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l, Introduction

Recently thzekand Michel péoposed>a phenomenological
quasiparticlé pidture of the crystal [IJ + Generalizing
a concept used by Landau in the theory of Fermi.liquids
the internal energy of the crgstal 1s‘assumed to be glven
'as a functional of deformation parameters Uy and
number of excltations ﬂfﬁp with quasimomeﬁ{ﬁm <F and
polarization branch j « The dependence on uqﬂ
refleots the static energy of the orystal — the "background"
state., At the temperature 7—# O quasiparticles are

excited above this "background".

Usually only small perturbations of the equilibrium state
are studied, Therefore we do not need complete‘knowledge of

the functional
E = By mBa),

Only first and second derivatives of E are quantities
of 1nterest. All the important parameters of the phonon gas
and some thermodynamic functions describing the state of
the "background" are to be defined in terms of the first

and. second derivatives of E .

Usually 1t 1s a formldable task to compute these
derivatives microscoplcally, without using the methods of
thermodynamics, and sihple models are Iinvited. For these

reasons anharmonic brystal in pseudoharmonic approximation



is frequently used. The crystal in this‘apprQXimaticﬁnt
is equivalent4to a gas of noninteracting'harmcnic
oscillatcrs with’ temperature dependent:fréquencies‘ '

(see for example Werthamer [2] ).

bome of a quasiparticle ‘parameters in pseudoharmonic
approximation were considered by Gotze and kichel I} 4]
and some of a thermodynamic quantities by Werthamer. Lz] .
The second order derifatives of the internal energy ng‘;»
or free energy F: with respect to straln ﬂjuﬁ giﬁe‘
the second order elastic constants, édiabatic §ﬂp.g£ ‘

us
or isothermal gaﬁyg respectively.

As it has been pointed firstly by Cowky [ ] the-
hydrodynamic limit of” phonon Green funotion mass operator
ka.(w) gives-isothermal elastic constants ~S;;}5‘_
and its gollisionless limit gives Sﬁ}fxf' the adiabafic
one. For the'differencc of ‘elastic conéﬁahts macrosoopic

thermodynamics gives [6,7]~

ad) (s ¢ . ]: T T~ ;
S«G,J:ﬁ - {p,o'ﬁ T C, “p ¥y : (1)
( C,  being the heat capacity at constant strain,
q&P tension temsor). It is posaible to

calculate the mass operator of phonon Green function
r]k){w) accounting for all two—phonon prooesses

[4,8,9,10} and relate its ‘hydrodynamic. 1imit tc
isothermal elastic constants derived from pseudohq;monic

free energy [4,8,10].



If we compute the thermodynamio functions appearing on the
right-hand side of Eq.(1) we may prove this relation, as

it was done by Wehner and Klein for haymonlc lattice with .
three~phonon 1nteractions [7] N

In this work we will.derive some quasiparticle parameters
from pseudoharmonic internal energy and some thermodynamic
functions from péeudoharmonio free energy. oonsidering
after Choquard [11] and Klein et al . [ié] . the set
of oorrelation functions of the displacements of atoms
to be intermediate variables describing fluctuational
state of the crgstal. In such a way we are in a position
to relate considered quasiparticle parameters and ,

- thermodynamic functions to quantities describing two-phonon
processes as the phoncnvbubble l:o or four phonon renormalized

vertex,

In section 2 - we give some definitions and notations
and derive the quasipartiole parameters. In Section 3
we oompute some thermodynamic funotions and consider

equation (I),

Seotion 2.

Let us oonsider, for simplicity,a Bravals lattioe and

denote the average of the instanteous position operatoxr of

f-th  atem h’e (£=4,...,N) by -)ze



H
)

g v e
= <R‘~> = Tr Tr exp[—H/'®_]> »

H being the Hamiltonian of the lattice
7

Ny :
2_7_—:4 * U(R")"" R"’) y

. 4 2=1 =
with M the mass of the atoms, Pe -momentum -
operator,; U —pofghtial energy. of the crystal. The
.displa.cement operator {‘,e of £-Hh atom 1s

given as

— — ) —>
D
'UL = I\L - XE

In pseudoharmonic approximation the frequencies “UQ and
-
polarization vectors Q(Q) (we use the abbreviation:
- .
= (CL: d) here.and in the following) are

solutions of an eigenvalue equation

UO;GU< ) = \4i Z Ze(Q 9\ REC PR CY

The vectors of polarization form the complete and orthonornial

';g, is the second order renormalized vertex which

set .
we -obtain by differentiation of the pseudohamonic potential
energy Ut X1)- ' XN ) : . Generally m - TEI'\

order renormalized vertex is defined as



S = VL VY Ul X ), (2)
where

~ - - ®)]

ul.. X ) = expléhzi<u,uz)V;V,_]“L};(“,)(e,,,),

with Uo being the statio poteni\:ial energy of the
orystal. It is easy to compute the free energy and
interml energy in the pseudoharmonic approximation
(see for example [13] )

