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1. Introduction 

,, 
Recently Gotze and Michel proposed a phenomenological 

quasiparticle picture of the crystal [1] • GenP.ralizine 

a concept tised by Landau in the theory of r'ermi. liquids 

the internal energy of the cr~stal is assumed to be given 

·as a functional of deformation parameters 'U oe:p and 

number of excitations nipJ> with quasimomentum p ancl 

polarization branch j • The dependence on 

reflects the static energy of the crystal - the "background 11 

state. At the temperature T f. 0 quasipartioles arc 

excited above this "background"• 

Usually only small perturbations of the equilibrium state 

are studied. Therefore we do not need complete knowledge of 

the functional 

Only first and second derivatives of E are quantities 

of interest. All the important parameters of the phonon gas 

and some thermodynamic functions describing the state of 

the "background" are to be defined in terms of the ;first 

and. second derivatives of E 

Usually it is a formidable task to compute these 

derivatives microscopically, without using the methods of 

thermodynamics, and simple models are invited. For these 

reasons anharmonic cr~stal in pseudoharmonic approximation 
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is :frequently used. The crystal in this approximation. ' 

is equivalent to a gas of noninteracting harmonic 

oscillators with"temperature dependent :frequencies 

(see for example Werthamer [2 J ). 
Some of a quasiparticle parameters in pseudoharmonic 

approximation were considered by Gotze and Michel. ~,4] 
and some of a thermodynamic quantities by Werthamer [2] • 
The second order derivatives of the internal energy E 

or free energy F with respect to strain 'U B 
t, .. llo<r 

give 

the second order elastic constants, adiabatic S "'r· ~e 
l• ~I 

or isothermal S "'f.tS' respectively. 

As it has been pointed firstly by Cow~ [5] the 

hydrodynamic. limit of-phonon Green function mass operator 
't;S 1 n !<.. [W) gives-isothermal elastic constants s<((l,~O' 

J s~d' . 
and its collisionless limit gives o<.f3. ¥S the adiabatic 

one. For the difference of elastic constants macroscopic 

thermodynamics gives [6,7] 

( Cu­

'L"'p 

tad I 

s <-<r.J5 
- s{is I ~" 

"fl·~" 
= cv 

T 1: 
c\(3 ~ s 

T 

being the heat capacity at constant strain, 

tension tensor). It ~~- possible to 

calculate the mass operator of phonon Green function 

n kJ l w) accounting for all_ two-phonon processes 

[4,8,9,lo J and. relate its hydrodynamic limit to 

isothermal elastic constants derived from pseudoharmonic 

free energy [ 4,'s,loJ, . . 
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If we compute the thermodynamic functions appearing 01 

right-band side of Eq.(l) we may prove this r_elation, 

it was done by Wehner and Klein for harmonic l.attice 1 

three-phonon interactions [1] • 

In this work we will. derive some quasiparticle pa: 

from pseudoharmonic internal. energy and some thermody 

functions from pseudoharmonic free energr. considering 

after Choquard [ ll] and Klein et al • [12] , the 

of correlation functions of the displacements of atom 

to be intermediate variables describing fl~ctuational 

state of the cr~stal. In such a way we are in a posit 

to relate considered quasiparticle parameters'and 

thermodynamic functions to quantities describing two­

processes as the phonon bubble f 
0 

or four phonon 

vertex. 

In section 2. · we give some definitions and I 

and derive the quasiparticl.e parameters. In Section 

we compute some thermodynamic functions and consider 

equation (I), 

Section 2. 

Let us consider, for simplicity,a Bravais lattic1 

denote the average of the instanteous position opera· 

f- th atom Re ( e=1, ... ,N) by X e. 
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md Michel (3,4] 

'Y Werthamer [2] 
1rnal energy E 

1train 'U give 
j.:JJo<f r 

•batic ::> "~· ~~ 

the 

:~on mass operator 
sl~S, 

: constants C((l.~o 

the adiabatic 

:ants macroscopic 

:onstant strain, 

possible to 

~een function ·· 

·phonon proces~es ',,.." . ' ' . 

. mic limit to. 

