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I. Introduction 

The simplest model for the strong correlated d-elec­

trons in transition metals, their compounds and alloys is 
Ill 

the well-known Hubbard model 

H 
Hubb 

'i. 
i i a 

T c+ 
i i i a 

cl a + U 'i. nd nd 
i f i ~ 

n d = 
ia 

c + c 
i a i a 

' ( 1) 

where T i 
1 

is the hopping integral and U describes the 

interaction between electrons at the same lattice site. 

c+ (c. ) are creation (annihilation) operators for 
I (J I 0 

d-electrons with spin a in a Wannier state at the lattice 

site 1 • 

Although this model is very simple, it contains seve­

ral difficulties. Especially, divergencies exist at 

v • "" I 2 '3 I and n = 1 I 4 I. Therefore, the magnetic phase 

diagram is not completely clarified at present. Further­

more, the neglect of s-bands in (1) can give wrong results, 

also for empty s-bands. The (virtual) scattering of d-elec­

trons into the wide s-band changes the form of the d-band 

and the properties of the ground statel
51. 
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Therefore a generalized model must be considered, 

which contains s- and d- electrons. It can be assumed, 

that in such a generalized model the divergencies of the 

operator (1), at least at n = 1, vanish, so that the same 

approximations can give better results as in the case of 

the pure Hubbard model. 

As a starting point the operator 

H 0 
Hs + Hd+Vsd-(N (2) 

is considered. H: describes the s-electrons by a simple 

Bloch band, 
0 

H = I (~ n~ 
s ka k lfa 

n-! 
ka 

+ 
a~ 

ka 
a~ 

ka 
( 3) 

Herein,a! (a~ ) are creation (annihilation) operators 
ka ka 

of 

electrons with spin a in an s-type Bloch state k with 

energy ( k . The d-electrons are described by the Hubbard 

operator, H d = H Hubb , and V s d is the interaction between 

s- and d-electrons in a usual form: 

.... 
~ ~ 

v 
sd I J~ 

~ k 
lk 

i k ·R ~ 
e i a~ 

k 

~ 

s 

where I; is the s-d exchange integralJ 

spin density of the s-electrons and 5 1 

(4) 

a-; describes the 

the spins of 

d-electrons at the site ,; • ( in (2) is the chemical 

potential, and N the number operator (s- and d-electrons). 

Neglecting spin-flip processes and the k~-dependence 

of J V s d get the form 

4 

l'sd - J I sz 

z 

s 
( n; t 

s 
-· n i • 

d 
where S 

d 
S ( nit - n . 

I J. 
) . 

Using the identity 

) 

2n;tnH -(nit-
2 

) + n;t + n H n. 
I J. 

H from (2) takes the following form: 

H = I ( c I' - ( ) n l/ - _1_ I J " S z ( n l' 

k_. k a 2 i v 1 11 i. 

I' 
- n . 

k av 

) . 

Herein v = 1 or 2 corresponds to s- or d-b 

the Fourier transformation ofT .. , 1 1
= J a 

I} 

In the form (7), H describes a two-band mode 

wide band and a narrow one. The limiting cas 

(a) the Hubbard model, where only d-ele 

and 

(b) a s-d exchange model (in a simple f 

the d-electrons are described only by the sp 
z 

S. 
I 

In the following these limiting cases a 

Since the results in both cases (a) and (b) 

lar, as is shown in section 3 of this paper 

2), it can be assumed, that also more reali 

(with both s- and d-bands) have analogic pr 

5 



vsd 
- J l s z 

i 

z 

s 
( nit 

s 
-· n i • 

d 

where S. 
I 

d 
= S( n;t - n i • 

) . 
Using the identity 

2n;tn;• -(nit- n i • 
) 2 + 

) 

nit + n P 

H from (2) takes the following form: 

l' 
( ) n lJ - _1_ l J I' S z ( n '' 

ka 2 iv i it 

- n . 
k av 

( 
I' 

( -
-> 

k 

H ~ l i. 

