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l. Introduction 

There is considerable interest in the study of electrons in a half-filled nanow ener­
gy band. Due to the electron~electron correlation a splitting of the hand ami m_agnetic order­
ing are possible depending on the ratio U I A , where U is a measure of the Coulomb 
repulsion and 2\ is the band width. A phase diagram is expected which can show in the 
general c::tse an antiferromagnetic "insulating" phase (.II), an antiferrotl~agmitic '·metal­
lic" phase (AM), a paramagnetic "insulating' 'phase (PI) and a paramagnetic "metallic" phase 
(PM). Transitions occur by changing U I'' by means of external pressure or or doping. 

We consider in this paper the metal-insulator transition (Motl transition) fnim a pa­
ramagnetic insulating phase to a paramagnetic metallic phase. Both phases are assumed 
to have the 'same lattice 'symmetry. Mott /1 I has proposed that this transition may be' dis­
continuous due to an instability in the free energy conesponding to the instability studied 
hy Lifshiz I 2/. Lifshiz considered a metal in which by variation of the external pressure 

·}' an energy branch passes through the Fermi energy. In our case the narrow hand is split' 
into a filled and into an empty suhband for·l:irge U It\; If U l\ decreases with increasing 
pre~sure the gap between the two suhhands goes to zero. Thus qualitatively the situations 

in the case considered by Lifshiz and in our case are the same. 
It is the aim of this paper to obtain the Lifshiz instability connected with the metal-

insulator transition starting from the Hubbard model. We consider one half-filled nonde­
gene~ate band. The Hubbard model is treated by means of the functional integral technique 
in the static approximation. We neglect higher-order fluctuations in the exponent of the· 
functional integral and develop a self-consistent approximation scheme analogous to the co­
herent potential approximation (CPA). Similar treatments of the functional integral were 
given by Cyrot/J/ and Kimball and Schrieffer/4/. The resulting equations ar~ approxima­
tely solved by the use of the stationary point approximation for the integrals and of an ap-. 
proximate solution of the CPA condition. In the framework of these approximations the 

,"•' Lifshiz instability can be obtained analytically. 
McWhan et al./ 51 have found in ( ~ _Jr )2 03 for x ::;0.01~0.04 a first order phase 

transition curve (PI: PM )terminating at a critical point. Both phases have the same lat­
tice symmetry ( a-corundum). Unfortunately the band structure of this system is not well 
known, and it is not clear therefore whether electron-electron correlation or band shifting 
(overlapping) is responsible for the transition. Wilson and Pitt/ 

6
/ have found a ·pi :PM 

transition in the system N i ( s 1- X Se ,h for X :S 0.4. In this pyrite structure there are 



two d-electrons per Ni atom ina well separated twofold degenerate· e g -band/7/, so 
that a model with a half-filled band may be a reasonable approximation. 

2. The Functional Integral Method 

The Hamiltonian of the Hubbard mode/
8

/ is II ==II 
0 

+11
1 

, where 

fl = "'£ L;,n k a ' 
O la 

111 ==V'£n. n. ==JL '£(n. +n. / -l!...~(n. -n. / 
i z t Z.J, 4 i z ~ z.J, 4 i z t · lJ. 

(1) 

(2) 

l ~:,-> is the energy of the unperturbed· nondeg~nerate band of band width 2 !1 ; the chemical 
potential fl. is included into l k' . The interaction part of the Hamiltonian describes the 
Coulomb repulsion of two electrons (with antiparallel spins) at the same lattice site. This 
part is rewritten as suggest~d by Mii.hlschlegel/9/ • We have preferred the first version 
proposed by Miihlschlegel because it leads for U';;!> !1 to a gap equal to u . (The second 
version proposed by Miihlschlegel leads in (11) to the absence of the first term and to 
...,f2Vinstead yU; this gives for U'>> !1 a gap equal to 2U. The value of the Gibbs potential 
is for U>>/1 the same in both versions). · 

We apply the integral formula 
b2 2 

- - oo d -ax +2bx 
y .....1 e a == f 2 e (3) a ./-...,ooy77 

to the 9rand partition function of the Hubbard model (Stratonovich-Hubbard tr~nsforma­
tion/10): 

-{30 . -{3 . . . .· - i{3 
Z == e = Tr{ e H I == Tr!T exp [ -· i I dt fl ( t)] I== 

0 

j:~x i (t}.~. (t}e -{30 (xi(ti, Y;(t))' 

' ;' 
(4). 

with 

-if3 c,oo' 

e-{30li; (tJ.y;(t)) =Tr i·_r-exp[ -i Idt H(x/t),yJt)}]l,'' 
0 

(5) 

4 _-, 

j 

i 

I 
II 
tl ,. 

I 
I 

I 
I ., 

fl(x.{t) ,y. (t))="£ (x2;(t)+r:(t))+ "£ t_,n_, (t)-
z z 'i z ' : z ' . k a k. k. a 

-vu "£(n. (t)+n-. (t))iy.(tJ-
, i z t z.t. · · z 

-yU ~(nit(t)- ni.t.(t))xi (t), 
z 

n f3· 
:~x. (t}== ·n ·n (y-dx (t )), 

, _ i t=z 77 n i i 
n . 

