(22)	63%	6221+Q1(20)	4%
5/2	1130	752 \$ 5%	503 2%	6241+Q1(3I)	8 9 %	- 734 i + Q ₁ (22)	1%
7/2+	II80	624 1 3%		734++Q1(3I)	96%	624 †+ &_(20)	1%

Table 6.

Energy and structure of the ground and excited states in 257 Fm

٠

Χ	Ener exp.	rsy (t	keV) heor.	-	St	tructu	r e			,
9/2+	(0)	0	615 77%	604 1	4%	6151+Q1(20)	7%	6I3 +Q1(22)	4%	
3/2+	L	+0	622 88%	6II 	I%	$7521 + Q_1(30)$	3%	$761+Q_{1}(31)$	1%	
I/2+	I	10	620191%		·· . *	761++Q ₁ (30)	2%	622 +91(22)	I%	
II/2 ⁻	Į	B O	725196%	••		615++Q1(30)	I%	$615 _{+Q_1}(3I)$	I%	
I/2 ⁻	20	00	761168%			761∤+ସ ₁ (20)	9%	620 ++Q1(30)	5%	
7/2+	26	60	613191%	624	2%	6II+Q ₁ (22)	2%	5031+Q1(30)	I%	
3/2	6	10	752152%			6221+Q ₁ (30)	26%	$7521+Q_1(20)$	4%	
5/2+	7	30	613142%			6I5++ନ୍ ₁ (22)	43%	$6001+Q_1(22)$	4%	
3/2+	7	70 .	61140%	62 2 ł	I%	6I3++Q ₁ (22)	48%	600 ++Q1(55)	4%	
7/2+	78	8 0	624160%	6131	3%	622)+Q ₁ (22)	27%	6I3 (+Q1(50)	3%	
9/2	82	20	734+85%			734+9 ₁ (20)	5%	6I3+Q1(3I)	3%	
I/2 ⁺	. 84	40	6II+64%	6001	I%	76I1+Q ₁ (30)	I0%	6II /+Q1(20)	10%	
5/2*	8	70	622112%	61322	6 633	311% 6201+1 (22)40	5% 6I5+0 ₁ (22)) 3%	
13/2	90	00	716184%	•		7I6++Q1(20)	6%	6151+Q ₁ (32)	5%	
I/2 ⁺	. 94	40	600120%	620	1%	63I † I%		6221+Q_(22)	66%	
7/2		000	7431 I%			7251+Q1(22)	98%			
15/2		010			. 2	7251+Q ₁ (22)	100%	, P *		
7/2+	I	100	624119%			6221+Q1(22)	71%	613+9 ₁ (20)	4%	
9/2+	I	110	604+83%	6151	7%	604 !+ Q ₁ (20)	4%	862 + +Q ₁ (22)	2%	
I/2 ⁺	I	170	600132%	6II†	I%	622 ++ Q1(22)	32%	6II+Q1(22)	I4%	
I/2 ⁻	I	190	770 5%	76I i	1%	6201+Q1(30)	84%	620++Q1(3I)	4%	

Table 7.

