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I. Introduction

A series of papers devoted to a new approach to the
study of the structﬁre of highly excited states of atomic
nuclei has for an object firstly to clarify how proceeds
the complication of the state structure with increasing ex-
citation energy, end secondly to develop a unique description
for low-lying states, stétes of intermediate excitation ener-
gy and highly excited states. The realization of this aim
proceeds along two lines; a general semi~microscopic descrip-
tion on the basis of the operator form of the wave functions
of highly excited states and numerical calculations on the
basis of the model taking into account the interactions of

quasiparticles with phonons.

2, General Semi-Microscopic Approach

We give the basic formulas of the gemeral semi-miéros-
copic description of éhe structure of highly excited states
developed in refs./1'4/.

The wave function of a highly excited state is repre-
sented as a sum of terms, each containing the operators of -
quasiparticles and nucleons tor'the neutron and -the proton

systems., With increasing excitation energy a complication of



the structure of nuclear stétes is Vseen from the fact that
the wave function contains components with eirer-fincreasins
number of quasiparticles.

Let us construct, for example, the wave function of
the highly excited state of an odd-N spherical nucleus. It
consists of an one~quasiparticle neutron component (n), three-
quasiparticle components (/725 ), (3n) (one neutron and two
proton quasiparticles and three neutron quaaiparficles) and
tive-quasiparticle components (n4p), (3n, 2p), (5n ) etc.

4@ write it in the following form:
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where a(J,,, is the quasiparticle creation operator (see ref./S/).
The coefficients b define the contribution of the corres-
ponding quasiparticle component,‘ A  is the number of an ex~
cited state with given I”M . The index ft=r indicates
the neutron and U= P the proton systems. In the wave func-
tion (I) the products (c(fm dj"”&-o are replaced by the
phonon pairing vibration operators S?E ( t ) the explicit

form of which is given in refs./q"S/. By .4'/,, we mean the - -

product of quasiparticle or phonon vacua for the neutron and.

proton systems.



Besides the operators Q; (¢) , the wave function (I)
contains no other phonon operators. As far as the phonon
operators are written in the form of a superposition of two-
quasiparticle operators, the corresponding terms are thought
of as being already included in the wave function (I). If
needed, it is possible to include explicitly the operators
of quadrupole,octupole and other phonons in the wave func-—
tion (I).

It is unknown how proceeds the rotation of a nucleus
in the highly excited si;ate. Thus, it may be expected that
the projection K  of the total angular momentum on the
nuclear symmetry axis is not a sufficiently good quantum num-
ber and the wave functions of the highly excited states of
deformed nuclei are a superposition of terms with different

K « The wave function of an odd-N defbrmed nucleus is

written in the form
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The set of quantum numbers defining the single-particle state
is denoted by ( §¢° ) for the neutron systém end by (ga')
for both the neutron and proton ones. In each term of eq.(3),

the summation over & is subjected to an additional condi-
S . .
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dition of the type K=K, * K, +K;0, . The wave functions
of the highly excited states of even spherical and deformed
nuclei are given in ref./u/

It should be noted that the operator fbrm of the highly
excited state wave fﬁhcticﬁ written in the form of (I) or(}j
is not the most general one. When constructing the wgve func-
tion an approximation is used which consists in that in each
term the operators of quasiparticles and pairing vibration
phonons act on the wave funotions which are either a quasi-
particle or a phonon vacuum.

It is worth noting that if the wave function describes
a state the energy of which exceeds the neutron binding ener-‘
gy them, atrictly speaking, it should be written as

Y-\ /1 I'nA T 7 |
(&) Vo g imar HIM) @)

where éA is the resonance energy. This corresponds to the
fact that a neutron can be emitted, i.e. when a neﬁtfon in-
teracts with the target-nucleus A-1 the elastic scattering
channel is open. However, this energy factor is, as a rule,
unimportent when calculating transitions from highly excited
states.

