e36 -
wso

7" COOBUEHUSA
OB’I)E,ZMHEHHOPO -
‘ MHCTMTYTA

- ANEPHRX “
" MCCJIEZIOBAHMUIA fﬁﬁ% - o
Oy6una -.r“;‘f: 4 : E4 - 6641

AL 5""/& % A

. *i.f/ y//*'g/-

- W.Wellerf" |

METAL INSULATOR TRANSITION o
- AND LIFSHIZ INSTABILITY
. IN THE HUBBARD _MODEL

AAB@PATOPHS TEGPETHUE(K®H GHIHKH



E4 - 6641

W.Weller*

METAL-INSULATOR TRANSITION
AND LIFSHIZ INSTABILITY

IN THE HUBBARD MODEL

CHLoEERarEL] NECTITYY
AYCRHEIR. Deehiencnaniil
EHBJIHOTERA

v

» * Permanent address:Sektion Physik der Karl-Marx-
Universitat, Leipzig, DDR.



1. Introduction

There is considerable interest in the study of electrons in a half-filled narrow ener-
gy band. Due to the electron-electron corrélationasplitting of the hand and magnetic order-
ing are possible “depending ‘on the ratio U/A , where U is a measure of the Coulomb
repulsion and 2A - is the band width. A phase diagram is expected which can show in the
general case an antiferron;égnetic' *insulating’’ phase (.11), an antiferromagnetic "'metal-
lic"” phase(AM),aparamagnetic ’insulating’ ‘phase (Pl)and a paramagnetic ""metallic’’ phase
(PM). Transitions occur by . changing U/A by means of external -pressure or of doping.

““We consider in this-paper the metal-insulator transition (Mott transition) from a pa-
ramagnetic insulatihg phase to a-paramagnetic metallic phase. Both phases are assuined
'to have the same lattice symmetry. Mott /1/ has proposed that this transition may be dis-
continuous due to an instability in the free energy corrésponding to the instability studied
by Lifshiz /2/. Lifshiz considered a metal in which by variation of the external pressure
an energy pranch passes th'rough‘ the Fermi energy. In our case the narrow band is split’
“into a filled and into an empty subband for large U/A: 11 U/A\ decreases with increasing
pressure the gap between the two subbands goes to zero. Thus qualitatively the situations
in the case considered by Lifshiz and in our case are the same. )

‘ It is the aim of this paper to obtain the Lifshiz instability connected with the metal-
insulator transition startinﬁ from the Hubbard model. We consider one half-filled nonde-
generate band. The Hubbard model is treated by means of the functional integral technique .
in the static’ approximatidn. We. neglect higher-order~ flictuations in the exponent of the’
_ functional integral and develop a self-consistent approximation scheme analogous to the ‘co-

" herent potential approximation (CPA). Similar treatments of the functionalﬂintegral were :

given by Cyrot /3/ and Kimball and Schrieffer /4/ . The resulting equations are approxima-
-tely solved by the use of the stationary point approximation for the integrals and of an ap-.
proximate solution  of the CPA condition. In the framework of these approximations the
Lifshiz instability can be obtained analytically. ‘ i :

McWhan et al./3/ have found in (¥_ Cr ), O; for x =0.01:0.04 a first order phase
transition curve (PI2 PM )terminating at a. critical point. Both phases have the same lat-
tice symmetry ( a-cdrundum). Unfortunately the band structure of this system is not well,
known, and it is not clear therefore whether electron-electron correlation or band shifting
(overlapping) is responsible for the transition. Wilson dand Pitt 6/ have found a PI1 2PM
transition in the system Ni(Sj_, SeJs for x £ 0.4. In this pyrite structure there are




two d-electrons per Ni atom in a well separated twofold degenerate e ¢ -band/ 7/ , SO
that a model with a half-filled band may be a reasonable approximation.