F=U- f{f_wk(anH% @Z%[Zsh 2%] , .
K K

~ 1 '
E = U+ 22w, (2n+1), | (5)
with 1 the average number of phonons with
-
quasimomentum k and polarization ¢

. ., |
n = (ee[32]- 1) B 7= kT,

9

As we mentioned in the introduotion these expressions
correspond to the assembly of free osoillators, entropy

of which is equal to
S = kZ{(mﬂ)MmM)‘ " e”"k}, (6)
K .

and the difference of E ("-) and F{lf) has to



fulfill the thermodynamic identity

E=F+T5. A W

If we negle ot the polarization mixing in pseudoharmonic
approximation the correlation funotion (u u{/

is given by

ik (X¢-Xer)

<uu> Z 2R (2 ) . @

Let us denote the expression correspbnding to free phonon
=0 .
bubble by | (K1,kz,"~°)

Z(WK + WKL)(nk,an1+'1) i(QK|’wKt)(nK1- nkl)
E ke, Ky, 0) = S PPN CRTCRY RS

¢))

. o
1z fkdo ke | ama w0 for J, jz behaves
singularily as noted by Cowley [5 ’ Gotze [1
1

Gotze and Michel [15] . Let us put k = k+ ’ 1=—
For small —c}_, w we have (K=’ “‘»J))

7.",41-4 d}{i)l ) CI_"’:'
, F( ‘wq, Lw)= s T T Wt @ Y% o
The i:ydrodynamic limit of Fo i’sAdefined ;s

° . : . iis)
Ui { Um Fliog,-kogio)} = - 2 4+2d“Fll<),(11)

1—"0 w0




and collisionless limit

. o die —' . i
(im {&m k«;\ 4% } Rl Zn:;-f = F@)(K). (12)

w0 {20 k

"The pseudoharmonio free energy is statiéne.ry with respeot

to change of the correiat:l.on function

§F

, = Q. (13)
Sy

Let us consider the first derivative of F with respect

to temperature T at cor}stant _u 4p

(b_F) '(’sF) .y _a_F___ <’§<u Ty )

Ol Ol gy " G2y VT
X%

But the first two terms of F depend on T only

. X )
implicitely via <u)l’u u> and due to the stationarity
of F we obtaln

(%#E)u = (@E) =-S5 . , (14)‘

ot Upp, )
Differentiating the identity (7) with respect to T

at constant strain 'Udp and making use of Eq. (14)
we obtain thermodynamic identity
~_(«)_S) BE) o |
QT Up DTy T TV s (14a)



C :I.s the heat capacity at constant strain. This :I.dent:l.ty
will be proved further. ’ :

The first derivative of I with respect to Qtraiﬁ .
parameter Uyp at constant | gives the 'étyzj_éés'

tensor Ga(p » S ,
- | JF ) k ('aF ) + 9F (NU(“U))
\[6'.,([5 = ('b({(" a F T,(ul() x;b(u U'l.’) Bu‘p - ?5

where V is the. voiume of the orystal.

From’ stationarity equation (13) the seoond term disappears

and we obtain - : ‘
P~ | e
\/60(p = X X Pu, (15)

- ; o
where @ 1s first order renormalized vertex,

. In view of ‘rotatiomal invariance of the potential energy
G“P is s%mmetric [16]

6o(|3=6]30<-

Let us oonsider the derivatives- of the‘interna.l energy E e
The first derivative of E with respect to number of
quasipartioles N (K) gives the first quasiparticle
parameter-energy of quasipa.rticles U(K)

RE) - (_LE Q€ ('Mulul, ) |
(%"")u.,p an,()udp’(w*}: Au Ll,) g 7/,

' u
7 .

10



With the help of Eq. (5 using the definition cf second
order vertex (2) and frequencies wa (1) we obtain

[1 3,4]

(gi) o w(k).