(5) 

(6) 

) . (7) 

v = 1 or 2 corresponds to s- or d-bands. (! k 
is 

Herein 
I 2 , J ~ J and J = U / S • 

the Fourier transformation of T .. I} 

In the form (7), H describes a two-band model, with a 

wide band and a narrow one. The limiting cases are 

(a) the Hubbard model, where only d-electrons exist, 

and 
(b) a s-d exchange model (in a simple form) , where 

the d-electrons are described only by the spin operators 
z 

s 
In the following these limiting cases are considered. 

Since the results in both cases (a) and (b) are very simi­

lar, as is shown in section 3 of this paper (fig. 1 and 

2), it can be assumed, that also more realistic cases 

(with both s- and d-bands) have analogic properties. 
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2. Variational Ansatz 

To solve (7), a variational method is used, basing on 

the thermodynamic Hartree-Fock approximation. On this pur-

h . /6/ pose, t e tr1al operator 

H = H + Hs (8) el 

is considered, where 

-
I ( f - ' ) 

J z 
H = n --I < s > ( n - n . ) el ... ... ... 2 i i 1 H k a k ka i 

(9) 
-

H 
J 

I s z = --- < n - n > s 2 i i i1 l.j, 

with J =VIS in case (a) and 1 = J in case (b). H 
el 

and H5 contain average fields, which are used as varia-

tional parameters: 
..... 

z 
< s i > S M 

1 p. ( ( 10) <n 11 -nH > 

Using Bogolubov's theorem 

F 
1 -{3H -

--- fn Tre < F 
f3 

1 -{3H 
- -- fn Tre + < H - H > , (11) 

f3 

6 

J 

;• 
'B:\ 

the variational parameters M. and p.. are de 
I I 

minimalization of 

F F + F 
e I S 

]S 
+--I 

2 i 
M. Ill+ Iy. 

I I 
(MI -Ill) 

The last term in (12) is caused by the relatj 
z 

s i and n 
1 a , valid in the Hubbard model. He 

lations between operators are replaced by the 

relations between average fields, 

z 
" s > S < n - n > 

if i+ 

which in (11) are expressed by Lagrange paran 

In the case (b) the condition (13) disappears 

only ferromagnetic (FM) , antiferromagnetic (P 

magnetic (PM) states are considered, the ansa 

M ~ M o ll i 
~ ll 0. 

I 
, Y; = y 0. 

I 

+ 1 I 

1 
... ·• A 

0, ~ exp [ i Q • R . ] = + 1 in 1 
I I - B 

+ 1 I randomly 

x7 The replacing of operatos relations by ' 
between average fields is in some respect an. 
the introduction of additional free parameter. 
ral approximations, e.g. in Bogolubov's solut 
conductivity and in the random phase approxim, 
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the variational parameters M and IL ; are determined by 
J 

minimalization of 

-
]S 

F : F + Fs +--I M; IL i + I y. ( M i - ll i ) (12) 
el 2 i 

I 

The last term in (12) is caused by the relation between 
z 

S; and n;a , valid in the Hubbard model. Hereby there-

lations between operators are replaced by the corresponding 

relations between average fields, 

z s > S < n - n > 
(13) 

i 1 iJ, 

which in (11) are expressed by Lagrange parameters Y.x/. I 

In the case (b) the condition (13) disappears (Y. : o). If I 

only ferromagnetic (FM) , antiferromagnetic (AF) and para­

magnetic (PM) states are considered, the ansatz 

M = M o , IL ; = IL o. , Y; = y 0. 
I 

I 

+ 1 FM 
... -· A 

0. = ~ exp [ i Q • R . 1 = + 1 in AF (14) 
I 

I - B 
+ 1 I randomly PM 

x7 The replacing of operates relations by conditions 
between average fields is in some respect analogous to 
the introduction of additional free parameters in seve­
ral approximations, e.g. in Bogolubov's solution of super­
conductivity and in the random phase approximation. 
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is possible. The nonmagnetic case, which corresponds to 

a metallic one17 I, follows for M = JL = y = o • In ( 14) Q ... 

is half a vector in the reciprocal lattice, so that 
•A -+B -+ -+A(B) 

( R. - R. J • Q = 17 , where R. is a position vector 
I I I 

in the sublattice A(B). 

