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I. Introduction

The simplest model for the strong correlated d-elec-
trons in transition metals, their compounds and alloys is

the well-~known Hubbard model/l/

e »(1)
Hubb ijo ij io 10 i it iy io io ia

where T, is the hopping integral and U describes the

interaction between electrons at the same lattice site.

et (¢ ) are creation (annihilation) operators for

ig i
d-electrons with spin ¢ in a Wannier state at the lattice

site 1 .

Although this model is very simple, it contains seve-
ral difficulties. Especially, divergencies exist at
U » o 2.3/ and n:=1/4/. Therefore, the magnetic phase
diagram is not completely clarified at present. Further-
more, the neglect of s-bands in (1) can give wrong results,
also for empty s-bands. The (virtual) scattering of d-elec-
trons into the wide s-band changes the form of the d-band

/5/ .

and the properties of the ground state



Therefore a generalized model must be considered,
which contains s~ and d- electrons. It can be assumed,
that in such a generalized model the divergencies of the
operator (1), at least at n = 1, vanish, so that the same
approximations can give better results as in the case of
the pure Hubbard model.

As a starting point the operator

0

H = H_ + H +V_,~-(N (2)

is considered. H:describes the s~electrons by a simple
Bloch band,

0
H = 2 €,nS , nS =al a, . (3)
s Qo k o ko ko kO

Herein,azo(azo) are creation (annihilation) operators of

electrons with spin ¢ in an s-type Bloch state k with

energy ¢ . . The d-electrons are described by the Hubbard
and V_

operator, H, =H is the interaction between

Hubb 7/ d
s- and d-electrons in a usual form:

Vg = % 7T ol KR, ;7( . é’i : (4)
where J; is the s-d exchange integralJ 7 describes the
spin density of the s-electrons and S, the spins of
d-electrons at the site 4 . ¢ in (2) is the chemical
potential, and ¥ the number operator (s- and d-electrons).
Neglecting spin~flip processes and the kﬁ—dependence

of J , Vsd get the form



v = -1 % S (n;, =an, ) (5)

‘sd i i

z d
where Si = S(n;, = "i¢ )
Using the identity
2

2anH=-(r_1”—ni¢) S PR PFR (6)

H from (2) takes the following form:

, Y 1 / ’ ,

H -3 (e'=¢)n)l ——2% jUsi(nt =n" ). (7)
Lov K ko 2 v i i1 i

Herein v =1 or 2 corresponds to s-— Or d—bands.t{ is

the Fourier transformation of Tij , Jj1-7 and Jj2=uU/S .

In the form (7), H describes a two-band model, with a
wide band and a narrow one. The limiting cases are

(a) the Hubbard model, where only d-electrons exist,
and

(b) a s-d exchange model (in a simple form), where
the d-electrons are described only by the spin operators

z

S i
In the following these limiting cases are considered.
Since the results in both cases (a) and (b) are very simi-
lar, as is shown in section 3 of this paper (fig. 1 and
2), it can be assumed, that also more realistic cases

(with both s- and d-bands) have analogic properties.



2. Variational Ansatz

To solve (7), a variational method is used, basing on

the thermodynamic Hartree-Fock approximation. On this pur-

/6/

pose, the trial operator

H = H + H (8)

is considered, where

H = X (e -¢ ) n, -1 3 < S s(n  -n_ ),
ke F Ko 2 : I

H = ———]-- S §% <n - n > ,
s 2 i i it iy

with j~ =U/S in case (a) and J =77 in case (b). H

el

and HS contain average fields, which are used as varia~
tional parameters:

<S, >=SMi , <nH -n, > = p, ((10)
Using Bogolubov’s theorem

- ~ 1 —B8H ~
F = - 1 n Tre BHS F =—TEnTre BH+<H - H >, (11)



the variational parameters M, and p, are determined by

minimalization of

F=Fe1+FS +——2-——§ Mi“1+2,~yi (MI_“i)' (12)
The last term in (12) 1is caused by the relation between

S; and 7,, valid in the Hubbard model. Hereby the re-
1ations between operators are replaced by the corresponding

relations between average fields,

z

S > = S <n_ - n_ > (13)

i it iy
which in (11) are expressed by Lagrange parameters y.x/.
H

In the case (b) the condition (13) disappears (yi= 0). If
only ferromagnetic (FM) , antiferromagnetic (AF) and para-

magnetic (PM) states are considered, the ansatz

Mleax' “izyat ’ yl = y51
+ 1 FM
¢ - , A
6, = eXP[IQ-R,.]=i ! in B AF (14)
+1 , randomly PM

X/ The replacing of operatos relations by conditions
between average fields is in some respect analogous to
the introduction of additional free parameters in seve-
ral approximations, e.g. in Bogolubov’s solution of super-
conductivity and in the random phase approximation.



is possible. The nonmagnetic case, which corresponds to
a metallic one/7/, follows for M =p =y = 0 , In (14)0
is half a vector in the reciprocal lattice, so that
(léiA— EIB )-5 = 7, where 13,.'4(3)
in the sublattice A(B).

From (12) a coupled system of equations for ¥ ,u

is a position vector

and v follows. In the special case of symmetric density
of states (D(¢) = D( -¢) ) and half-filled band ( n = !,
¢ = 0 ) a decoupling is possible, vielding a single
equation for the parameter A = %—}'SM in the form

( BS (x) = Brillonin’s function)

[ - dF ~
- IS s gy qa)
4 N Jd A 4
A= ﬁ _ in case (15)
7S Jjs B oF
—_— B (- ) (b)
2 S 2 N dA
.

-

In (15) for the functions F., the dependence on® must
be known. These functions are different in the FM, AF and
PM case. For simplification the following approximations

are used:

a) For the unperturbed band €. the density of states

D(e¢) =2y 1 -¢?/n is assumed, with the half band width



b) For ¢ is assumed 2.8 =~ € P , Wwhere ¢Q
is the same vector as in (14). This form is valid, for
instance, in a tight-binding band for sc and bcc lattices.

c) The P?gjase is solved using the coherent potential

approximation , since the CPA seems to be the best

approach to the disorder problem,

3. Results

Solving numerically both limiting cases (a) and (b),
with S=1/2and S = 5, the free energy of all magnetic
phases follows depending on T and JS/ 2 . (The numeri-
cal calculations are carried out at the CDC-1604A in Dub-
na). At T = 0 (fig. 1) always

AF PM FM t
E < E < E <E"™ (16)

is valid. That means, that the ground state is always _
antiferromagnetic. A Mott transition by variation of J5/2
does not occur.

Furthermore possible phase transitions of second
order (A - 0 )are considered, and the corresponding cri-
tical temperatures T, (FM -~ met ) , T, (AF - met ) and
T (PM - met ) are numerically calculated depending

M
on JS /2 . The result is, that always T, is the highest



¢

W N Ul W N

critical temperature (fig. 2). That means, that the AF

phase is the most stable one.

Therefore in this model also by variation of T a Mott

transition does not exist. This result follows in both

limiting cases, in the Hubbard model as well as in the

s-d model. So it should be concluded that also more rea-

listic cases, in which both s- and d-electrons are con-

sidered, do not contain such a transition. To obtain a

first order transition from a paramagnetic (isolating)

state to a metallic (nonmagnetic) one, more complicated

models must be considered.
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Fig. 1. Energy of the magnetic states at T = 0. a) Hubbard model.
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Fig.

1. Energy of the magnetic states at T -o¢.

b) s-d model.
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Fig. 2. Phase transitions of second order. a) Hubbard
model.
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Fig. 2. Phase transitions of second order. b) s-~d model.