2. The Functional Integral Method
/8/

The Hamiltonian of the Hubbard model’ * is- H=H  +H, , where

HO:}: €n 2o ' | | i a

Ro ® ko
- o T , o
Hy=UZn, ”u=—4_%(”if+"u) _Z"zz("u ng, e @ .

€p is the energy of the unperturbed nondegenerate band of band width 2 A; the chemical.
‘potential p is included into e ¢ - The interaction part of the Hamiltonian descrlbes the
Coulomb repulsion of two electrons (with antiparallel spins) at the same lattice site. This

part_is rewrltten as suggested by Miihlschlegel 2/ . We have preferred the first versmn

proposed -by ‘Mfihlschlegel because it leads for U>>A to agap equal to U . (The second
version proposed by Mihlschlegel leads in (1) to the absence of the first term and to
mnstead \/U this gives for U/'>> A a gap equal to 2/. The value of the Gibbs potentlal
is for U>>A . the same in both versions).
We apply the mtegral formula .

52 -2 .
— L — —-a +2b . . .
\/—le“ N - ‘ 3) .
L eV | A
_ to the grand partition function of the Hubbard model (Stratonov1ch Hubbard transforma-
tion %
o Q - - —i
Z=e'8?'Tr{e_B#] Tr{Texp[-—L fdtH(t)]}- "
s v —BQ (x; (1), yiy(m’l o .
= [Dx, (t)Dy,(t)e T
with . - . : v o .
. ,BvQ(x}’ (.y ;(0) =Tr{Texpl —i [dtH(x (¢),y,(t)], R
0 A o - . « o



CH(x (1) ,y, (t)=3(x2()+y’(t)+ I e n, (1)~
i i i i ‘ ,l?d kE kO

...\/in (ni‘r(t)+n.i¢(t)-)iyi(£)— - c (6) .
VT Z(n,,(t)=n, ()x, (t),

- BT
Dx (t)=T T (V—dx(t ),
R 2 [

5 73_ : ' ’ (M
Dy, (1)="T1 TV dy. (¢t )).
i i =1 g "t 7

4

For the integration the imaginary time interval [0, —iB] is divided into (5 ) sub-
intervals. -~ . -

By means of (4) the partition function 7  is represented as the average of the par-
" tition function.of .band. electrons, without electron-electron interaction but under the influ-
ence of two stochastic fields x,y . The ’magnetic field”” x is coupled to the spins of the
electrbns, the electric potential”’ y is coupled to the charge of the electrons.

‘The spin fluctuation effects are assumed to be more important than the charge fluc- - -

tuation effects (compare/’h“/ "). Therefore, the field y is simply'treated in the sta-
‘tionary point approximation, that means in H(x (1) , yi(t)) we use the value of y. (t)
which makes J{ stationary: t

o O30y, D)
'ayl_ (t) . k

=2y, (0} iyU (n () +n (1)) =
| - - (®)
= 2y, (t)-iVU.

Furthermore, we treat the field xi(t)in the static approximation: We neglect the time de-
pendence of the . x; in the interaction'part in (6).
" In this way the problem is reduced to

VA ee-BQ=\f D xi. e PRy ) (9)



CH(x () oy (=3 (22 (P e 5 en, ()=
1 1 i z z E)o_ k kU
VT S0, () eny (iy (6)= | ®)
VT Zfn,,(t)=n, (D)x, (),

D (t)=T1T (v dx (¢t ),
1 . 1 :n 1

i = - i

(M
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Dy, (t)=T T(V B iy ().
¢ i=l N LA

For the integration the imaginary time interval [0, —iB] is divided into JU( o0 ) sub-
intervals. ‘ . :

By means of (4) the partition function Z is represented as the average of the par-

_tition function.of.band electrons without electron-electron interaction:but under the influ-

ence of two stochastic-fields x,y . The '"magnetic field”’ % is coupled to the spins of the
,electrbns, the "’electric 'pOtential” y is coupled to the charge of the electrons.