At excitation energies close tb the neutron binding
energy fgn or higher the wave functions contain thousands
of various few- and meny~quasiparticle components. Such wave
functions possess the propérties of the compound - states int-
roduced by N.Bohr. In fact, the formation of a highly ex-~

cited state can proceed +through one éomponents, and the de-

!



cay through other components of the wave function. Therefore,
in many cases, the main requirement that the decay of com-
pound states is independent of the mode of their formation
will be fulfilled. Since the wave function contains a variety
of components some few-quasiparticle components must have, as
a rule, small values. This will lead to a significant hindran-
ce of the probabilities of gdmmh transitions to low=lying
states, Therefore, the half-life of a highly excited state
must be much longer than that of a one~ or two-quasipartic-
le state.

These wave functions may be used for describing excited
states ffom (2=-3) MeV to such energies at which resonances

do not overlap yet, i.e. when the condition
[n <D | (5)

holds. This implies that the neutron width /; is much
smaller than the mean spacing D between levels with given Iﬁi
Using the operator form of the wave functions (I) and
(3), in refs.”?™/ the reduced neutren /;; , radiative /iy
and alpha {Z:}/ widths, as well as the strength functions
for §- and Q- wave neutrons are expressed :Ln terms of
the coefficients b, If theré is the operator form of the
wave function of a neutron resonance then in’the language
of the wave function coefficients it is possible to desqribe
the neutron entrance channels and obtain the same relations
a8 in models of valency-neutron and doorwﬁy states. In calcu7

lations performed in the framework of the doorway state model,



only a part of the components of the wave ﬁmction (I) or(3)
is used, and the connection with the remaining compoxvnents’ is -
mentioned. The main difference of bur approach from the door-
way state model consists in that we take the wave function as
a superposition of components with different number of quasi-
particles, while in the doorway state model the wave function
contains a definite number of quasiparticles.

we consider the reduced neutron widths /[, . The re-
duced width amplitude for the state [4> *in the channel c¢
ise usually/ 6/ written as

fac = %4-/” % %>J§)
where S‘c/ <7ps is the product of the internal wave func-
tions of the nucleus in the channel C and of the one-
particle state, {; is’ the one-particle amplitude for the
8 -state. In our trea:tment, the quantity Al % %> can
be replaced by the matrix element{ﬂi(l-ﬁ)aj‘m ﬁ‘/‘ ) , Wwhere
&/‘- ig the wave ﬂmctioﬁ of the ground state of a target-
nucleus. If we take as the target an even-even spherical nuc-
leus and ﬂ in the form (I) then we get
(YrI7)a}, #)=6""(J)U;

The reduced neutron width can be written as

o _ ¢ ;AN ’ A 2 oo
CJ-/;:PAlbI(J)u./I.*”J s (6)
where /;_’p, is the single-particle value of the neutron
width, the function 24, indicates that the states
must be particle ones. The term /,_,_:" is responsible for \

~ & more complicated neutron capture mechanism. It may contain



the same terms as in the doorway state model (see refa./7'8/).
If as a doorwsy state we take three-quasiparticle components
of the wave function (I), them f *“ will contain components
by (J(ml, Jomz, j;m, ) and J‘xnﬁ (”( ) .

We give an expression for the reduced radiative width
which is connected with the £A trensition matrix element

as follows: ‘

R A ' ERTN e :m
Guf = 2A+1] %(Jf mM,,lIM)M(I;A)I A~Jpmy) I,
The matrix element for the EA transition from the highly
excited state described by the wave function (I) to the one-

quasipazfticle state o{sz Ijjo
is

s e o pag)A V =M, - n_. Ch_iy mpm :
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The first term in (8) corresponds to the valency neutron
model, The matrix elements for the EJ and MA transitions
to one-phonon states or to states quasiparticle plus phon;m
are more complicated.

The matrix elements of alpha transitions from highly ex-

cited to low-lying stateé have a variety of components of the

wave tunctions of highly excited states’ 14/ .