-~r. (t)= n n rv f3 · dy. -{t)J. 
' i j==l ' 77:Jl ' 1 

For the integration the imaginary time interval [ 0, - if3] is divide 
intervals. , 

By means of ( 4) the partition function Z is represented as t 
titian function of. band .electrons without electron-electron interacti 
ence of two stochastic fields x,y . The "magnetic field'~ x is couJ 
electrons, the "electric potential" y is coupled to the charge of th• 

The spin fluctuation effects are assumed. to be more importan 
tuation effects (compare/4,11/ ). Therefore, the field y is sim] 
tionary point approximation, that means in fl( x .{t) , y .(t)) we u 

. l ' which makes fl stationary: 

aH(xJtJ,y.( ·tJJ 
0== ' z .. ==2y.(t}-iyU (n. (t}-i-n. (t, 

. . I · . Z t Z.J, 

ayJtJ 
' ::: 2y. (t}- i ..,;TJ. 

' 

Furthermore, we treat the field x;(t)in the static approximation: V. 
pendence of the . x; in the interaction·part in (6). 

In this way the problem is reduced to 
' -

Z = e-{30 = I :~ x. e -{30 (xi J 

. '. 
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(4). 

,. (5) . 

I 
l 
I . 

j 
r-
;. 

I 
I 

1. 
I 

H(x.{t),y.(t})=!.(xl;(t)+l(t))+!. c.,n-+ {t)-
' ' i ' ,, .. ra 1e lea 

- v'fJ 1 (nit {t)+n-h(t)}iyi (i}- (6) 

-yU ~(nit(t)- ni/t))xi (t), 
z 

. J( . {3 . 
~x. (t}= ·n 'TI (...j-dx. (t. )), 

I . i j=I 17 j{ I 1 

jt . 

·~r. (t}== n n rv f3 · dy. ·(t)). 
I i i= I ' 77:)( I 1 

(7) 

For the integration the imaginary time interval [ 0, - if3] is divided into J( ( ->.oo ) sub-

intervals. , 
By means of (4) the partition function Z isrepresented as the average of the par-

tition function oL band .electrons without electron-electron interaction but under the influ­
ence of two stochastic fields x,y . The "magnetic field" x is coupled to the spins of the 
electrons, the "electric potential" y is coupled to the charge of the electrons. 

The spin fluctuation effects are assumed to be more important than the charge fluc­
tuation effects (compare/4,11/ ). Therefore, the field y is simply treated in the sta­
tionary point approximation, that means in II( x .{t) , y .{t)) we use the value of y. (t} 

which makes il stationary: 
1 1 1 

aH(~Jt),y.( ·t}) 
z ' . =2y.{t}-iyU (n. (t}+n. (t})-

. I . . f 't f,j, -

(8) 
0 

ar. (t) 
I 

::: 2y. (t)- i ...;u. 
' 

Furthermore, we treat the field x/t)in the static approximation: We neglect the time de­

pendence of the xi in the interaction·part in (6). 
In this way the problem is reduced to 

-{30 ffi . -{30 (Xi ) 
Z = e = f ·:.v xi e (9) 

5 
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H(x.(t},y,(t})='£(x:(t)+y~(t))+ '2. c_,n_, (t}-
z , i • ·• ·.ita 1c Tea 

- YfJ 1 (nit (t}+n·;/t})iyi (t}- (6) 

-JTJ "l:(nit(t}- nu(t)}xi (t}, 
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9)x, (t}= n 'TI (y-dx, (t. )), 
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(7) 

For the integration the imaginary time interval [ 0, - i{3] is divided into il ( ->.oo ) sub-

intervals. , 
By means of (4) the partition function Z isrepresented as the average of the par-

tition function. of. band electrons without electron-electron interaction but under the influ­
ence of two stochastic fields x,y . The "magnetic field" x is coupled to the spins of the 
electrons, the "electric potential" y is coupled to the charge of the electrons. 

.The spin fluctuation effects are assumed to be more important than the charge fluc­
tuation effects (compare/ 4,11/ · ). Therefore, the field y is simply treated in the sta.­
tionary point approximation, that· means in H( x .(t} , y Jt)) we use the value of Y; (t} 

which makes H stationary: 
1 

aH(x.{t),y.( ·t}) 
0 = ----~·--~·--~ 

ar. (t) 

=2y.(t}-i/U (n. (t}+n. (t})::: 
. t ' ' t t t,J. 

(8) 
t 

::: 2y. (t}- i ...;TJ. 
I 

Furthermore, we treat the field x;(t)in the static approximation: We neglect the time de­

pendence of the x; in the interaction·part in (6). 
In this way the problem is reduced to 

-~n -~n ( x,·) 
Z = e t-' = J :9) x . e t-' 

t 
(9) 
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~?# 

with 

(' -{~O lx;J = Tr I exp [-{31/'(x;)]l, 
(10) 

ii ( x )-~- N U + :£ x 2
. -1 ~ 7 ... n.... _,/Tf ~ n. ax 

' .J i ' 1 a k k u ia 'a (ll) 

( .... = ( ··> t· 
k k :! 

u 
(12) 

f3 
~~ x . = II( v' - dx . ) . · 

' 7T ' 
(13) 

For· a half-filled band the chemical potential fL can be fixed by requiring electrori­
·hole symmetry (the interaction term in (11) conserves electron-hole symmetry): 

o=L:£ 
N -t 

( ..... 
k 

The magnetic moment of the electrons at a lattice site 
rage of the stochastic field x. · : In view of 

' . 