The spin fluctuation effects are assumed to be more important than the charge fluc-
tuation effects (compare/4-11./ "). Therefore, the field y is simply treated in the sta-

“‘tionary point approximation, that means in H(x (t) , y.(t)) we use the value of y,(t)

which makes [ stationary: ! ’ ’

() () T o (t)an . (D
0 = i (?‘,-(t) i Y =2yi(z)—i‘\/'U ("M(‘t)"'nﬂ(t))z

'ayi('t)

. (8)
= 2y, (t)-i vU.

Furthermore, we treat thé field xi(t)in the static approximation: We neglect the time de-
pendence of the .x; in the interaction'part in (6).
" In this way the problem is reduced to

p =e—BQ=\f s, e Bl o



with

—ﬁﬁ(xi)

¢ =Trlexp [-BII(x;)1}, (10)
U 2 -
H(x )= p + ;?.‘x' 47:5 .(_k, nzu—\/U 5 nia(”,ci’ » o)
PRREPE A o : (12)
k k 2 .
B :
Px =U(y —dx ). (13)
i b ! .

-For a half-filled band the chemical ‘potenti.ll {t can be fixed by xequumg electmn-
hole symmetlv (the interaction term in (11) conserves electron-hole symmetry):

ST,
R

I . -
/\_ k ; : _ (149)

The magnetic moment of the electrons at a lattice site ¢ is connected with the ave-
rage of the stochastic field x;7: In view of '

» -BQx,)
) axi ) : ; 7
we obtain from (10,11)
‘ ‘ i
2 . —ﬁQ (x') 2
<an_ I.il> = - ffDx X 4 . E el <1‘ >x-



Because we have a static field x and no electron-electron interaction, the Gibbs po-
tential {} corresponding to the Hamiltonian /(x ) can be written in the simple form
(compare Kimball and Schrieffer /4/ )

Ez(x,.)=-’![§’-+.§:xf_ —BLfdw'p(w,x‘i)[’JlU%e Bep,
where the density of states p(c‘vo‘,xi') isgivenby . .
'p(w,xi)=;1_'2 Im'Ciio(a)+ie?xl§), ; - (18)

‘T a0

with the one-electron Gréen function:

. o ) At e
Giio(w+”,’x_i )_—i-< T am“(t) a, (L )>;’,(x.) S o §19)
a)'+i€1 /

3. The Average with Respect to x

The problem defined by Eq. (9-13) is analogous to the problems considered in the
theory of disordered systems (alloys). At each lattice site { we havea static stochastic
- field x; '(with different sign for different spin direction), and we have to perform the ave-
rage with- respect to these stochastic fields. For this average we use an approximation
scheme similar to the coherent potential approximation‘(ﬂz’),(' compare also Cyrot/3/ ,
Kimball and Schrieffer/4/ ). '

We write for the Green function

B

‘GijU(m’ x )=‘iG~ij6(Q)+E§ 'Glgg(w)'j'e-fo (w,,fi )'Gf'ja (w[; o

with -

(67 wh) = (677 (0l =2 (0) 0, .. @

il



C‘@. _,3'(1) 5 3'(1) (NC )EE (1) 4

(1) g T (I
E 3' (N G )?2 jEIU(N GO’ )212 fj'.f +-.-. 2 (22)
. 1 - G
T (g0 = i el Pl
fo ’ o R el :
L 1m0y, RE (e) Gy,
=AU oa : R (24)
Y= VU oxp - |
’G(o) is the Green function cori‘espondmg to thé unperturbéd band c re Ea (w) isthe

)
CPA mass operator and NG is the nondiagonal part of the matrlx 5 Eq (20-24) are
exact.
' Now we mtroduce the average w1th respect to x of the ff”’,-matrlx for scattering
at one lattice site: : ‘