3. Structure of Neutron Resonances

\ie use the operator form of the w;ve functions of neutron
resonances in order to clarify their structure. Let us look
what information about the bk coei’ficienté in (I) and (3) -
can be extracted from neutron resonance experiments,

First of all, we clarify what is the order of’magnitude
of one-quasiparticle and two-quasiparticle components of the
wave functions of neutron resonances. e consider as. an examp-
le the case when an S -wave neutron is captured by an even-
even spherical nucleus. If in eq.(6) we reject the term /,-,;f

the reduced neutron width is then defined as

~eo oy An, 2
Ly = 6 () U, (6
where /7 72”. Ve assume that Zéjzf, then
i~ o -2x,2 )
/nA -~ S P ,D , ’ (9
we make an averaging over a number of resonances and get
LI >= 75 161° (10)
Table I gives experimental data on </,°) and the | [ ) -
values. It is seen that | 5/°2 is, in the order of magnitu-
de, ‘10-6 in nuclei around closed shells in which fragmentation
is not strong emough, and in far lighter nuclei with A=50-60
where the strength function for S -wave neutrons has a

maximum, In nuclei with A = 100, /5/% is 10~7 = 1078 for

one-guasiparticle components S'/e and for those two-quasi-

1o’
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particle components one of which is ka . In the same nuclei,
| 5 is 10~® for one-quasiparticle components 3Py, and.SpﬁQ
which is related to the maximum of the strength function for
p ~wave neutrons.

In strongly deformed nuclei the g -wave strength func-—
tions are not small, however, the |5 )% values

are very small, 1078

- 10~9. This decrease of |0/ is connec-
ted with a variety of collective excitation branches in defor-
med nuclei as compared with spherical nuclei. A large number
of collective excitations in deformed nuclei has led to stron-
ger fragmentation of one~particle components over many nuclear
levels. The decrease of < / > in deformed n&plei compared

to spherical ones may be partially due to the?difference of
equilibrium deformations of the highly excited state and the
ground state 6f the target-nucleus. '

The magnitude of the one- and two-quasiparticle compo-
nente of the wave functions of highly excited states estlmat-
ed from the experimental data on El transitions to the
ground and low-lying states coincides with the estimate ob-
tained from the neutron widths. According to refe./5’4/ for
nuclei with A from 50 to 250 the one- and two—quaeipafticle
components of the wave functions of neutron resonances take
the values in the following interval:

61 107 10

In refs./5’4/ there are expressions for the reduced

neutron widths in the case when a slow néutron is captured

by an odd-odd nucleus.VThen it is possible to obtain informa-



tiog on the magnitude of three-quasipa.r‘l?icle components (p2n ).
It follows from the cxperimental data that the |BI? -values
for three-quasiparticle components of states with high spins
are smaller than the IEIZ -values for one- and‘two-quaaij
particle components. This appéars to be due to the factythat
the fragmentation of three-quasiparticle components ié at ‘
the initial stage and the main part of the strength of three-
particle states is concentrated on a few levels. Evidence
on the magnitude of three- and four-quasiparticle components
of the wave functions of neutron resonances will be richer
if in heutron-apectroacopic studies unstable nuclei and iso-
mers are used as targeta/3/.

The role of many-quasiparticle components of the wave
functions of neutron resonances is not clear. The fact that
some few-quasiparticle components give a contfibution of the

6 _ 10'9 to the wave function normalization does

order 10~
not mean abellbhat the number of the wave function components
is man& millions and that all of them are small, It is quité
possible that one or several many—quaéiparticlebcdmponenta

give a predominant contribution to the normalization of the

i highly excited state wave function.

We study what indirect information about the magnitude
of four-, fife-, six-, seven- and eight-quasiparticle compo-
nents of the wave functions can be extracted from an analysis
of aipha and gamma decay of resonances. It is obvious that the
role of many;qugsiparticle componenté must be displayed most
strongly in those resonances for ﬁhich the corresponding étren¥h

function is minimum.



We consider EI +transitions from highly excited states.
Let a slow neutron be captured by an odd-N spherical nucleus
and resonances with I;= { be produced. The EI transi-
tion to the two-phonon ot state involves, in addition to some
two-quasiparticle components, which take ‘part in transition
© to the ground e; gtate, a large number of four- and six-
quasiparticle components of the highly excited state wave
functions. EI transitions to one=phonon 2* gtates involve
two- and four-quasiparticle components while EI <+transitions
to two-phonon 2% gtates involve also six-quasiparticle com-
_ponents. If four-quasiparticle components are not small one
may expect an increase of the reduéed probabilities of E-/
transitions to one-phonon states compared with EI +transi-
tions to the ground states. An increase of the reduced pro-
babilities for EI transitions to two-phonon states compa-
red with EI transitions to the ground and one-phonon states
contribution
will give evidence for a noticeable of six-quasiparticle com-
ponents to the normalization of the highly excited state wave
function.