•m ps.eudoharmonic 

(I) 

If we compute th~ thermo~namio functions appearing on the 

right-hand side of Eq.(l) we may prove this relation, as 

it was done by Wehner and Klein for harmonic lattice with 

three-phonon interactions [1] 
In this work we will derive some quasiparticle parameters 

from pseudoharmonio internal energy and some thermodynamic 
' functions from pseudoharmonio free energy. considering 

after Choquard [ 11] and Klein et al . [12] , the set 

of correlation functions of the displacements of atoms 

to be intermediate variables describing fluctuational 

state of the or~stal. In such a way we are in a position 

to relate considered quasiparticle parameters and 

thermodynamic functions to quantities describing two-phonon 

Fo 
processes as the phonon bubble or four phonon renormalized 

vertex. 

In section 2. · we give some definitions and notations 

and derive the quasiparticle parameters. In Section J 

we compute some thermodynamic functions and consider 

equation (I), 

Seoti.on 2. 

Let us consider, far s1mplicity,a Bravais lattice and 

denote the average of the instanteous position operator of 

e- th atom Re ( e =1, ... ,N) by X e 
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H 

·\ = ( Rt) = Tr ( K l 
- Q ) 

e - '> 

H being the Hamiltonian of the lattice 

1\J ·L - p 
H = 2._ 2~ +- lJl R.,, ... , RN) , 

~ 

with M 
operator, 

t ::.1 

the mass of the atoms, fe -momentum 

.\jr -potential energy of the crystal. The ..., 
~~ 1-h displacement operator 1..1e of atom is 

given as 

-~ ~ ~ 

VL ::. R - Xe L .. 

In pseudoharmonic approximation the frequencies U)Q 
~ 

and 

polarization vectors e(Ql (we use the abbreviation · 

Q::(~,J) here and in the following) are 

solUtions of an eigenvalue equation 

l . 
wQ e)Ql 

~ ~ ~ 

_ j_ " \ -·~ (xt- x{J'""«'~ 
- l"'lv L L e(-1 (Q) e ~ ee" ·(1) 

f ('' B 1 

, r 

The vectors of polarization form the complete and orthonormal 

set, 
)\' ..,(~ 
~ 2 e/ is the second order renormalized vertex which 

we obtain by differentiation of the pseudoharmonio potential 

energy u l x1)• , X (\1) • Generally ·'\'1- th 
order renormalized vertex is defined as 
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where 

with 

,..,.J c(l •. «, 
<P f, ... fn 

= v .. , 'i/ -<~ 
e1 ... e .. - --u ( ... xt .. ) • 

~ -1 ["i ]- . ...... 
U C.. Xe •.. ) = exp 2.& <u,<~z> ~ V'2.. ~ (. •. )(!···) ~ 

ut> being the static potential energy o 

crystal. It is easy to compute the free energy an 

internal energy in the pseudoharmonic approximati 

(see for example (13] ) 

F = U- t[wk (2n"~i)+ GJL:rk[Zsh ;~] 
K k 

1: = U + t L w" ( ln~ 1- ~) , 

with nk 
quasimomentum 

the average number of phonons with 

k and polarization j 

( [ W~:.] ) --1 
nk = e>cp 2.El - ~ ' 0 = t::: kT. 

As we mentioned_ in the introduction these express 

correspond to the assembly of free oscillators, e 

of which is equal to 

s = k 2_{('11~:.+4) en('Yl~t1)- t'll< e-nnl:}' 
(<.. 

and the difference af E (!>) and F l 'i) has t 
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pl~te and orthonormal 

rmalized vertex which 

doharmonic potential 

erally ·11 - £ h 

1 
~ 

I 
I 

where 

~c(1 •. <.(~ 
e, ... e., 

~ ....... 
U (, .. X e .. ). (2) 

(J) 

with u~ being the statio potential energy of the 

crystal. It is easy to compute the free energy and 

internal energy in the pseudoharmonic approximation 

(see for example [13] ) 

with n,_ 
quasimomentum 

the average number of phonons with 
y and polarization J 

(4) . 