.(1) . . .
< Do, :
Fe % o (25)
‘We substitute the expressioynA o
ey ‘ fIu'). - R
T Aw,x, )=<T. " (a)> +(ff (cu %, )— <ff (w)> ). (26)
le - ¢ lo "=

into (22) and neglect higher pdwers than the first of the fluctuating parts (second term m
(26)). The single-site approximation, which is the basis of the CPA, corresponds to the
total neglection of the fluctuating parts. It is obtained

J_ =< g s
» 5 o >t Ty ~ Ty, Pt

(24

(1) » k_ (1 ~ V .
+ 221 (fT to -<fTBU > UNG, )y 1< 33170-‘ > + :



23 <F s (NG )y s (55 ceF D )y
; 0 o x a0 T fo "Teg "x 7 =
1 1 o @7)
X : ey ) « (1) (1) o 0 .
+3 < verz > (NG ) (J? -y > NG ) S e
Lt 17" (e, 7 7 45 e .
- - (1) )
where <Jpy >, results from (22) by substituting iJ - “’-\'ﬂ-&; »,_ . everywhere. We further
follow the CPA procedure-and determine the CPA mass operator 2() (w): (or 'G'.],a(w) )
; r 1 o _

by means of

.c-kl). Soxa RoE ' ) ’ R o
< J(Za (0, Zﬁ(’w‘),‘xev))x =0. o g )

Eq. (27) is then reduced to

o (1)

F - =9 - @29y
tlo " o’ (29)

In view of (9,17,i8,20,29) we obtain for the Gibbs potential of our system

) : —ani(x -). ' -ﬁﬂifx,') N _
e BQ_ [Px e i Yooy f\/ P- dr,e ), (30)
1 w . .
with
Q.(x. )=— _ll_+12 PR fwdw thll+e _Bw]x
ot 4 Yoage

. ' - (31)
xin ST, (6) (€ 0)) T (0,5, )b
) o / ii : A g 11 2 l’ ) ‘ -

Our expressioh '(31\ differs from the cdrfrespondving gxpressioh of Kimball and Schri-
effer /4/ in the factor (T,2). instead of (C ;)2 in frontof F{7) . This difference
is connected with the ‘assumpfion.made by Kimball and Schrieffer that - 'p_a (m,xi )= o

v ) ’ . : B #

s——l-'lm'G;, (o+ie,x . ) depends only on x, .
m 110 F H



In order to get a self-consistent approx1mat10n scheme we calculate also the average
(25) of 1) in the approxlmatlon leading to (30,31): '

(1 ~ o1y | =By (xp) T
‘if[;((ll((:)}">x =(—{/:—)N f\/é:di\’p 1[, (w.x, Je ' LT . (32)

3

The problem to be solved self-consistently is given by the Eq. (28,30-32).
It should be noted that our approximation scheme conserves the essential relation in

(16). On proving. this relation in the framework of the approximation scheme we have to
neglect terms of the type

o G2 . . 7 33
Vi G o w0 Por )\x for i V. (33)

G
The negtection of these terms is consistent in a CPA-like scheme. The factor ((, },.l.' in
front of 1‘” in (31) seems to be necessary in proving (16).

In this paper we consider the metal-insulator transition between two palamagnehc
phases. Thus we have to look for sotutions with

<x o>y =0 ( for paramagnetic phases). _ (34)

Furthermore, inthe paramagne‘tvic phases (;:,,(, is independent of the spin ¢ and the . -
CPA mass operator E(’o‘ is mdependenl offand ¢ . The antiferromagnetic phase will
be considered in‘a further paper. o R

4. Stationary Point Approximatidn

We use the stationary point approximation fox ‘the calculation of‘the « - mtegrals in
(28 30) conSIderlng B . as the large expansion parameter. Because of the sum over ¢ and
the - ' -independent '3 the potential Q;(x;) isan even function in x; . For fixed
3 the minima () (x ;) will be at x ;= _4_-_A|xmm,| (only ﬁ|x"”-" |# 0 is of interest).
Then the CPA condition (28) takes the form C e AR
(1 ' R B¢ )
'<'j.ta/“’ ’,_Z’x,- »= ;’jia?(‘l” 2,1«

j-“)(m z l rrvin
’ (35)

minl



;. The potent1al Q (x ) (see Eq. (31)) can be wrltten as

Q, (x, =—g—-+x2 -I—B_-{odw?n[1+eﬁ 1 x |
. - N (1 ‘
xIm12G, (0)+(G7 (o)) (5] (0x; )+, (0, -5, DL 39