I ~) x. a -f3n (x.) ,-e ' 
ax; =0-

we obtain from (10,ll) 

< n . - n . ·> _ 2 I 111 -{3 Q ( x . J 
•t 1-!. H--=:. ~J x.x. t' ' . vu ' ' 

'6 

{14) 

is connected with the ave-

(15) 

2 
- <x.> ..;u ·' x 

(16) 

I 
I 

·i 

l 

Because we have a static field x and no e.!.ectron-electron int 
tential n corresponding 0 to the Hamiltonian H (X) can be writtl 
(compare Kimball and Schrie_!fer I 4/ ) 

- NV · · 
00

· -n (X .) = - - + ~X ~- .1... I d cup ( (1) ' X • ) en [1 + e f3£U_J ' 
' 4 i ' 13-:oo ' 

where the density of states p ( cu ,xi) is given by 

p(cu,x)=:.....!_ ~ lm'Gila(cu+ic,xi), 
rr ia 

with the one-electron Green function 

G (cu+ic,x )=l_<_ T a (t) a+ 
iia i i ia. ia 

(t')•>_ 
H (xi)• 

cu+ if 

3. The Average with Respect to x 

The problem defined by Eq. (9-13) is analogous to the prob: 
theory of disordered systems (alloys). At each lattice site i we h 
field x; ·(with different sign for different spin direction), and we ha· 
rage with- respect to these stochastic fields~ For this average we 
scheme similar to the coherent potential approximation ( /12/,' co1 
Kimball and Schriefferl 4/ ). · 

We write for the Green function 

G .. (6J,x )=:G ... ·fcu)+~'G.n (cuJ.fiff_ (cu,x./G[" (cu), 
l]U 11d' - JLU a ·.1 1·a . ee · . · · · 

with · 

rc- 1 (cu)) 
ija 

= (G (OJ -
1 

(cu)) -I. ( cu) o .. 
iia. •a. · •1 

·- .7 



ax , 
a i 

(IO) 

(ll) 

(12) 

(13) 

:an he. fixed by requiring eledron­
ctron~hole symmetry): 

(14) 

'.·; 

site is connected with the ave-

(15) 

'2. 
- <X.) 

\jU I X 

(16) 

Because we have a static field x and no electron-electron interaction, the Gibbs po­
tential fi corresponding to the Hamiltonian H ( x) can be written in the simple form 

(compare Kimball and Schrieffer I 4/ ) 

O(x)= _NU + ~x~- ..L j dwp( w, x. )l'.n[l +e -/3~, 
.' 4 i I /3-:oo I . 

where the density of states p ( w ,x;) is given by 

p(w,x;)=-.!._ ~ lm'Gila(w+ic,x;), 
TT. ia 

with the one-electron Green function 

C ii a ( w + i c , x ; ) = + . .( T a i a ( t ) a~ a ( t ')1> _ 
II (xi}• 

CL>+ i £ 

3. The Average with Respect to x 

(17) 

(18) 

(19) 

The problem defined by Eq. (9-13) is analogous to the problems considered in the 
theory of. disordered systems (alloys). At each lattice site i we have a static stochastic 
field x; (with different sign for different spin direction), and we have to perform the ave­
rage with· respect to these stochastic fields: For this average we use an approximation 
scheme similar to the coherent potential approximation ( /12/,' compare also Cyrot/3/, 
Kimball and Schriefferl 4/ ). · 

We write for the Green function 

C .. (w,x }:/G ... ·(w)+'I.'G 41 (wJ.fJ~0 (w,x.HJ11 (w}, 
lfa lfa ee <~.a . u.a . . ·I tja (20) 

with 

(G -1 (w )) 
ija 

= (C (OJ -
1 

(w}) - ~- ( w) o .. 
if a. za. 11 

(21) 

'· 7 

t 



i 
) 

' 

. 
i. 

5- - ;1 111 'o-- ,1 111 (N'G J - :1-111 
eea - . en ee + en a ee fa + 

:. ,'(1) .- .. (1) ...... . (1)" 
+~ ·~"-· (NG Joo 1o (NG )o o•1_ + ••• , 
fl W a U.) r..la . a Lll. tv . 

~- .(w) . vea. . ea. . --
l1(l)(er),xf)= r·· -·! -(w}) 'Gffa, 

fa 1- vl'u fa · 

vfa =-vU ax e 

(22) 

(23) 

(24) 

'G(OJ is the Green function ~grresponding to the unperturb~d band ; ... ; ~en ( w) is the 
CPA mass operator and NG is the nondiagonitl part of the matrix k G ... Eq. (20-24) are 

II 
exact. 

Now we introduce the average with respect to x ·of the :j' fl~-matrix for scatter~ng 
at one lattice site: 

We substitute the expression 

.<11 (1) 

fa 
•>. 

X 

(1) nil). (11 (1} . 
:1

0 
(w,x0 )=< •Jn (w)> +{'1

0 
(m,x

0 
)-_<;1 

0
: (w)> ) . 

La · t t,U X La L r..a X 

(25) 

(26) . 

into (22) and neglect higher powers than the first of the fluctuating parts (second term in 
(26)). The single-site approximation, which is the basis of the CPA, corresponds to the 
total neglection of the fluctuating parts. It is obtained 

(1} (1} . 
:1- =.<'1 _ ·> + c:1 -.<tf · · '> )o- + 

ffa fe a X fa fa X fe 

+ ~ (1 (1) 

f1 . fa 
(1} CT 

-<10 ·> )(NG Jon _.< Jov _ •> + 
La X a U. 1 Lr-a. X 

l 
I 

·I 

j 

. ~ .cr ('NG-- ) . ('c.-1 ( 1 J .cr f lJ - ) + ,;. -< 'Jon ·> e if" '·- 0 -.<'J'7T •> + f U. a X -a - t La - ·ta 'x r 
1 1 1 • 

- (1) ' (1) -
+ -~ -< '1ee a ·~ (NG a) (:~ -<'1 {. ·> XNGa) < e f-2e 3 1 f/ 2 - :P :P r 1 

. . . (1) (1) 
Where -~:rr fa'> X reSUltS from (22) by SUbStituting )1 fa _,_<:1 fa •> X 

follow the CPA procedure and determine the CJ> A mass operator ! 
by means of 

cr (1)(. 
. < Jea w ~ r w J, x e )> x = o . 