Energy and structure of the ground and excited states in ²⁵⁵102

ur l	Energy	(keV)	g	* * *	~ +				
K e	xp.	theor.		Uru		u 1 0			
1/2+	0 0	620 1	91%	•		622∳+Q ₁ (22)	3%	752∤+Q ₁ (31)	1%
7/2+	30	6131	93%	624 🕴	3%	611† +Q ₁ (22)	1%	7251+Q1(32)	1%
3/2+	180	622∳	88%			620†+Q ₁ (22)	5%	761∤ +Q ₁ (31)	2%
9/2	290	734 †	92%			624∳+Q ₁ (3 1)	3%	7341+Q ₁ (20)	1%
11/2	330	7251	95%			615↓+Q ₁ (31)	2%	613↑+Q ₁ (32)	1%
7/2+	340	624 🖌	90%	613 †	3%	7341+Q1(31)	3%	7431+Q1(30)	1%
9/2+	500	615↓	81%	6041	2%	615 ∤+ Q(20)	6%	7251+Q1(31)	4%
1/2	680	761↓	56%			6201+Q(31)	13%	622++Q ₁ (31)	13%
5/2+	880	6221	79%	63 3 ł	2%	7341+Q1(32)	8%	743 ↑+ Q ₁ (31)	5%
1/2+	990	631	8 2 %			631∳+Q ₁ (20)	10%	633∳+Q ₁ (22)	2%
3/2	995	752 🖌	31%			6201+Q1(31)	54%	622↓+Q ₁ (30)	8%
7/2	1 0 10	7431	71%			624∤+Q ₁ (30)	12%	743↑+Q ₁ (20)	7%
5/2	1100	752 †	4%	503↓	2%	624 ↓ +Q ₁ (31)	91%	6131+Q ₁ (31)	1%
7/2+	1140	624 🕴	3%	•		734↑+Q ₁ (31)	97%		
3/2+	1150	611 🛉	28%			613†+Q ₁ (22)	64%	624++Q ₁ (22)	3%
9/2	1160					6131+Q1(31)	98%	624∳+Q ₁ (31)	2%
5/2	1170					613++Q1(31)	99%	624+91(31)	1%

Table 8.

Energy and structure of the ground and excited states in 257102.

к ^к	Ener exp.	rgy (k t	eV) heor.	s t	ructure		•
7/2+	0	130	613194%	624 i 1%	725∱+ ^Q 1(32) I%	6II↑ _{+Q1} (22)	I%
I/2+		0	620 † 91%		622¥+Q1(22) 2%	743¥+Q ₁ (32)	I%
3/2+		80	62 2\ 90%	6II† I%	620†+Q ₁ (22) 3%	752¥+Q ₁ (30)	I%
11/2		210	725194%		613 † + Q ₁ (32) 2%	615↓+Q ₁ (31)	I%
9/2+	~ 250	300	615¥81%	6041 3%	615ł+Q ₁ (20) 5%	716†+q ₁ (32)	3%
I/2		560	76I ↓ 66%		622∳+Q ₁ (3I) 6%	761 ∳+Q ₁ (20)	6%
9/2		570	734189%		62 21+ Q ₁ (32) 4%	624 +Q1(3I)	2%
7/2+		670	624 ↓ 9I%	6I3† I%	734↑+Q ₁ (3I) 2%	725↑+Q ₁ (32)	1%
3/2		930	752∤41%		6201+Q1(32)28%	622¥+Q ₁ (30)	I0%
5/2+		980	622143%	633 4%	7341+ ^Q 1(32)34%	$6201 + Q_1(22)$	I4%
3/2+		1010	6II † 32%		6I3^+ ^Q 1(22)6I%	622¥+ସ୍1(20)	2%
11/2	•	1110	7251 2%		6I31+Q ₁ (32)98%		

Table 9.