Because of the. summation. over the spin the same combination of the ;f]'”)-matrices as
in the CPA condition (35) has appeared in the last term. Thus, at the minima "i=i""‘m;,i|

Q. (r]x_, L[)=—‘—l£+x2. 2 fdwln 1 +e_Bw]‘Im’5, (w). (37)
i omin 4 min ”ﬁ = ) il N

The condition for |y | is obtained by differentiating Q,(x,) (Eq.(36)): "
mi ’

d

S—Qi(xi)]‘ ~2ac+i--_fclco[?n[l+e ﬁw]x
X .

xi=i|xmi"l 14 -0

(38)

RNEITH LA RN L ST gy ST )
i s =t

‘ 5 -is-a function”of ]x " in.view of (35). Instead of determining Ixm ,,I
it is also possible to determlne 1% pin | by dlfferentlatlon of (Ixmm )x (Eq. (37))
- with respect to lx il

dQ (lx
ai=

1) " 9 % © —Bw ., dE (a)‘)‘ d2(w) |

min 3 = 1 i1 =0.
—_2‘|".,,.,-,,|+A 75 _‘fdAw?Jz.[l +e ] m[ 7% (@) dim] l

. (39).

min I ’

,,ll
-

=T

from (38) <



On the basis of another reasoning thls way of determination of the stationary pomt value
of the stochastic field was also used by Cyrot /3/ . In order to show the equivalence of
(38) with (39) we differentiate Eq. (35):

1
sl _us | acsth
+
d3 dix_. | aix :

min min I

0. S o)

Straightforward differentiation of the perturbation series for :J ,-” ) leads to

(1) ' e e ’ -
%_rz —2C, J‘” 36,6y, (TN )E @y

where we have used

46 g2 ' 42)
d=
The average of (41) over x, =-_+_l|xmi".l is
q (1 - : :
4<Ti % g, Gy Gy, < (rle_”’ )f'> ~ 1. (43)

dT L£i

The last term in the centre of (43) is of the type (33) and has to be neglected in the frame—'
work of the CPA =/ . Using (40,42,43) we obtain

"/ One can see in many ways that this neglection is necessary in order to get.a con-
sistent scheme. For example onaveraging (22)in the smgle -site approximation and dlfferen-

- tiating we obtain
\ d<9>, L d<Fah

d3 T ds
From the exaet relation

dJ . Fa
d}:-;.( e \ R
we fmd by averagmg C ‘ -

d<g Y

Fp3

= _1.

2



dG;; W,
2 ii dE =2 .62) d3 2 62 6<’j -

d3 dix | " dijx . " dix ;I .

min mn mnl

(49)
(1) (1),
)""ji (—x,.))]- oy
‘ - xz;l minlI .

showing the equivalence of (38) with (39).
Returning to the integral in (30) we get ( a factor 2 comes from the existence of two
minima at x, -+|x J) \
oo - Q,.(x. » —Bﬂ =, h———
f\/de.'e B : : “'v—-—i——-—::
. ¥ , .
R Q% al)

—ep{-pIO_ (1= 1)+ %fu Vs 1)/8N= @y
B, i) |
, P

or
Q=NQ (Ix__ i) 1 ' , (46) |

where Q (Tlx 'J) and[|x n[ are given by (37) and (39), respectlvely (Compare also Cy-
rot and Kimball and Schrleffer /4/ . ).