(5) 

As we mentioned in the introduction these expressions 

correspond to the assembly of free oscillators, entropy 

of which is equal to 

S == k2__{('t1'"-t4)l:t,('t1~t1)- t1~t~nk}, (6) 
K 

and the difference af E ( !i) and F ( 'r) has to 
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fulflll the thermodynamic identity 

E = F + TS. (7) 

If we negJ.ect the polarizat:1.on mix:1.ng :in pseudoharmonic 
. ¥ Y') 

approximation the correlation function < (,1.1.. u e 
is given by 

< 
¥ "'>-) atode~·(l') (2 i)_~k{Xe-Xe,) 

ulul, -L nMN n"+. . . 
I( 4. l.Ot< 

(8) 

Let us denote the express:1.on corresponding to free phonon 

bubble by f
0

( 1(1• kt; W) 

F\k'1, Kz, w) = 2(w" +Wi<t)(nJ<:,tn~:iH)- 2.(WK,-w"l)(n"f-YI~t) 
lo)z.- (wl<, .. wJCt)t. wl.- (wKf-1..0"~)2. (9) 

-~ -~ 

If lkJ~ lk1.l and w~O for j 1 =j2. F
0 

behaves 

singularily as noted ·by Cowley [-5] , G~tze f 14] and 

[] 
~ ..,~ ~· ...... 

Gotze and Michel 15 • Let us put k, = Kt-i , kt = -k. 
For small 9.., w we have ( k ,· (k,j)) 

~ ~ 2. 

0 .... ~ ...,. 'l.n + 1 urq ) 
F ( k4.,--k,j, w) = ·- · ~K - 2. ul-- dr~l'l. 

dn~ 

dw~ • (lo) 

The hydrodynamic 1:1.m:1. t of 
Fo is defined as 

n. { n. Fo k .. )} . 2n~::""J 2.d"t-- Ftitl 
um um (k+'!, ,- ,J 'w ::. - - + dw = (1'\(11) r:to W~o WI< ,:. { 

8 

.. 

and collisionle ss limit 

·.. { a F o(· 4 ~ i . \ · 2.n t- 1 (a.d> 
[lm um k .. 'l_.- "•d ;~)~ -= - + = F ( k) 
w~o ~ ->Jo 1<. 

The pseudoharmonic free energy is stationary with.~ 

to change of the correlation funct:1.on 

8F 

S/. l ¥' ,ulu.e) 
= 0. 

Let us consider the first derivative of F witl 

to temperattn"e T at co~stant 'U~f 

(oF) (oF\ 
\or u = ~r)u <::uu) 

(

. ...,. l)' 

'\ ()F 'd (ut ue, >) 
+ L '¥. t' ':\ 

5¥' a<u. 1 ut') . u T u, 
o~.p .. 11· u/ 

I= depend on T But the first .two terms of 
I l'' 

:1.mplicitely via (u 1 U ,) and due to the statio! 

of F we obtain 

to F) _ (oF) = _ s . 
o T u - . o T u <u.i.l.> 

ol -<P· ~r . 

Differentiating the identity (7) with respeot to 

at constant strain u~r and making use of Eq. 1 

we obtain thermodynamic identity 

T@~L,, = (~~)"•I = Cv ' 
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(7) 

1 pseudoharmonio 

<Lt~u~) 

(B) 

ing to free phonon 

. Fo =h. -. behaves 
II .1 ] · Gotze 14 am 

-t ~ _,.._, 

k1 = k-HJ.. , kt:-k. 
I) 

' z. d 
) "~'-

- (if~lt dw~ • (lo) 

efined·as 

n 1
-t-1 .· . dn~' - tid 
~ + 2. dw = f(~\(11.) 
WK y.. _ S 

and coll.isionless limit 

(12) 

·The pseudoharmonic free energy is stationary with respect 

to change of the correlation function 

SF 
= 0 . (13) 

Let us consider the first derivative of F with respect 

to temperature T 

But the first two terms of 
'( "(' 

implicitely via (U1 U 1,) 
of F we obtain 

depend on T only 

and due to the stationarity 

(14) 

Differentiating the identity (7) with respect to ·~ 
at constant strain ~~~ and making use of Eq. (14) 

we obtain thermodynamic identity 

T(~ t~n = (~~) u = Cv ~ (l4a) 
r -<P 
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Cv is the heat capacity at constant strain •. This identity 

w11l be proved further. 

The first derivative of F with respect to strain 

parameter U~p at constant ll gives the stress 

tensor 6~~ 

v 6'o(~ = (()F) 
O'«p T 

_ (oF ) +I oF _ (d<ul~~!>\ 
- o~p"G<!{I{) n,o(u~u~~} 'Ou.cp lr'' 

tt/ ' 

where ~ is the.volume of the crystal. 