(16)
Next we are going to perform thé caloulation of the
second derivative of the internal energy with respect
to Np  defining the quasiparticle interaction f(re)

g 2
)2 (RE) < £ [2)
-F(P,P) = 3"P3”B/ W = ZwP anf; Qa7n
Using the definition of W, (1) and the second order
vertex (2) we put ﬁq. (1.7) in the form
- = . !
L‘F(XL-&,)~xx’yy' (a(uftﬂ') > ‘
fer)= ZZ QMng Peere T ony dp - (1e)
errw ‘
For the derivative of oorrelation funotion with
respect to Mps  following Choquard [11] and
Klein et al [12] we obtain an -:Lntegral\equatio!i

' | . ! e B
'3<u9rusu,"> e_g: egr C‘I;’(Xr 'xl’) l(jd)ﬂ/:b' (%;w’}‘f" <Um U. (w)
2 = MNw e + Crreon’ T on'mm?
u, \ o

n
I yv! t . u
£ p , ani }r;);’ «f

U_(P ¢




whe re

(a3) o' b0 5 &8 ®)89) 6, (@) gl iglot) )

= e L £ 2

reenn’

Q

Putting the solution of the integral equation (19) into
expression. (18) we get

. - \ 9,7 -~ e , , _”'l

P L TLIGE T L ) PR

F(P/E - (ZMN)"—w,wE, pe-ans LM o're!
 BLiad t (1)
Plorr’ Nn’ .

where

vul,p?' _ (aa) UV'R}J' ~ rr, ff"

[E k“d\]

= v 4 q) ’ 4
o er nn'mm mm’ere .

mm’

Following [10] we put (21) in the form in which only
. =aa -{

phonon quantities appear. Expanding (’1- C )

into a series and using the definition of the phonon

vertices

n s 9
( _'1__ )z T eJ' (K,) ex,\ (kh) ] ;I:,Xg' ,",,,H’:.,Xc,' ~ Ko oy
vn Kh"-lK") = mnd L (W',('.A.- Wy, ),,L

dl) ,%n
€iista

e 2y

we obtaln

12



T

‘ ~ A » (ad), -4 .
fLP’fl) = ’Z\/(E,’f, K;'K)[(/I-C ) Jk_k.p _Pi . (23)
y ,

ad)

¢ 1s the collisionless limit of the irregular part

of [C( J]KMK [9,10]

[((w)]l(,l(l;K{kl’ = %F(Kiki)w) \/1‘(7,(1)"(2,‘ K;)KZ/) ) (24)

[C(Qd)]k)-k',ﬂ,, - {g‘m iF (k,q ,L,J)u,)\/ (- qu,l; [;:*’;d“'rfd )}

w0 y=0

It is possible to give Eq.(23) a diagramatic representation

G=(g)), Qu=(3,))

PQ

where the effective two-phonon interaction vertex is a

solution of equation

. ' . ’, : C-I‘
(v (r,ﬂm.
i

(P ‘”) (kJ ) ((jq)



‘The result (_23) differs from that obtained by thze and
Micﬁel ’ ,_3,4] by regular part of F° which we
drop as we have neglected the polarizaticn mixing. The
regular part of F°<Kf,kz:w) (Jq# J;.) 1s-practicé.11y
independent of ?{ ‘and W [7] + The generalization '
" of the Eq.(23) was reoently given by Werthamer [17]

Now we consider the Griineisen constant X o (K)
which defines:a change of energy of the quasipartiole

with deformation ',U‘,(F at ‘constant temperature
PR - &
ap oWy au«(, T

We are concerned with

1 3w, dwy | Weslly k(X%
ACAREICREIE U

a”xp T QUag It 2AMN
o ,
~ ' ' ~%Y
x{(hptf’> + Z ‘aq’ELKL’ (3(“3’“::} > }
vk ’oudF 1’;4uu) 55 "a<ugU.$c> \ au'(p T .,

rre
Instead of deriving the integral equation for derivative

of the oorrelation function with respect to uaq% at -~

constant | we use Eq.(8) . In such a way we obtain an

DWe
integral equation for ( a“«p

)_,_ « The solution of this
equatlion is equal to '

2 het (P) ( -?) ~ Y
( ""k) = Z[@ Cus) ]x xrpZ %) . )(F u'lt' "(26)

l»’f

"



L (is) = , o
where [C KoK:p , is the hydrodynamic limit of
Palal A o o ‘

[CW]K;K;P_ ror = Lim- {Zm LFU"QJ)"‘J;‘O)V("‘QJ "J P iJ— Pd/)}

90 w30

Making use of Eq. (26) finally we o‘btaiﬁ the Grtineisen

constant in the form

A- C(nr) e! (B)el (£) ‘P(x‘ XL)XF (p"“' (27)