Eq. (27) is then reduced to 

:r eia = :1 ;~
1 
8 e'f 

In view of (9,17 ,18,20,29) we obtain for the Gibbs potential of om 

e -f3!l = [5Jx . e -f3'7!l /x ;l 

' 
= ( Jli- d -{3f!;lx·) 

-; Xi e 
1 

with 

( ) . u 2 1 ·"" [ -{3(r) ] 
fl. X. =--+X. + - f dw fn J + e X 

I Z 4· l 7i{J-o<> -

xlm !.I·G .. (w} t-(G"
2

(Cr0) .. 1
1
.
11

(w,x.JI. 
a z 1a a u ta · 1 . · 

Our. expression (31) differs from the corresponding expressio 
effer 14/ in the factor (Ga2J .. . instead of (C. iia)2 in fr~nt of :1 
is connected with the assumplion made by Kimball and Schrieffer tha 

~~,_...lJm'G,. (w+it.,x.) depends only on x. 
7i ua 1 . . 1 



ru . +.... (22) 
'a .. 

(23) 

(24) 

-md c.. ; I n_ ( w ) is the 
A:- UT 

atrix Gw Eq. (20-24) are 

;j" ( 1 ~-matrix for scatter~ng 

(25) 

(w )). ) . 
• X 

(26) . 

:uating parts (second term in 
the CPA, corresponds to the 

> + 
::c 

I 
I 
\ 

I 

I 
i 
I 
I 

1 

l 
l 

+I.< :1 ·> (NGa)e ~ o5"in -.<:1 rn ·,> 
e ee a X t ea -Fa ·x 

1 1 1 

) ~ 
(27) 

I 1 ·> rNc J er (I) -<'1(1)·> XNc J ,-,~r - > 
+ " .< ; ee a e1 e 2 . Pp . e :P a pr , f3f a X 

e f"2e J 1 a X 2 ' 

. . (1) (1) 
Where .<i1p fa'> X reSUltS from (22) by SUbStitUting ij" ea ->.<:1 ea •> X everywhere. 'Y_e further 
follow the CPA procedure and determine the CPA mass operator I 0 (u.,) (or G .. (u.1J) . . ta 'Ia 
by means of 

·'rea( n('·' ~, ( ) \ 0 .< .J = ' .:. W 'X f. J'>x = . (28) 

Eq. (27) is then reduced to 

·'f .cr ( 1) ·. - = '.J 0 -
eea ea ee 

. (29) 

In view of (9,17 ,18,20,29) we obtain for the Gibbs potential of our system 

/R -fHl;(x;) 
= ( fv!::.... dx. e 

1T ' 
(30) 

N 
), 

with 
u 2 1 .oo -f3(J) 1 

n.(x.)=--+X. +-I dwPn[l+e X 

' ' 4· ' 77{3-oc 

(31) 

Our expression (31) differs from the corresponding ~xpression of Kimball and Schri­

effer/4/ i~ the factor (Gi) .. instead of (G ;;aJ2 in front of 11f~' . This difference 
is connected with the assumplion made by Kimball and Schrieffer that ·p ( w, x ) = · · ia J ,. 

'.. 1 .I 'G ( . ) = - - m ; . w + l~ , x . 
17 ua 1 

depends only on xi 
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\· 

In order to get a self-consisten~ approximation scheme we calculate also the average 
(25) of ~fU J in the approximation leading to (30,31): ·· 

I 
(1) - ~ . {3 . <~f,, ·rctJ }-,. =( .L; N f ~ dx.. :cr (lJ('· ) - fle (xeJ 
a X 1. 

11 
y ,} fa ul ,X e e (32) 

The problem to he solved self-consistently is given by the Eq. (28,30-32). 

It should he noted· that our appmximation scheme conserves the essential relation in 
(!G). On proving this relation in the framework of the approximation scheme we have to 
neglect tenus of the type 

- ·~ _( /) 2 
(; II • (; .,, ( ~~ I' ) ·C. 

rra ta a x ~o r. for (33) 

The neglection of these terms is·eonsistent in a CPA-like scheme. The factor (Ga2 ).. in 
ll 

front of ~f~ 1J in ( 31) seems to he necessary in proving (16 ). 

In thf~ paper we consider the metal-insulator transition between two paramagnetic 
phases. Thus we have to look fo1· solutions with 

<x; >x =(} ( for paramagnetic phases). (34) 

Furthermore. in the paramagnetic phases (," iia is independent of the spin a and the 
CPA mass operator I 0 is independent off and a . The antiferromagnetic phase will ra · 
be considered in a further paper. 

4. Stationary Point Approximation 

We use the stationary point approximation for the calculation of the x -integrals in 
(28,30). considering {3 as the large expansion parameter. Because of the sum over a and 
thee - a -independent I the potential n i (Xi) is an even function in X; . For fixed 
I the minimaOJx;J will be at X;=±lxminl (only:lx,

11
;n l;f 0 is of interest). 

Then the CPA condition (28) takes the form 
(1} . .. 1 (1}_ • •. 1. (I) ' ' . .. . 

.<:3"ia(cu '. I,xi ~- = 2'3" ia (cu' I' I x min V+ 2 j" ia ( cu' I,,-1 X min I )=.q. · 
(35) 

10 

t\\"' !.\ 

ll 
I ,., 

i· 
·l 
. l, 

I 
v 

I 

l 
l{ 
r' ll 

• 

The potentialfl. (x.) · (seeEq. (31)) can be written as 
. . , :t . . 