From stationarity equation (lJ) the seco:ad term disappears 

and we obtain 

V 6rAP : t X~ ~ ~ , (15) 

--< 
where <\> u. is first order renormalized vertex. 

In view of rotational invariance of the potential energy 

60(~ is s!JIIlllletric [16] 

6o(~ ::: 6~o<. • 

Let us consider the derivatives of the internal energy E • 
The first derivative of E with respect to number of 

quasiparticles tn. (k') gives the first quasiparticle 

parameter-energy of quasiparticles w ( K) 

foE) = 
\~n"- u ... ~ 

( ) t '(y') ~o'E + L 'dE 0{u 1 u.,,) 
~O(C. U .(~.ttl) yyt Q(U~U'6(:> ()nf< . 1J 

ocp• o o • · «p 
( L/ 

10 

With· the help of Eq. (5) using the definition of sec 

order vertex (2) and frequencies to~ (1) we obtain 

::.{l,J,4] 

(ol:) .. = ~ (k) . 
'Onl< u,(P 

I 

Next we are going to perform the calculation of the 

seco:ad derivative of the internal energy with respe 

to np defining the quasiparticle interaction fl 

f (P,P'): ( '01£ ) 1 low~) 
onpon£" U.C~ :: 2wp l- onf' Uo(p 

Us1.ng the definition of tOa (1) and the second order 

vertex (2) we put Eq. (1.7) in the form 

't I ~ ..., -o . ( s> (>' ) 

1 

1 '\ ep eJ lp ~~L~) ,v !r_ff' o{Ur U.l-•) 

f (P,f)::. I L 2MNw e ~ t t'rr' on.e' t.l 
~rnr' r .t.fl 
tl'rr' 

For the derivative of correlation function with 

respect to nl' 

Klein et al .• [12] 
following Choquard [11] and 

we obtain an integral,equatioll 

f'd<u.~ur> \ = 
\· ()n.f, J 

"'oep 

§> y' -+ ... ~ ~ e
1
, et' (p'£Xr-~r,) [L(o.d)ft•"'('Jliii'.Pf' <u_ 
~ e + rr'nn' ~nn'mlll' ' ' 

£' v»'""r' . 
. nn• "'"'' 



. . 

~ives the stress 

ll. 

cond term disappears 

Lzed vertex. 

e potential energy 

internal energy E · • 
ct .to number of 

at· quasiparticle 

K) 

l 

1 
I" 

With the help of Eq. (5) using the definition of second 

order vertex (2) and frequencies toQ (1) we obtain. 

;;,{ l,J,4] 

(!E) = w(k). 
I< Uo(p 

(16) 

Next we are going to perform the calculation of the 

second derivative of the internal energy with respect 

to hp defining the quasiparticle interaction fl.P,f'J 

f (P,P'): 

Using the definition of IJQ. (1) and the second order 

vertex (2) we put Eq. (1.7) in the form 

(17) 

" \ e~ e:' i;(~~) ~ !¥~f' (o{ur ut: > ) 
f (P.f'J =- 2 L 2MrJw e cp l t· rr· on.e' u (18) 

l!'l'l'f I J! 1((\ 
H'rr' 

For tbe derivative of correlation function with 

respect to n1, 

Klein et aJ. .• [ 12] 

following Choquard [11] and 

we obtain an 1ntegral,equation 



where 

(a..l) l'f'l.>v' 

l ~r· nn' 

- \ ~(Q)s-·{Q) e,.(Q) ev {Q) _i.t(X,-Xr·l-iq(~:-t;,.) F<ld{QJ 

- L lc~ (21-1~)2. e -:2.- • 
Q G( (2o) 

Putting the solution of the integral equation (19) into 

expression (18) we get 

\ ...,-'~""'" --~~·-1) ·'' 
tlf f'} =[ ~4(f)e!'(e)er(t~J~;·{L';) ei.p('Xc)(L,)Hf''(Xr-Xr· ,_.o!'"v' f ( _ ..... ~")J-1]vu~ 