On using this approximation we loose the temperature dependence of the transition
(e.g. the spin disorder entropy of the localized moments connected with the factor 2 commg
from the two minima). This temperature dependence is essential for the determlnatlon of
the orderlng of the phases (AI PM, PI) along the temperature ax15 :

5.-Approximative Treatment of the CPA Condition

The unperturbed band given by € P hasits centre of grav1ty at w= 0(see (14)) Spe--.
- cializing to a parabolic density of states . (O) (compare Hubbard /8/ )

A Iﬂ)‘ S A B
nAZ \J{ (47)
0 o lof> A,

13

.AO)(&)):



we obtain for the unperturbed Green function. (;_‘f” - the quadratie equation
. S i . .

A ¢ Oy ! .
,l ii G (0)

ii

)

s

. ' ' . S0y, . . L
For the retarded Green function (G (wiid)) the solution of (48) with negative imagi-
nary part has to be used (note (18)). By means of (21) we get

)~
w—->(w) - 206 1

! . .

b ©(49)

! ii 6’ . -
it

It is convenient to use (- in the calculations and to eliminate X with-the help of

(49). Thus we obtain Tor the '.‘l'(”—mulrix (Eq. (23))

‘I ~ -

U) i .
(0.x Joem Y6 ()~ L. i
(50
r(f i -~ 2 ii A2 ~ . )
(G (a)) ro—wy 2 G ()
i i ! ii

so that the CPA condition (28) is translormed into

1 —
~ : -~ B o =B x) !

G ((u)!(-L) Ny \‘Ld.\',(' P T ~ - 0. (51)
” / Z~ 7 ! AT )
~ v, —w+ 26 (w)

£ . ! i

In the stationary point approximation Eq. (51) reduces to

-’C @)+ . 4 SRR R N . (52)
A2 . el ‘ \2 ~
\/U|t l-—(o+—-(:.. S e |-w+-———(1..
1 ii - min ' I i
Eq. (52) is the version for our pr oblem of the CUblC equatlon glven by Vellckv etal’ / .
It is convenient to rewrlte (52) as - '
G,y ()= -E-(FI (@) +T (@) o I (53)
o—V U |x I——-»(-F1+-F2)=——, o . (54)

min 8 : : .1“1

14



o A2 ; ‘
o+ U !x'mi,,‘.l _ _E(,rl +-F2 )=T: - . _ .(55)
. . 2 . .

We restrict our considerations here to an approxnnate soluhun of (54,55), which ex-
hibits the qualitative behaviour of the exact solution of the cubic equation. We neglect in
(54,%5) the coupling of FI by substituting T°, +T, »aly | I +1, »al’, in(54,55)
respectively: '

I ~2 . .
©=-VU |z, =81 + 1, < (56)
’ 1 I o
— C =2 . :
©+VUjx -, [—-A]'z 4 A ‘ (67) .
e min 1 . ]‘2 )

In this approximation (, ii . (w)is the sum of two shlltcd unperturbed Green functions (com-
pare (48)), each helongmg to a subband of width A-. A Va a/2. The number of states in each
»sul)band is equal to | per lattice site. A gap g in the density of states p((u) is obtained

for — = VU [x [-A> 0.  The parameter a can be fitted to give the best 51)1)x'oxi-"

min

mation to the exact s_olutivon‘; a:-é- < 1; For a = 1/2 the gap in the density of states

appears at vy |, |—%=0,what coincides with the behaviour of the exact solution,
. omin & . L

The imaginary parts of the solutions of Eq. (56,57) are

— . . |
1 (58)

"?""’" Iﬂzf.g(‘”)= min

— 2 e
VA ~ (w:'_-\/U lx
7 + -
for - -values leading to positive ra‘dicand (seé. Fig. 1).

The appéarahce of ‘the gép)in the density of states may be due to the stationary point .-
approximation. If the mtegratlon over x in (51)is performed exactly we expect instead of
the gap a minimum in the denslty of states. k

6. The Lifshiz Instability

The Lifshiz instability occurs because of a violation of the thermodynamical stability
condition for the total compressibility -

15
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~ Fig. 1. Density of states with gap.



d%F dp o D .
: ot ) _ ( ) <0. ' (59) .