Energy and structure of the ground and excited states in ^{261}Ku

K ^T ex	hergy p.	(keV) theor.	S	tructure		
9/2+	0 0	615 75%	604 1 4%	6I5∳+Q ₁ (20)II%	725↓+Q ₁ (30)	2%
3/2+	40	6221 90%	6II† 1%	752 ↓+ Q ₁ (30) 2%	761∳+Q ₁ (3I)	I%
I/2 +	110	620 🕈 93%		761¥+Q ₁ (30) 1%	622∤+ସ୍1(22)	I%
I/2	I50	76I ↓ 68%		76I ∳+ Q ₁ (20)I4%	622∤+Q ₁ (3I)	3%
II/2 ⁻	180	725†. 96%		6I5¥+Q ₁ (3I) I%	844 †+ ବ୍ ₁ (3I)	I%
7/2+	270	613 93%	624 🕴 2%	734↑+Q ₁ (3I) I%	624 ∤ +ହ ₁ (20)	I%
3/2	630	752↓ 58%		622↓+ସୃ(30)I5%	752∤+Q ₁ (20)	II%
9/2	760	734 82%		734∱+ଋ ₁ (20) 7%	624 ∤ +ସୃ(3I)	3%
I/2 +	810	6II¥ 63%	600 t 2%	6II↓+Q ₁ (20)I5%	761∳+Q ₁ (30)	7%
7/2+	820	624↓ 73%	6131 3%	6I3↑+♀ ₁ (20) 7%	622∳+Q ₁ (22)	7%
13/2	870	716† 80%		716†+9 ₁ (20) 9%	615∤+ ^Q 1(32)	6%
3/2+	930	6II† 54%	622 ↓ 1% 602 ↓1%	6I3↑+♀ ₁ (22)24%	622 ∤ + ^Q 1(20)	I2%
5/2+	970	613↓ 50%	622† I%	6I5∳+ ^Q 1(22)33%	6201+ ^Q 1(22)	4%
5/2+	1070	6221 20%	613↓ 2% 633↓1%	620 1 + ^Q 1(22)66%	734†+ ^Q 1(32)	5%
3/2+	IIIO	602↓ 61%		602 ∤ + ^Q <u>1</u> (20)I4%	761↓+ ^Q 1(3I)	6%
9/2 <mark>†</mark>	II20	604† 81%	615↓ 9%	604 †+ Q ₁ (20) 5%	615 + ^Q 1(20)	I%
I/2+	1150	600 16%	631↓ 5% 611↓1%	62 2↓+ _{Q1} (22)40%	620 + ^Q 1(20)	30%

Table 10.

К″	Energ exp.	y (ke the	V) or	-		Str	u.c	ture			
3/2	0	0		521 1	97%	. 		402¥+Q1(30)	1%	521↓+Q ₁ (22)	1%
7/2+		50		633↑	98%						
7/2-	(350)	380		514	98%			6331+Q1(30)	1%		
5/2+		580		642 1	70%			642↑+Q ₁ (20)	20%	521↑+Q ₁ (31)	4%
9/2+		670		624 †	95%			512†+Q ₁ (32)	2%	624↑+Q ₁ (20)	1%
1/2		700		521 🕴	67%	530↑	5%	5211+Q1(22)	18%	521∳+વ ₁ (20)	6%
1/2		810		530 †	63%	521↓	9%	530 +Q1(20)	18%	6421+Q1(32)	2%
1/2+		830		660 †	7 <i>3</i> %			651↑+Q ₁ (22)	10%	660↑+Q ₁ (20)	8%
3/2+		900		402 🛔	30%	651 1	1%	633†+Q ₁ (22)	40%	521∱+Q ₁ (30)	17%
5/2		980		523 🌢	78%	512↑	1%	523↓+Q ₁ (20)	. 10%	633†+Q ₁ (31)	6%
3/2+		990		651 †	68%			660 +Q1(55)	17%	651∱+Q ₁ (20)	8%
3/2	•	1000						521∱+Q ₁ (20)	100%		
7/2+		1010						633 +Q1(20)	100%		
11/2+		1020		615 ↑	1%			6331+Q1(55)	99%		
1/2+		1060		4001	3%	660 1	1%	5211+Q1(32)	90%	5211+91(31)	3%
5/2-		1065		512 †	19%	523	6%	6331+Q1(31)	71%	6241+Q ₁ (32)	2%
3/2		1070						6331+Q1(32)	99%		
11/2-		1080						633 †+ Q(32)	100%		i e
1/2-		1090		521∤	12%	5301	2%	521++Q ₁ (22)	81%	521∳+Q ₁ (20)	3%
3/2+		1100		402	10%	651 f	2%	6331+0-(22)	5.20%	E21 .0 (70)	704
1/2+		1110		4001	6%	6601		$521 + 0_{-}(31)$	72/0	$5211 + Q_1(30)$	30%
9/2-		1120					270	633 ⁴ +Q ₁ (31)	100%	J2 17 +Q1(32)	1%
5/2+		1130		642 1	2%	402 ^	1%	521 ⁺ +Q(31)	95%	6421+Q1(50)	2%

Energy and structure of the ground and excited states in ^{251}Es

Table 11.