00 . . {3 -y 2 1 · -cu 
fl;fxi )=- -

4 
+ Xi + -{3 f Jcu en [1 +e ] X 

71 -:00 

- . . -2 
x 1m I2'G (cu}+(G (cu)) 

(1) (1) 

(ij"i ( cu,~ i ) + ij" i ( cu' -xi ), 
·' ii " ii 

Because of the summation over the spin the same combination of 
in the CPA condition (35) has.appeared in the last term. Thus, at t1 

U 2 . 2 "" -{3cu -n. (+.lx . :IJ=-- +X . +- fdcu en [I +e l1m'G 
' - m tn · A man {3 ·; 'I' 11 -oo I 

The condition for lx .I is obtained by differentiating fl/ xi 
mul 

a 1 "" · 
-- fl; (x;ll. _ I _,-= 2x .+- J dcu en[ I +e-f3cu] x a X X·-+ X I {3 , 

i I - m ih 11 -:oa 

-2 · a (1.1. 
x lm I(G ) -(3". (x.) + ( 

1
) ) 1'1 . 

3". (-xi ) ' x =+lx," ii a X. . I I 
I • -

I '· 

G is a function· of :j x . :1 in view of (35). Instead of determ 
man 

it is also possible to determine lx min 1 by differentiation of n, 
with respect to .1 x .' 1: . . 

man 

dfl ;{!~min:!} 

clj X min :j 
2 .1 I 2 f_ood "- [1. ~f3w 1·1 I dG · = 'x . +- cuw +e . m .:.......:.1.! 

-man 11.,'3 -:00 . · di I 

~u 
... -~ ;. 



E! wecalculate also the average 

(32) 

the Eq. (28,30-32). 

serves the essential relation in 
proximation scheme we have to 

i f. P. (33) 

cheme. The factor (Ga
2

) • .' in 
II 

i ). 
tion .between two paramagnetic 

c phases). (34) 

>endent of the spin a and the 
! antiferromagnetic phase will 

n 

culation ofthe x -integrals in 
Because of the sum over a and 
ven function in Xi . For fixed 
I x ,;, in ·1 f. 0 is of interest). 

': ... -' 

,I,-Ix . . iJ=.o_ .. 
. ·· min 

(35) 

• .,I 

• 

~ The potential n. (x) (seeEq. (31)) can be written as 
·. ·I 'i 

.. (1} '(l} 
(:j". ( ru,x, ) + :j". ( ru, -x. )) }. 

I I • I I 

(36) 

Because of the summation over the spin the same combination of the ;j"(
1

) -matrices as 
in the CPA condition (35) hasappeared in the last term. Thus, at the minima x1=j:llxm1JI 

U 2 . 2 "" -f3ru -
0 (+.lx .. 1)=----"+x. +-fdruPn[l+e ]/m'G (ru). (37) 

i - mzn 1 mzn rr{3 --oo ii 

. . 
The condition for lx .I is obtained by differentiating 0/ x 1) (Eq. (36)): 

mul 

(1) 
j"_ ( -x . )Jl:l · =0. 

I I 'I 'I x. =±: xmiri 
I, 

G · is a function·of I x . :1 in. view of (35). In~tead of determining lx, -~1 m1n If 
it is also possible to determine lx min 1 by differentiation of n llx min I 1 
with respect to I x : I: . m1n 

(38) 

from (38) · 

(Eq. (37)) 



On the basis of another reasoning this ·way of determination of the stationary point value 
of the stochastic field was also_ used by Cyrot I 3 I . In order to show the equi~alence of 
(38) with (39) we differentiate Eq. (35): 

(1) (1} 

d<l1 i ·>x d!. a .<:~r i •>x . 
=0. + ~ 

dL d:!x . :1 a! X min :I mw 

Straightforward differentiation of the perturbation series for 5 ~ 1 
J leads to 

• 

dcr(lJ · -..: (1) - - (1) 2 
...:::.:!.1.___ = -1 -2'G .. :1. . + !. G ·c . (1. ) , 
d"i. ~~ • PJ; if e. • 

where we have used 

--
dG =)';2-. 
d"i. 

The average of (41) over x. =+lx .. 1 is , - mtn 

(1) 
d<:1 i '>x· 
d!. 

- - (1} 2 
=- 1 + !. 'G .o 'Go .. < (1. ) ·> ::: -1. e-t i I L L I 1 X 

(40) 

(41) 

(42) 

(43) 

The last term in the centre of (43} is of the type (33) and has to be neglected in the frame-
work of the CPA xl . Using (40,42,43) we obtain · ·. 

xl One can see in many ways that this neglection is necessary in order to get a con­
sistent scheme. For example on averaging (22) in the single-site approximation and differen­
tiating we obtain 

d"<1>x 
d"i 

From the exact relation 

d<:1(q>x 
d"i. 

d-1 · 1 ·c1 :1·c d!.:_=.- - -
we find byaveraging · 

d<~·'> 
~=-1. 

.·-12 

dG .. ' (1} 
2 .. d!. 

=2tc
2 

J .. 
d!. 

·=2(c 2 J .. a.<'~; . 
d!. d[jx . :1. 11 

dllx· . il . II 

a:l X min. mtn mtn 

- 2 a . (lJ . . (lJ 
=(G J - t-1. (x. J + '1. (-x.JJI .