Some information about the total contribution of six-
and eight-quasiparticle components can be extracted from ex-
perimental data on reduced partial probabilities of alpha
decay of neutron resonances, The alpha decay of resonances
to the ground states of even-even nuclei involve two- and
four—- quasiparticle components of the type (2n 2p). The alp=-
ha decay of resonances to one-phonon states involve also &

large number of four- amnd six-quasiparticle components. Thus,

13



if four- and six-quasiparticle comppnents are important,}thé
reduced probabilitios for alpha trensitions to bne-phqnon sta-
tes must be larger than to the ground states. It'follows ffom
the experimental data’% that when averaging over eight Iﬂ;lif
resonances in ”aSnﬁ the reduced probabilities for alpha
transitions to the one-phonon 2* state in “4AQ( are twice as
large as those for alpha transitions to the ground state. These
data point to the important role of four- end six-éuasiparticle
components in the wave functions of highly excited stateé.

The indirect data on the total contribution of many-quae—
siparticle components do not answer the question as to whether
or not the wave functions of neutron resonances contain large
many-quasiparticle components. It seems that this question
may be answered by studying £EI and £2 transitions from
neutron resonances to fhe states the energy of which is lower
by (I.0-1.5) MeV than the neutron resonance energy. If, for
L example, the wave function of a given Tesonance has avlarge
seven-quasiparticle domponent then £/ and £2 +transitions
should occur from it to states containipg‘appreqiable five-
qQuasiparticle components., Thevreduced prgb@bilitiea of thgse
transitions must be much larger than for transitions to low=-
lying states. Observation of large: reduced probabllltles for
gamma transitions from neutron resonances to some states with
somewhat lower excitation energy will testify to the pre-
sénce of large many-quaslpartlcle components in the wave func-
tions of neutron resonances.

Experimental data on many-quaszpartlcle components may
apparently be obtained from many-particle transfer reaction

studies.

14



As a first step toward clarifying the rotational proper-
ties of highly excited stgtes in ref,/qo/ it is suggested to
study how good for them is the quantum number K . The gamma

transitions from resonances are assumed to be K - forbidden

[Ta - Ky-Al= v>0 ‘ 11)

if for them ths condition

holds, where’_i is the multipolarity of a gamma transition.
Thé role of the quantum number K in highly excited states
may be’judged by the rate of hindrance of K -~forbidden gam-
ma transitions from resonances compared with K allowed
transitioné. It may be expected that the role of the quantum
number K will be different in different terms of the wave
functions of higly excited states. The available experimental
data indicate that the hindrance of K -forbidden gamma tran-
sitions may be small,

/%11 gn expression for the magnetic moment of

’ In refs.
a highly excited state is defived and it is shown that because
it contains all the components of the wave function

‘ the magnitude of the magnetic moments for highly ex-
cited states must be equal to that for low-lying sfates; At

present there are experlmental data/12 13/

on magnetlc moments
of two resonances in Er' which confirm qualltatively this
conclusion. o
In refs. /3 10 44'15/ on the basis of the semi-microsco-
pic approach, correlatlona between neutron radiative and alpha

w1dths in neutron resonances are con81dered. It is shown that

I5



correlations can occur when qﬁaaipdrticle selection rules
are valid.The cases are indicated which are the most favou-

rable for correlations to occur.

4, A Model for Describing the Structure of Highly Excited
States

The general semi-microscopic approach to the study of
the structure of highly excited states should be completed
by model calculations. In refs./2’16/ the study is performed
by the model in which quasiparticle-phonon interactions are
taken into account. We give here the basic assertions and
gome results obtained in the framework of a modification
which is used for studying nonrotational states in odd-A
deformed nuclei.