V2 T gy T

F,,, is the total free energy of the system. Such a behavmur of the free energy is well

known from the case of the van der Waals gas.
We first calculate the Gibbs potential (Eq. (46)) in the limit 8 -» o . From (37,

53) we get
Q:NQI(” xmiij ) =

NU N2y 2’2 T dotn U+e™Pe ]‘hﬁ’&'ii (0)=
S 0 ' (60)
N N2 22N G 0In G () -

4 . min g -—00

: . 0 .
NU i Nx2 4N fdowle LIn(T (@)+T ()]
4 min 50 n 1 2

Substitution of TmT from (58) leads to
NU

Q=-ZZ N2 ~NUlx | withgap, VU |x |>A; o)

in

__M 2 _NT -
Q——T+Nx in \/ |x,,,,,,l (62)
~———..  Without gap, »
= faeteyTls,, wAZ £7, VUlx . <A
. \/U‘xmml . i
For small negative gap we obtain for (62)
Qe l\;_ll_+ N‘Ix o =NV |-

(63)

. L 5/2 )
_ 163{32}' i .(A _\/Uf[xminj) / , without gap.
15aA02 , o -

1z



After determination of.lxm in| by means of (39) the final result for the Gibbs poten-
“tial is o '

. - with gap, §=U—-24>0; (64)

and (after iteration)

Q-_N _ 16\7_N
2-— 3 2

without g'ap, g=U —2510. (65)

As we already.remarked in the introduction the physical situations in the case con-
sidered by Lifshiz and in our case are similar. In our approximation even the formulae for

{t are the same in both cases (compare /2 ). - :
Q in (64, G‘S) is the electronic part of the Gibbs potential. We go over to the total

free energy I-,o, by addmg uN  and the free energy of the lattice F

Fo,=Q+uN+F . ' | (DN

We now consider the dependence of the free energy on the volume V, -which can-be
changed by external pressure. The model p.lrameter U can be considered as mdependent
of ¥, but the model parameter A (half ‘of the ‘unperturbed band width) increases with .
decreasing V. The gap will approach zero at 504 R

L& =0, ' : (67)
2 . ) . ) |
and we can expand

U__x L oo
rRRURE CUSLRAC L B



~ We assume that only '} shows an anomalous behaviour at the point V¢ ., where the gap
disappears, and that the other two terms in (66) can be expanded in the v1c1n1ty of VO .
. Thus. we obtain for the total compre551b111ty WS :

_B_ = ’
(2 |
-%—"— +—"A713(V_VO ) o fr o PV (69
{ UNIYELLE o S 3
Via . . (v, V)/—Z f9+ f—lz(V—-Vo ), for v VLV, . (10)
L n(A N2 N oN 0 I S

Ay kg D0 The first term - in (70 comes from (65), the other terms come from "~
the expansion of the regular part of the total free energy *

An unstable region (( ) ’>’0) exists, if
: av'T .

2\/? /2
ﬂA3/2

> VR R | : (i

Such’ an unstable region leads to a first order transition. At constant pressure the volume
B -jumps from a value'l/, ( at the right of the unstable region) to a volume 'V, ( at the left
- of the unstable region). The line p= const and the volumes’ V are given by Maxwell’s
rule of equal areas inthe p,’V diagram. .,
A more accurate numerical treatment of the self—con51stent system of equatlons isin
preparatlon Th_e unstable region resulting from an'improved evaluation-of the x -integ-
rals, the CPA condition and the corrections for'T;é 0 are expected to be smaller than that
given by (71). Above.the critical point or ‘in cases, where no first order transition line -
. (no’ unstable region) exists, anomalies similar to the anomahes in the transitions of order - -
2 1/2(compare Lifshiz/ 2 ) may occur. ’
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