1 
.
1 •• a 1 ·t I I X -' X ' 

''- ~i - ;-· mirl 

showing the equivalence of (38) with (39). 
Returning to the integral in (30) we get ( a_ factor 2 comes fn 

minima at x. =+lx )) 
z - mziJ 

j V p dxi e-f3U; (x;) = 2e -f30;ilxmf"ll~ 2 

....,00 " n :- (I x . ·1 J 

or 

., . mtn 

. _=expl-f3[0;Jixmin:!J+ hen v n;'(lxmin IJIB]l: 

-{30; i!xmiJJ 
:e 

n = N n II x . ll J, 
· 1 m zn 

where 0/lxmi~) and!lx miJ are given by (37) and (39), respective 
rot I J I and Kimball and Schrieffer I 4/ ). . 

On using this approximation _we loose the temperature depen 
(e.g. the spin disorder entropy of the localized moments connected w 
from the two minima). This temperature dependence is essential fc 
the ordering of the phases (AI, PM, PI) along the temperature axis. 

5. Approximative Treatment of the CPA Condition 

The, unperturbed band given by £ t has its centre of gravity 
cializing to a parabolic density of states ·p (OJ (compare Hubbard /B/ ) 

lw:l•> ~ { 

4N2 V /~/ -w2 
_.fOJ rr!s. + 
p (w)= 0 '. 

13 
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m of the stationary point value 
·der to show the equivalence of 

(40) 

:j' ~ 1 
J leads to 

' 

( 41) 

' (42) 

.]. (43) 

; to be neglected in the frame-· 

cessary in order to get a con­
te approximation and differen-

(44) 

- 2 a . c11 . oJ 
= (G J - (5'. (x. J + ,j'. (-x. JJI. .

1 
·1 

ii a X. 1 'I I I X.=: X • , 
. z 1 mzn 

showing the equivalence of (38) with (39). 

Returning to the integral in (30) we get ( a factor 2 comes from the existence of two 
minima at x. =+lx .i') 

• - mzil 

= expl-;BW. fix . :IJ+ ~ en v n~'(lx . IJIBll: 
. . ,.. m zn tJ . 1 m zn (45) 

or 

(! = N (! II X • q }, 
· z mzrr (46) . 

where O;rtlxmiJJand!jx miJ are given by (37) and {39), respectively. (Compare also Cy-
rot I~ I and Kimball and Schrieffer I 4/ ). . 

On using this approximation we loose the temperature dependence of the transition 
(e.g. the spin disorder entropy of the localized moments connected with the factor 2 coming 
from the two minima). This temperature dependence is essential for the determination of 
the ordering of the phases (AI, PM, PI) along the temperature axis. 

5. Approximative Treatment of the CPA Condition 

The unperturbed band given by c t has its centre of gravity at w= O(see (l4)).Spe- . 
· cializing to a parabolic density of states p (OJ (compare Hubbard I B/ ) · · 

{ 

4N2 yA2 -w2 :lw:l ~A' 
0 TTfs. + '(47) l )(c.,)= 0 '. 

13 I w:l '> 1':. ' 



! " 

J: 

we obtain for the unperturbed Green function. G (OJ 
ij 

"' 
2 . (OJ I --. ..6_ (,.. (' (0) I 

ll ' •• . II 

the quadratic equation 

(48) 

Fm· lhl' n•tanled Green function (G 
101 

(co 1 i 1 )) the solution of (48) with negative imagi­
nar·y part has to he used (note (18)). By means of (21) we get 

(d- ,, ( ) ;\2-
- (I) - - (,' 

1 ;; 
I 

1-

{; .. 
ll 

II is c·onn•niPnt to use (; in thl• calculations anil to eliminate 
(-l9l. Thus Wl' obtain for the-~~~ 11-matrix (Eq_ (23)) 

(49) 

~ with the help of 

'. (I) ( .I crl.x 
I -

)-~- ---- I(; (r<~ J-• ----·----- I. (50) ia - ) .. 
((; (cd )) - 11 

ii 

.·\2 (; 
- ii 
I 

( I•J ) l' -co I 
j(J 

so that the CPA condition (28) is tr·ansformpd into 

- 1-
G .. (cu) 1 ( J... ) Nj'"'J {3 -{30. .I·'· I 

ll /. . \ - d.\ . (' I I 

• -·N T/ I 

I 
- 0. 

(51) "/-
I' - (<) + ..:..:.... G ((II) 
;a I ; ; 

In the stationar·y point approximation Eq. (51) reduces to 

') c" r J . t __ .:__ __ I ___ _;__ - .. w + j 

" - '\2 - - 2 
0. (52) 

v u I X • -I - w + ::..... (; . . - \ c ;.\· 1- (r) -t ..l C .. 
m tn ·I 11 min _. " I " . 

Eq. (52) is· the version for our problem ~f the cubic equation given by Velicky et a!:' 1
1

2/ 

It is convenient to rewrite (52) as 

- I G .. (w)= -(r (w) + r (w )). 
tt 2 1 - . 2 

_,.,_,. (53) 

~~\IU.lx 1- L\
2
(r +T J =...L 

min 8 1 2 r 
1 

(54) 

w+vlllx . I 
mm 

r t:-.
2 

r·r1 +r2 1= T2 · 
8 

We restrict our considerations here to an approximate solut 
hibits the qualitative behaviour of the exact solution of the ct;hic: 
(54,~j) the coupling of r1,2 by substituting r 1 + 1"'.? ... a r1 , rl 
respectively: 

-2 
w -vu lx . , == t:-. r 

mzn 1 T 1 

-2 

co +v'V lx . I"" ..1, I' 
mzn .J 2 

1 +-, 
I' 1 

I 
-t-. 