The wave functlon of an odd N nucleus descrlbing states

with a given K is written in the form
YTyl ol A A *
WK7): G S 2, Die,olir Q) *

— L r + + R (12)
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where Qj is the phonon crgation operator,» i-'k/, J 1 Ak the

multipolarity, J' the number of the root of the secular

equation for a phonon,

The Hamiltonian of the model contains the average field,

interactions leading to superconducting pairing corrélatibns



and multipole-multipole forces. The constants of the multipo-
le-multipole interaction are fixed in determining phonons in
the appropriate even-~even nuclei. The problem is solved as
follows. We calculate the average value of the Hamiltonian
over the state (.12) and on the basis of the variational prg’.n—
ciple we derive equd.tions for determining the functions DZ:_,,,,-

E‘,iﬂ: and Rij;j: . Ve rejqct noncoherent terms in one
of the equations and the problem thus reduces to a secular
equation of a rather complicated form (see/ 16/ ). However,
this has resulted in :{:he appearance of extraneous roots.

We have succeeded in overcoming this trouble by taking
into account a part 'of coherent terms. ‘

) Numerical calculations are performed for “'“'U ,ME r
’NE r  end ”SD!/ . In the multipole-multipole interaction
phonons with A = 4 and. A = 5 are taken into account in
addition to quadrupole with A = 2 and octupole A = 3
phonons. The replacement of the two-quasiparticle states by
the phonons with A = 4 and A = 5 is explained by the ma-

thematical formalism used. All roots of the secular -equations
| fdr one-phonon states up to ‘the neutron binding energy B,,
are teken into accoﬁ.nt in the calculations and the one-par-
ticle energies and the wave functions of the Saxon-Woods po-
tential are used.

First we perform calculationé of the density of states

with given - K 7 which is defined by the number of poles

17
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This calculation has some advantage compgred to the calcula~- -
tion in the framework of the models of independent particles
and independent quasiparticles (see ref. /17/) since, in addi-
tion to quasiparticles, the phonon states are teken into ac-
count.

The calculated dverage spacing D Dbetween the the 172%
levels as a function of the excitatipn energy is given in
Table 2. It is seen that the density increases strongly with
increasing excitation energy. Table 3 gives the average spac-
ing ) YDbetween the 1/2% levels at excitation energies equal
to B, . It is seen from the table that the calculated dem-
sity is about half the measured one. Thus & small difference
indicates that our model may serve as g good basis for study-
ing highly excited states.

In the case of“ﬁu the number of poles(lJ)withHF= %3'1n the in-—
terval 10 keV near B, is the following: £(8)+ &y - 7 poles;
E(S)r Wy, 2y polea;é(s}ou%.fa%zfuaj = 172 poles; and
éi(s)“‘f;"“f;’z'“?ij'“';iﬁZG poles. That is, the overwhelming majority
of poles are five~ and seven-quasiparticle ones. Further,

when adding phonons with A =6 and A =7 D = 31.5 eV,

i.e. it leads only to a small increase in the density.

The main merit of the model is the fact that the wave
function of a highly excited state has a variety of .compo-

a3

nents. It follows from the calculations for [ with the



wave function (12) which has R1H‘: 0 that the one-quasi-

partiéle components('qf)z run over the values between a0~
and 10'10 which are in agreement with the values of the one-
quasiparticle components obtained from neutron widths.

In the previous section the question is as follows. Are
there large many-quasiparticle components in the wave func-
tions of neutron resonances? As was already mentioned, at
energies close to the neutron binding energy B, the over-
whelming majority of poles (13) are many-quasiparticle ones
which points to a possibie existence of large many-guasipar-
ticle components/ in the wave functiona. The calculations show
that at energies close to (3, the wave functions in “u
contain a number of large components quasiparticle plus two
phonons. Interactions between quasiparticles and interactions
of quasiparticles with phonons at energies close to the neu-
tron binding energy cennot fragmentize many-particle states
as strongly as sihgle-particle states. The calculations per-
formed by means of our model testify in favour of the hypo-
thesis about the presence of large many-quasiparticle compo-
nents in the wave functions'of neutron resonances.

The model considered is more general compared with'the
nodels of valency neutron and doorway states, which are par-
ticular cases of the former. Indeed, if the neutron width is
calculated only with the terms of the wave function (12) con-
taining some domponents'quasiparticle plus phonon then the
results - tfor the deformed nucleus are similar to those obtained

in ref./s/”for'huclei around closed shells,



Investigations in the framework of this model are being
.gontihued. The composition of the wave functions of highly ex-
cited states is being studied, the characteristics of neutron
‘resonances are being calculated etc. A similar model has been
formulated for describing highly excited states in odd-A spﬁe—
rical nuclei. -

On the basis of the calculations by this model it may be
concluded that the mechanism of interactions of quasipartic-
les with phonons (or interactions of single-particle and col-
lective degrees of freedom) -is, to a large extent, resposible
for the complication of the structure of states with increas-

ing excitation energy.