From (12) a coupled system of equations for M ,11 

and y follows. In the special case of symmetric density 

of states (D(£) = D(-£)) and half-filled band ( n = 1 

( = o ) a decoupling is possible, yielding a single 

equation for the parameter ~ = ~ J S M in the form 

B ( x) = Brillonin 's function) 
s 

]S 1 a F 
]S eJ 

( (3 ~ ) (a) ----- + -4- B s 
4 N a ~ 

1\ = J 
- in case (15) 

-
]S ]S (3 aF 
-- B (---

eJ 
) (b) 

2 s 2 N a~ 
\. .... 

In (15) for the functions F the dependence on ~ must eJ 

be known. These functions are different in the FM, AF and 

PH case. For simplification the following approximations 

are used: 

a) For the unperturbed band (-+the density of states 
--- k 

D (,) = 2 v I -£
2117 is assumed, with the half band width 

w = 1 
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b) For ( "k is assumed (.. ... = - ( ... 
k+ Q k 

is the same vector as in (14). This form is va 

instance, in a tight-binding band for sc and be 

c) The PM-case is solved using the cohere 

approximation
181, since the CPA seems to beth 

approach to the disorder problem. 

3. Results 

Solving numerically both limiting cases ( 

with s = 1l2and S = 5 , the free energy of all 

phases follows depending on T and J s I 2 • ( 

cal calculations are carried out at the CDC-16 

na) . At T = o (fig. 1) always 

AF PM 
E < E < 

FM met 
E < E 

is valid. That means, that the ground state is 

antiferromagnetic. A Hott transition by variat 

does not occur. 

Furthermore possible phase transitions of 

order(~ ... O)are considered, and the corresponc 

tical temperatures T c (FM ... met ) I TN ( AF 

T M (PM ... met ) are numerically calculated 

on JS I 2 • The result is, that always T is · 
N 
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l 

where Q b) For (... is assumed (... ... = - ( ... 
k k+ Q k 

is the same vector as in (14). This form is valid, for 

instance, in a tight-binding band for se and bee lattices. 

c) The PM-case is solved using the coherent potential 

approximation/Sf, since the CPA seems to be the best 

approach to the disorder problem. 

3. Results 

Solving numerically both limiting cases (a) and (b), 

with s = 1 I 2 and s = 5 , the free energy of all magnetic 

phases follows depending on T and J S I 2 • (The numeri­

cal calculations are carried out at the CDC-1604A in Dub-

na) . At T = o (fig. 1) always 

AF PM FM met 
E <E < E <E 

(16) 

is valid. That means, that the ground state is always 

antiferromagnetic. A Mott transition by variation of JSI2 

does not occur. 

Furthermore possible phase transitions of second 

order(~ ... O)are considered, and the corresponding cri­

tical temperatures T c ( FM -> met ) I TN ( AF ... met ) and 

T M (PM _, met ) are numerically calculated depending 

on JS I 2 • The result is, that always T is the highest 
N 
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critical temperature (fig. 2). That means, that the AF 

phase is the most stable one. 

Therefore in this model also by variation of T a Matt 

transition does not exist. This result follows in both 

limiting cases, in the Hubbard model as well as in the 

s-d model. So it should be concluded that also more rea­

listic cases, in which both s- and d-electrons are con­

sidered, do not contain such a transition. To obtain a 

first order transition from a paramagnetic (isolating) 

state to a metallic (nonmagnetic) one, more complicated 

models must be considered. 
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Fig. 1. Energy of the magnetic states at T = o. a) Hubbard model. 
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Fig. 1. Energy of the magnetic states at T =0. b) s-d model. 
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Fig. 2. Phase transitions of second order. a) Hubbard 
model. 
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Fig. 2. Phase transitions of second order. b) s-d model. 
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