I '2 

In this approximation G .. (cv) is the sum of two shifted unperturhec 
" -pare (48)), each belonging to a suhband of width ,\ •. · 1\ \Ia/:!. Then 

suhhand is equal to I per lattice site. A gap !!. in the density of ~ 

f!, - . 
lor-== ...;u !x . I-A·> 0. · 2 mzn The parameter a can be fitted !1 

mation to the exact solution; a::::-} ~ 1. For a ,.., 1/2 the gap 

appears at V ll!x . 1- ~ ,..,0, what coincides with the behaviour 
.. mtn -

The imaginary parts of the solutions ofEq. (56,57) are 

· ·1 'J -2 - -- 2 
--1m r1 lw)=-==---2 v !1 ~ ( w-+v u I X . IJ 

77 , rrf:.. + mzn 
- ,· 

for w-..values leading to positive radicand (see. Fig. 1). 

The ·appearance of the gap in the density of states may be due 
approximation. If the integration over x in (51) is performed exact 
the gap a minimum. in the density of states. 

6. The Lifshiz Instability 

The Lifshiz instability occurs because of a violation of the the 
condition for the total compressibility 



uadratic equation 

(48) 

:ion of (48) with negative imagi-

(49). 

o eliminate ~ with the help of 

-------1. (!iO) 
:\2 (; { (o) } 

I ; ; 

- fl. (!il) 

0 

__ ...;;__"' (). (!i2) 

\2 ":" 
H......,.. G.. , 

. J " . ' 

ongtven by Velicky et a!:' !2/ 

(53) 

- .. ( (54) 

(55) 

We restrict our considerations here to an approximate s~lution of (54,5!i), whieh ex­
hibits the qualitative behaviour of the exact solution of the cubic: equation. WP neglect in 
(54,~j) the coupling of f'1 •2 by substituting T' 1 +I~ ··>ar1 , I~ +1'2 ~ al'2 in (54,!i!i) 
respectively: 

-2 
1 

w -vu I X min : = iL r 1 +-, (56) 
·1 I' I -2 I 

(t) +vu lx "' ~ I~ -+ -. (!i7) ' 
min I I '2 

In this approximation r; .. (cu) is the sum of two shifted unperturbed Green funetions (com-. ,, . -
pare (48)), each belonging to a subband of width ;\ ... ;\ \Ia/.!. The number of states in each 
subband is equal' to I per lattice site. A gap g in the density of states p (w} is obtained 

lor .£ = yU lx . . I-A> 0. The parameter a can be fitted to give the best approxi-· · 2 m1n 

mation to the exact solution; a::::} .;. 1. For a ,.., 1/2 the gap in the density of states 

appl'ars at \1 Ulx . . 1- ~ dJ, what coincides with the behaviour of the exact solution. 
mzn - . 

The imaginary parts of the solutions of Eq. (56,57) are 

. ') -2 - 2 
-~ lm rl 2(w}=-==-2 v !1 - ( w-+v u I X . !} 

TT • TTI1 + m1n 
(58) 

lor w-.values leading to positive radicand (see. Fig. 1). 

The appearance of the gap in the density of states may be due to the stationary point 
approximation. If the integration over x in (51) is performed exactly we expect instead of 
the gap a minimu~ in the density of states. 

6. The Lifshiz Instability 

The Lifshiz instability occurs because of a violation of the thermodynamical stability 
condition for the total compressibility 
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16 

3 
a2 F 

{- tot·. 

a·v 2 

ap 
') == (-- ) .< 0. 
r a·v r .. 

F tot is the total free energy of the system. Such a behaviour of tl 
knowri from the-case-of-the-van-der-Waals-gasc-. --------­

We first calculate the Gibbs potential 0 (Eq. (46)) in the limil 
53) we get 

n- = Nn .rq x ) J - · 
.· -·-----,---.• - .. -. :c~=-c=-~-m zit .c~. __ :::;._~,--~-c~----~-----~~------~-~---

N U 2 2N . _oo -{Jw · · - • : 
==--+Nx . +--I dw£n [l+e ]/m'G .. (w)= 

4 m m 17 {3 -,oo. . u 

0 -·Nu - · 2N I · ·1 ·c r J =-- + Nx2 . - - d w w m ii w o= 
4 ,· mm 17 -,oo 

0 

=- NU + N x 2
. ·+ N I d~ w [- L'lm(•f' (w)+T' ( w)) 

. 4 m zn -,oo 17 1 2 

Substitution of 1mr; Jrom (58) leads to 

' NU 2 ' I ... -n =-- + N X • -NyU.Ix . '~ with gap, 4 mzn · mzn · yU lxmitz 

NU N 2 ·N·'nl .I !}::--+ X.- y<AX •. -4 mzn · mzn 

11 ::::---- without gaJ: 

_J!!_ IdU~-lUix . IJ'I/112 ~ 2 , iS_2 _ · mzn 
. 17 .tul x • ·1 , V . mzn_ 

For small negative gap we obtain for (62) . · 

Q,,_ NU +Nix . ·1-N'I/Uix . 1-. 4 mzn mzn 
. - - 5/2 

- 16 '!lfJ . ( 11 -yU1Ixm in I) ·, without gap. 
. 151711~ 2 . 
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t: 
··~ 
~-. 

X. 

li: ci. 
"' btl 

:5 ·; 
<I) 
Q) -"' -<I) -0 

» ::: 
<I) 

= Q) 

Q 

~ 

b.O 
~ 

.s 
~ 

X 

~ 
·I 

ap 
) = (--) .<0. 
r a·v T 

(59) ' 

F tot is the total free energy of the system. Such a behaviour of the free energy is well 
knowri from the case of the van der Waals gas. 