5. Complication of the Structure of Nuclear States with
Increasing Excitation Fnergy
Above we have discussed the properties of neutron reso-
nances. Such a particulér attention to neutron resonances is

connected with a sufficient amount of experimental informa-
tion for them. It would be much better if it was possible
to advance consequtively in the study of the state sfructure
as the excitation energy increases, ‘

We discuss the- general picture of the frasmentatipn of
aingle-particle states over many nuclear levels. We assume
that quasiparticle~phonon interactions are the main mechanism
which is responsible for fragmentation.

If the energyrof a single-particle state is near the
Fermi surface energy 1t may be roughly supposed that 90% of

20



the strength of the single-~-particle state is concentrated

at one nuclear level, (8-9)% -.at several low~-lying levels

and the remaining (1-2)% are distributed over a large number

of levels in the interval of 10 MeV and higher, The informa-
tion about the distribution of the stremgth of a single~-particle
state in a wide energy interval is obtained from nonzero
strength functions for S ~wave neutrons in those nuclei the
subshell of which Suz is the ground or the hole state.

As the single-particle energy moves away from the Fermi
surface energy the fragméntation of a single-particle state
over many levels becomes stronger. When the single-particle
state energy is far away from the Fermi surface bj (2-3) MeV
gbout 90% of this strength is distributed over several nuclear
levels and the remgining 10% are fragmentized over many le-
vels in a wide energy interval. As the single-particle energy
moves away from the Fermi surface energy there proceeds fur-
ther enhancement of the fragmentation process.

Fragmentation of three~, five~ and higher particle
states over many nuclear levels occurs. The rate of fragmen-
tation of three-particle states is as strong as the rate of
fragmentation of single-particle states at higher excitations
etc,

Some approximate conservation laws weaken this
rate for one states compared to others. The most striking
example is'isobaric analogue states which are few-quasipar-
ticle states due to the fact that the conservation law of
igotopic spin acts against mixing of states with isotopic
spin T, to the state with isotopic spin T; +1.

21



Another example‘a:e states with iarge values of spin I
in spherical nuclei and quantum number k in deformed nuclei.
The wave functions of these states coﬁtain no few-quasipar-
ticle components and the fragmentation of many-particle states
begins work at higher excitations than that of single-pértic—
le states. As a result of both facts, the lowest states of
spherical nuclei with large spins I and deformed nuclei with
large X are rather pure. quasiparticle states,

One should expect that, at still higher excitations,
8ix-, seven; and higher quasiparticle states with large I
or K will be observed. experimentally. The structure of
these states differs strongly from that of other neighboring
states.

Since the freghentation of many-particle states becomes
strong at high excitations one nay expect rather pure many-
quasiparticle highly excited states with emall spins.

The rate of fragmentation is different for different
nuclei. An especially strong difference is observed in doubly
magic muclei, e.g. in"'Pb and in nuclei which differ from
the former by one nucleon. In doubly magic nuclei the first
one-phonon states are located more highly than in nonmagic
nuclei and the interactions of quasiparticles with phonons
are weakened. Therefore the process of fragmentation of one-
particle states over many nuclear levels in doubly magic nuc— |
lei b@gina at high energies and develqps more slowly than in

other nuclei.
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In fact, the properties of neutron resonances in.zcﬁab and
zothb produced after S -neutron capture differ essentially
from the properties of neutron resonances in other nuclei. for
example, the average spacing 1 between the"1/2+ levels in
207F3b is larger by about t%o orders of magnitude than in Q%%y
and mspt » at the same excitations. Next! igzagpb a resonance
with é'li,: 500 keV and anomalously large reduced width
/:l = 80 eV is observed. The corresponding one-quasiparticle
component 164°% = 1.2 ;‘10-4 is larger by about 10> - 0%
then in other nuclei, Innyab ten 1/2% states are observed in
the interval 200-550 keV the’reduced~neutr6n w;dfhs of which
/s are large and the correspongingbvalue;$¥5;ch 2.1072,