' (2MN)'wt:,wo, 4'ebwl1 C ••'rr' tnrw .. .. .. 
rt·rr' nn' (ZI) 

where 

-- [Gld). vv'!'?1 ~a) )IJ)'U.]A' --.. rr rf' 
[( ] , , =Ll nn·m~· ~ l!lll!'(r' 

- n n r r P]•' 

"'"'' 
Following [1o] we put (21) in the form in which only 

( 
.- a.o) -i 

phonon quantities appear. Expanding 1- ( 
into a series and using the definition of the phonon 

vertices 

n 

VII (K!, .,K,) :: (·.i )I} e~. (1<.,}... '<?,.n (I<~} 
1MN L (,.; l.v ) 'h 

<( i<t.., ... ., 
f) ,II( .. 

e1 •. ,,1~ 

..., ... 
.... ... •I X -', ... "~ 'k )( t- til'~ I~ .-... e I e,. "' <f\ .. f'l (22) 

we obtain 

;. 
\ 

l 

t 
I 
1

', 
I. 

L ,, 
.i 

f 

t 
~~ 
1 
I 
I 
I 

f t P, ft) = .[V(f,-f; KI-K)[C1- c(ad)r~J. 
1<. • · k,-:1:.,· I' -P • . 1' 1 

(: 

(ad) 

C is the collisionless limit of the irregular p~ 

of [ C(w) t,t,;~-,.£~'lo] 

0 ,...._, 

[C!wJ] 1< K ·l<~k' = .i2 F(k,K1;w) VJ-k'1,-k2·K; I<{) 
I 11 1 1 · , I I ' (2 

[ 

(a.ci) ] { l t> _, ... .... ........ .... . .., . -:-'. _. _. -¥ 

C k -K·E -r = ~·m e, . .., 2 F (k~~.-kJjli<))VIJ(-k-'1,d·,kJ;f,~~dt)-r1, 
I I II I ,_;~D ~~O , . 

It is possible to give Eq.(2J) a diagramatic represent~t iX ... Q 
l1+ ·I 

f(f,~) = . 
P-Q -~ 

_. .... 
~;(CJ.r}) I Q,=('J_,j1) 

where the effective two-phonon interaction vertex: is a 

solution of equation 

P r,+Q, 

X =X·>a( 
f-Q 1'1 

~x 
cr,;) 

1-.~ 
Cp-q,j) !~J' I 

+-~+~+ 



.. )-iq(•:-~.) r=a.d(QJ 
-:2..-· 

(2o) 

.on (19) into. 

L Which Only 
·cc:t"J . ., 

:he phonon 

..., -t ; 

t ;~.xt . ...., ,,, .. "~ 

. " ~Q,, .• Rll (22) 

(ad) 
c is the collisionless limit of the irregular part 

of [ ( (w) t,t1 ;~·~{ [9 ,lo] 

It is possible to give Eq.(2J) a diagramatic representation 

..ex~t-Q., 
fCP,P1) = 

P-Q rl 
where the effective two-phonon interaction vertex is a 

solution of equation 
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The result (2J) differs from that obtained by G~tze and 

Michel. t3,4] by regular part of fo which we 

polarization mixing. The drop as we have neglected the 

regular part of F
0

(K1,k2 ; w) 
~. 

1ni ependent of 't and t.) 

of the Eq.(2J) was recently 

( J 1 4= j,_ ) is practically 

[1]. • The generBlization 

given by Werthamer [11] . 
How we consider the Grfineisen constant '6o<p ( K) 

which defines a change of energy of the q~siparticle 

with deformation 'Uc:(p at constant tempe.rature 

O..cp ( K) = _ t (owl< ) 
k ouc((1 7 

.• (25) 

We are concerned with 

2 ) j_ OW~e - .i. () Wjt. . = L 
'<lk ( 3u)7 - l ( ()U•p T rr' 

et{k)e&'lk) ik(Xe-Xt,) 
Q.MN € )( 

,...n·. H" 
,...~r 

~ 
d(u~ ur.> {(0 ~ Ll") + 

X ()Uotp T,{llu} 

(~< u~ u}) ) } 
l" ou-<p T • 

[ 
J!' 
r r' 