We first calculate the Gibbs potential !l (Eq. ( 46)) in the limit {3 ·• .oo • From (37, 
53) we get 

n· = N n .f!l x .:t J = . . z mra 

NU 2 2N _oo -{3(1_) . · .~ . 
=--+Nx . +--I dwfn U+e ]/mG . .(w)== 

4 m tn 17 {3 _-,co· u 

NU · 2 2N ° -=-- +Nx - I dw wlm G . .(w)~= 4 mirz Tt ~ zz 

(60) 

Substitution of 1m I; Jrom (58) leads io 

.-
(61) 

n =- NU + N X 
2

• -N-../Ulx . :1-
4 mrn · mrn (62) 

~ . ::::---- without gap, 

- 4;2 j dU~-v"YFixmin 1Jv~2 ...( 2, v'Ulx . l:s~. 
17 y'ulxmin.l mrn 

For small negative gap we obtain for (62) . 

n,,_ Nu +Nix . ·1-Nvifl x . 1-. 4 mrn mtn 

16~ ' - - 5/
2 (63) - ~ · (~ -yU1lxmin .1) , without gap. 

1577~~ 2. 
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-·· 



After determination of. lx min I by means of (39)' the final result for the Gibbs poten­
tial is 

0- NV 
2 ' with gap, .g = U -211 •> 0; 

,--, 1-----

We assume that only' 0 shows an anomalous behaviour: at the po 
disappears, and that the other two terms in (66) ·can be expanded 
Thus we obtain for the total compressibility 

( 2..£..; 
av 

. K 0 + KI ( V _ V ) for___ 
-- 2 0 

----~. N N 

4~2a 5/2~ 

.. ... . . .c~.. . ....... c~t ····' I~ 1TtX~N=;3/z ___ -- (Vo -V fl!_ Ko+ KI (V -V. ) f o ... ...... .·--- N---0 .. N2 ___ , _____ o ... '- ~-or_---~·· 

and (after iteration) 

n NU 16..j2N U 5/2 a=--- (!\- -) 
2 1,- -;:3/2 '} 

,JTTLl. -

without gap, g = U- 21'.\ ~ 0. (65) 

As we already remarked in the introduction the physical situations in the case con­
sidered by Lifshiz and in our case are similar. In our approximation even the formulae for 

n are the same in both cases (compare I 21 ). . 
0 in (64,65) is the electronic part of the Gibbs potential. We go over to the total 

free energy f~ 01 by adding 11 N and the free energy of the lattice Fr_ ; 

F =0+/lN+FL. tot (66)· 

We now consider the dependence. of the free energy on the volume V, which can he 
changeQ by external pressure. The model parameter U can be con'sidered as independent 
of V , but the model parameter 3 (half of the unperturbed hand width) increases with 
decreasing V. The gap will approach zero at ~\0 . , 

y__~ = 0, 
2 

and we can expand 

u - . __ /'.\ = f:r (V - V
0 

) , 
2 

a > 0. 

18 ~· 

(67) 
\ 

(68) 

( K0 , K I •> 0 ) . The first term· in (70) comes fro~ (65), the 
the expansion of the regular part of the total free energy. 

An unstable region (( i!J!...;. •>· 0) exists, if 
a·v r 

2~2 a5/2 

"K 3/2 ·> v'""Kl< 0 0 I • 

Such an unstable region leads to a first order transition. At consta 
jumps from a value ·v1 ( at the right of the unstable region) to a, 
of the unstable regiori). The line p = canst and the volumes· V 

I 2 
rule of equal areas in the p, V diagram. ~ 

A more accurate numerical treatment of the self.,consistent SJ 
preparation. The unstable region resulting from an· improved evalt 
rals, the CPA condition and the corrections forT .fo 0 are expected 
given by. (71). Above the critical point or in cases, where no fir 

, (no unstable region) exists, anomalies similar to the anomalies in · 
2 I/2(compare Lifshiz/2/ ) may occur. · . 
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~ final result for the Gibbs poten-

= u -2 f..··'> 0; (64) 

gap, g.=V-21'!.~0. (65) 

vsical situations in the case con­
roximation even the formulae for 

potential. We go over to the total 
he lattice f~- ; 

(66) . 

~y on the volume V, which can be 
~an be considered as ·independent 
Jrbed band widtli) increases with 

(67) 

(68) 

.· ... 

·~·.' 

' . ·, 

We assume that only· n shows an anomalous behaviour at the point V 0 , where t~e gap 
disappears, and that the other two terms in (66) can be expanded in the vicinity of ~ 0 . 

Thus we obtain for the total compressibility 

(k) 
av 

_Ko +2(V-V ) 
N N2 o for 

4 - 1-2a 5/ 2 / y 1 2 Ko K1 
-----:';'*'r;:"-- (V -V) - -+- (V -V0 ), for 
rr(S. oN //2 o N N2 

(69) 

· V .<V
0 

• (70) 

( K 0 , K 1 '> 0 ) . The first term in (70) comes fro'm (65), the other terms c~me from 
the expansion of the regular part of the total free energy. · 

An unstable region (( E..J!_). '> 0) 
a'V r 

exists, if 

. (71) 

Such an unstable region leads to a first order transition. At constant pressure the volume 
jumps from a value 'V1 ( at the. right of the unstable region) to a volume 'V 2 ( at the left 
of the unstable region). The line p = const and the volumes V are given by Maxwell's 

1 . th v . 1
' 2 

rule of equa areas m e p, diagram. 
A more accurate numerical treatment of the self-,consistent system of equations is in 

preparation. The unstable region resulting from an improved evaluatiowof the x -integ­
rals, the CPA condition and the corrections forT,fo 0 are expected to be smaller than that 
given by (71). Above the critical point or in cases, where no first order transition line 

, (no unstable region) exists, anomalies similar to the anomalies in the transitions of order 
2 1/2(compare Lifshiz/2/ ) may occur, . 
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