The partial radiative widths for E:[ transitions from

[—a
FAS
these resonances to the ground state take»the values from 1.1
to 10.2 keV. ‘

Thus, the wave functions of nuclei aroundlclosed shells
have relatively large few-quasiparticle compcnents. Therefore
the doorway state mode; is successfully applied to these nuc-
lei. The behaviour of neutron resonanceé in nuclei around
closed shells must demonstrate the devigtiop from the regula-
rities of the statistical model which is confirmed expe;iﬁen—
tally. '

On the basis of the information about the components of
the neutron resonance wave functions obtained‘from experimen-
tal data and calculationa By the model we can rebrésent the
structure of states at excitgtiqn energies close to the neu-

tron binding energy as follows,
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i). One- and two-quasiparticle components have approxi-~
mately the same value in a large energy interval higher 5, .
Their behaviour obeyS'étatiSfical laws which is a conseguence
of the developed fragmentation process. The dependence of
their values upon A: is demonstrated by the strength func~
tions S, and S, the magnifude of which is defined by the

location of the subshells S%z and Fb

b P,, with res-

/2
pect to B, .

ii)., Three- and four—parficle states are fragmentized :
over meny nuclear levels and therefore the three- and four-
quasiparticle components of the wave functions must satisfy
statistical laws. The exceptioﬁ is light nuclei and nuclei
around closed sﬁells (a8 well as analogue states) where the
fragmentation process is not strong enough. This is seen ex—
perimentally from the presence of intcrmediate structures.

iii). For many-quasiparticle components the fragmcnta-
tion process is at the initial qtage and the wave functions
may have large many~quasiparticle components and, consequently,
individual characteristics. Their characteristics should not
apparently obcy statistical laws.

These considerations, especially concerning the behaviour
of maﬁy—quasibarticle components, are in disagreement with
the commonly accepted idea aboﬁt compound states and should
be verified experimentally.

We have thus presented the general semi-microscopic ap-
proach for studying the structure of highly excited states.
On the basis of this approach it is possible to clarify the

general regularities and to extract from experimental data
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information on some components of the wave functions of highly
excited states. A detailed theoretical study of the structure
of highly excitéd states can be made using rather simple mo-
dels. ,
Thus, the combinetion of the general semi-microscopic me-
thod for treating nuclear states with calculations performed
by means of various models can contribute largely to the study

of the structure of highly excited states.
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Table I.

Average neutron widths < /n > and one— and two-quasiparticle
components | bl

8

<>

Nuclei 7 mgv o7 1o
Moa g2t 8.364 15 4,107
Aer st 9.270 8 2 1076
i a2t 9.003 6 2 107
Sm a2t 7.988 0,4 1.3 1077
Mo a/2* 6.816 0.1 1 10~7
Byo  2t,3* C8.642 0.004 0.4 1078
Mlgn /2% 6.941 0.012 1.2 1078
138y 1*,2* 8.540 0.08 2 1077
139 /2% 4.720 1.8 2 107°
Wgq 37,47 7.561 0.004 0.5 10
5869  1=,2” 7.929 0.003 4 1072
1655 q 2t 6.645 0.003 4 10~2
My /2t 6.760 0.003 4 10™2
72y, 0,1 8.140 0.001 1.2 10~
182na 3,4t 6.060 0.0005 0.4 10~
198y, 12" 6.497 0.0014 2 1079
g, q/2* 6.227 0.2 0.3 10=°
207p,  q/2* 6,754 3.4 51078
208py,  o~,1” © 7,376 0.6 1107®
210p; -~ 4~,5 4,600 0.13 0.2 10
23% a2t 4,800 0.002 . 4 10
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T

Average spacing

able 2.
D between the -I’= 1/2* levels in 239y

& , Mev D, ev &, Mev D, ev
1,0 66.7 10° 4,8 33,2
2.0 9.4 10° 5.0 27.0
3.0 1.43 10° 6.0 7.1
4,0 165 8.0 0.5

Average spacing D

between the I”

Table 3.

= 1/2% 1levels at

E=~8,

SmEeTemsSSsssttesss By .

Nuclei MeG Exper. Dev Calc.
239 y 4,800 18 3.5
1695y 5.997 125
1675 6.436 49
165y 5,715 200 150
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