Instead of deriving the integral equation for derivative 

of the correlation function with respect to U<l(j'\ at 

constant T we use 

integral equation for 

equation is equal to 

Eq.(8) • In such a way we obtain an 

(~~~p)T • The solution of this 

(ow") = \fr1_Cos'r'J ' e11 £PJe-·c.r J ;(it-~.) f ,_. otl(' ,, 
l"-a~p T Lll J,(-1( r-PL 2MNw.. e x,. 1> ~ret' ( 26) 

P ' n" ,(c. Lr 

14 

where 
(is) J 

[ ( . K,-KjP,·P 
is-the hydrodynamic 11 

[~''JJ< .. p'_,, =Lim {e;, fF(k .. ;j,-kJiWj)~(-k..;ci,kj; ;~ 
,K, ' i~O lol~O · 

Making use of Eq. (26) finally we_ obtain the GrUnei 

constant in the form 

( L~ Lin)·41 [ e~<.e)er·l£) ipl){~-Xdxt 
v K):::- (1- c J 2MN . e 
0 c<~ K ·k.. p. r WtW.f . - L 

p '''1~ .. t'l1' . 
The coordinate representation of this equation w 

by Klein et a1 [1a J (see also Choquard . [11] 
[ 19] , G~tze and Michel [ J,4.] ) •· 

Let us consider a change of the phonon energy un 

influence leading to the deformation u~p 

Sw(K)::- L oo(p(K)uo<p • 
o(~ 

But from the method of long waves uo(p 

( .see for example [2o]) 

where 

'l.l .tp = 

o( 

'U -"l-

-< . u 
I~~ ~ ' 

eo( (<I~) 

VM ' 

is eg 

~ = 1,2.,3 is polarization index of .the aoco 

15 



I• .. by Gotze and 

which we 

, mixing. The 

is practiclill.;r 

Le. 'genertuization 

1rthamer [ 17 J • 
'6o<p ( K) 

'siparticle 

,e.rature 

u~:) \ } 
;:;-JT ,•. 
tion for derivative 

to Uot~ at 

11 a way we obtain an 

11t~on of this 

where [ 
((is) J 

K,-KjP,·P 
is-the hydrodynamic limit of 

Making use of Eq, (26) finally we_ obtain the Grtmeisen 

constant in the form 

(K) =-\ rc~- c<iSir41 ' e~ce>er·(.f) eip(xi-XL') x' ~~~!: (27) 
~otp Ll JK·k·P-rf::, 2.MNwtwi' cr ll"ft 

p '''1h· . •. 
The coordinate representation of this equation was obtained 

by Klein et a1 [1s J (see also Choquard [11] , Horner 

[19] , G~tze and Michel [J,4] ). 
Let us consider a change of the phonon energy under external 

influence leading to the deformation U~p 

But from the method of long waves U~p 

( .see for example [2o]) 

where 
o( 

'U."l= ' 

(28) 

is equal. to 

(29) 

is polarization index of the aoooustio mode 

15 
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Substituting (27) and (29) into Eq. (28) we get ( Q =(~,"}~ 

{ [ [ 
,. y·fl (lwaN )h rv( } 

f.u;"',_e.,~rn \1-((U:)JJ W V3 .f.l2,-Q). (~o)_ 
~ ... u ,.) ~0 fl,rL I<.J-I<t-!¥j r,,PL 1<. 

It means that a change of th~ phonon energy 

can be represented by the following diagrams 

/( 

-;-<~-Q 
K 

-~ -:-C" 1<-Q. 
G. 

CUI< 

where .the renormalized phonon vertex is equal to 

~ CK ;::. --Cl(', .. 
1<-Q 

The equation (Jo) is similar to that obtained by Wehner 

anl Klein [ 7] who consider the harmonic approximation 

,and three-phonon interactions only. 

Section J 

In this section we consider the elastic constants and 

all thermodynamic quantities needed to obtain the correct 

thermodynamical result for the difference of adiabatic 

S~ s~ 
and isothermal elastic constants · - · 

Let us begin with deriving the h.eat capacity at constant 

strain U .:(1' .From definition 

16 

'\ 

CIT == T (~~) 
.. u tlo\~ 
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Similarly as in the derivation of the formula (23) 
') (A c(is))-1 f(.£, f , we expand ·•- in t 

series and use the definition of phonon vertices (2 

In such a way we get 
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Inserting this into Eq.(Jl) we have 
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obtained by Wehner 

nnonic approximation 

tic constants and 

to obtain the correct 

renee of adiabatic 
d -.$iS 

eat capacity at constant 

Differentiating the entropy S (G) with respect to 

temperature T we obtain 
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For the derivative ofthe correlation function with respect 

to T we obtain an integral equation, solution of 
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Similarly as in the derivation of the formula (2:3) for 
') . (tJ- c(is))-1 f Cf, f , we expand in the 

series and use the definition of phonon vertices (22). 