Energy and structure of the ground and excited states in $^{257}\mathrm{Md}$

i / \overline{c}	Energ	y ()	<u>keV)</u>			5	tructu	r e		
ĸ	exp.	t	neor.							
7/2-	(J)	Ū.	514	98.0	···· ·		<u> </u>			
9/2+	(-)	220	6241	\$95.J			5121+0.(32)	2.	8/41+0-111)	L.
3/2		280	521	86			5211+0.(20)	-/- 6`-	6331+0-(32)	-/- 10
I/2		330	521	89			521(+0)(20)	7.5	521(+) (22)	
7/2+		370	6351	86,			$633^{+} + G_{-}(2u)$	IŬω	$5211 \pm (32)$	25
3/2		740-	5011	E I h			$5I4\sqrt[]{+0}(22)$	98,		-,-
II/2	•	760		-,-	•		514 + 0.(22)1	uus -		
3/2+		770	402	IU%			633 ⁺ 01(22)	64,,	521 (3U)	23%
5/2		800	5I2 †	3I%			624 ⁺ +9,(32)	I4,.	501+4,(22)	210
I/2		810	5301	4,0	52I:	I;.,	5211+0,(22)	94%	5301+01 (20)	1,5
3/2+		860					6331+Q1(22)I	UU70	T, ,	
5/2+		920	6421	53/5			$521^{+}Q_{1}(3I)$	22%	6421+0, (20)	1470
3/2+		930	402↓	3,0	1756	I,o	52I1+Q1(30)	62;0	6331+01(22)	32%
7/2+		970					5I4 +Q1(30)I	00;	1	
5/3 ⁺	I	Ú4U	6421	2%			624 +Q1(22)	94%	521 +G1(31)	2%
7/2	I	060					6331+Q1(30)I	0070	-	
7/2	I	100					514 ∦ +Q ₁ (20)I	UU		
3/2+	I	110	6511	3,0			5I4++Q1(32)	94;.	660 1+Q1 (22)	I%
$II/2^+$	I.	I2U			•		514++Q1(32)I	DL,a	-	
I/2+	I	I30	66U1	38' ₁₀	400 1	I,0	52I1+Q1(3I)	37;,,	651 ^{+Q} 1(22)	10%
I/2+	I	190	66U1	4%			52I ⁺ +9, (32)	89%	521(+Q1(31)	4%
5/2	I	200	523↓	I%			521 ∤ +Q ₁ (22)	دز98	624 ⁺ + ² (32)	1%

Table 12.

Energy and structure of the ground and excited states in 257103

	Ener	rgy (k	eV)	S ·	Structure				
	Sup.								
9/2+		0	624196%	5I2 [†] +Q ₁ (32)	2%				
I/2	(0)	100	521∳96%	52I↓+Q1(20)	2%	•			
7/2		180	514 98%	ନ					
5/2		440	512183%	624 1+ Q1(32)	I5%	50It+Q,(22)	I%		
5/2-		640	52I † 82%	633↑+Q ₁ (32)	10%	52I 1 + ດູ(20)	4%		
7/2*		750	6331 84	» 52I ↑ +ℚ ₁ (32)	8%	633++Q_(20)	6%		
3/2+		390	65I↑ 2	ր՝ 5I4 ∤ +Ձ <mark>1</mark> (32)	98%	, 1			
11/2*		y20	615† I	% 5I4.¥ +Q ₁ (32)	99%				
5/2-		1020	50I † I	514++Q1(22)	99%				
II/2		104Ü		- 5⊥4∳+Q ₁ (22)	I00%	u.			
5/2		1070	512115%	6241+Q1(32)	8470				
5/2 +		1080		521↓+Q ₁ (32)	93%	624 1+ Q1(22)	6;0		
5/2+		1090	6421 I	≫ 6241 4 Ω ₁ (22)	9270	521∳+ດູ (32)	6%		
13/2+		IIUU		6241+Q1(22)	IU0%	· •			
5/2 ⁻		1200	523↓ I%	521+01(55)	99 ₇₀				

Fig. 1. Scheme of neutron single-particle states, A=255.

Fig. 2. Scheme of proton single-particle states, A=255.