In such a way we get 

Inserting this into Eq.(Jl) we have 
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The heat capacity in this form was firstly obtained by 

Werthamer [2 J . It may be proved that the derivative 

of the internal energy with respect to temperature gives 

the same result conforming (14a) 

Another interesting quantity is the tension tensor ·T~p 
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Using the definition of the entropy we obtain 
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The term in the brackets is the familiar Grnneisen 

constant t .. p ( K) • Using the representation for ~~ (k) 
which corresponds to Eq. (27), we obtain the fol.lowing 

alternative form 
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This result can be obtained from differentiation of 

6,,(\ with respect to T • The e~astic constants 

can be obtained from the mass operator TrQ (lll) 

of the phonon Green function « Ao. 7 A~ ))w where operators 

A~ are obtained from expansion of the displ.aoement 
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operators U ( in pl.ane waves 
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The mass operator nQ (w} is equal to [9] 
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USing the method of J.ong waves [ 2o] we find from 

col.l.isionless and hydrodynamic limit the adiabatic 

and isothermal elastic constants [1o] 
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Now we are in positionw calculate the difference of the 

elastic constants 

(udl s(i~) 

S .tp,~5 - cijl,6S 
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As we mentioned inhe Introduction from purely thermodynamic 

arguments [ 6,7] it follows that the difference of 

elastic constants is equal to 

(I) 
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But from Eqs.(J6), (J7) and (JJ), (J4) it follows that (J7) 

will be approximatefy equal to right-hand side of Eq. (I) 
li~) c(a4) 

only if we discard C and in all quantities 

appearing in Eq.~~ This approximation correspoids to the 

· case of bare phonon bubble considering by Wehner and Klein 

[7] 
. (at!) 

We shall show that S "'~•KS (J6) can be obtained 

from internal energy by differentiation with respect to 

strain 'U.cp at constant numbers of occupation n(l<}. 

It is easy to show that 
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Using this equation we obtain the second order derivative 

of internal energy, 
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Similarly as in [1o,12] the derivative of the 

correlation function is connected with the derivative 

of the second order vertex 
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This derivative is the solution of an integral equation 
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[ · "'(ad))-IJ Inserting (J9), (4o) into Eq. (Ja), expanding (1- C 
into a series we recover the adiabatic elastic constants 

(J6) 
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S o{r, rs = 1 ( 'd'IE ) 
v au 05~u."'.~ n 

(41) / 

The constancy of numbers of occupation is equivalent to 

constancy of entropy S. 

21 

v' 



But the entropy will not change even if the numbers of 

occupation varies.Equation (41) means that in obtaining 

the- collinionless limit of mass operator na lev) 

we completly missed all dissipative processes connected 

with changes of Yl.,_ I 1 • These processes are contained 

in collision integral of Bollzmann equation (see for 

example [1] and references given therein). 

4. Conclusions. 

In our work we show that approximated mas_s operator 

Oalw) with all two-phonon processes accounted is not 

sufficient to reproduce the correct thermodyna~ic result 

for the difference of elastic constants. This approximation 

gives only non-dissipative terms connected with the 

interactions of the phonons. As it was shown by Wehner and 

Klein [71 it is necessary to consider dissipative terms 
(c.dJ s{IS'J 

to obtain the difference S,~, 1 5 - ,.,~S in agreement with 

classical thermodynamics. The dissipative terms are 
' connected with three-phonon processes and have form of a 

collision integral in_Doltzmann-like equation for 

three-phonon vertex [ 7] • Thus although four-

phonon processes are important in obtaining correct 

numerical results for elastic constants [12) , they 

are insufficient to describe the transport processes 

in crystals (see also [s] ) • 
The author thanks Dr.N.M. Plakida for usefull discussions. 
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