Yolk)= ‘Z ( 2MNw © vt

P K, K38 ke E

The coordinate representation of this eq_uation was obtalned

by Klein et al 18J (see also Chogquard [11] ’ Horner
[19] , Gcotse ana Macher  [3,4 ). “

Let us consider a obange of the phonon energy under externé.l

influence leading to the deformation Yo
Sw(k): - dZPKD(F(K)u,(F v - (28)

But from the method of long waves U*P is equal to
( see for example [20])

. «
U = u
*f HIP o (29)
where ‘“ ex(‘l"l)
Un = M

M= 1,2,3 is polarization index of the aoooustio mode



Substituting (27) and (29) into Eq. (28) we get (Q’@:.")))

&m{&m T [t-cie)] Qﬁ"*——v (c,B,- Q)} (30)

l{-’U SRS AA K,—qu;l',, P, Wy

1t means that a change of the phonon energy  “k
can be represented by the followlng dlagrams ‘

, K K
< T
Q k-Q Q k-& *

where the renormalized phonon vertex is equal to
. k-G

The equation (Jo) is similar to that obtained by Wehner

K-Q

anmd Klein [7] who -consider the harmonic approximation

and three-phonon interactions only.

Scction 3

In this section we consider the elastic constants and
all thermodinamic quantities needed to obtain the correct
thermodynamical result for the difference of adiabatic

d L
§* -3

and isothermal elastic constants

Let us begin with deriving the keat capacity at constant
strain W 4p «From definition



o [es
T,

Differentiéting the entropy S (6) with respeot to

temperatura ' T we obtain

Y5
E-)-S) _ s dn -"(‘“") I é@u‘*v)) 31)
Tl L~ T - e Tl

‘o

For the derivative of the ocorrelation function with respect

—

to | we obtain an integral equation, solution of

which 18 equal to

¥ ¥ - e .
a_____<u Uy (ns) YoHE e, (e -(E) LP(xn-'xm’)d
( '?;Tl ) 2"[(4 y Jff’mm'—%iN_«i_' ¢ ﬁnr,(za)
u
mm'

’ ~lis) 8PP ( C(aa) )xr "t
where {C )E(’mm' can be obtalned from U©Umme

changing in LM) (20) F(ad) t F e (11).

Similarly as in the derivation of the'formula. (23) for
-F(_.E,E’) ) we expand (1- Tt -~ in the

seri‘eé and use the definition of phonon vertioes (22).

In suoh a way we get

By ey (R)ey'(®) PEXDE, o dng
(a——l —| = Z e e [(4—C""’)"] -
IS , Mhwp p.p,pnp AT

- ﬁ(F -E'E ’ .

Inserting this into Eq.(Bl) wé have

dnk dn" K » 4 C{H) _Cmg' (33)
C Z K _-II-QL:_E’dr 4 K E [( )Jp_p;p';p’ dar .



- g operatorsv ué " in plane waves
The heat capacity in this form was firstly obtained by : B '

- . : 1 M
Werthamer [2] . It may be proved that the derivative ut = LE‘(_QS___T SR A

: t (IMn W, ) a *
of the internal energy with respect to temperature gives Q :

the same result conforming (14a) . ) . , ‘ _, .
Aa= Aa , -Q=(94) .

Another interesting quantity is the tension tensor 'T,(P

[ (w) 7 []
- (35“) o E _ (as) The mass operator Q is equal to 9
«p T T \T v du T Vieu r . | '
‘ —I Ld V G K1,kz) (4 C(w)) J " ’ /F (K." ‘u)\l (Q K“ Kz) L
, 2 Kk Kiky
Using the definition of the entropy we obtain : :"',i'l .
/ Using the method of long waves [20] we find from
T "1~ dﬁk‘ i(a—u’ﬁ') = ‘—Z dnkb/ (k) 1 lisi d hydrod ic 1limit the adiabati
VY Wy i w, aquT. B, - K «f : collisionless and hydrodynamic e adiabatic
K . and isothermal elastic constants [lo]
The term in the brackets is the familiar Gruneisen
constant Xn«p (K) . Using the representation for Xxﬂ(k) ( d
v L - 3 a . o
which corresponds to Eq. (27), Wwe obtain the following 5 ® = "'a(b, (is‘).q) Xc .
oL b’S - 2_ X M Lavr o, - (35)
alternative form 4 0 :
where
'1_ n l1 C\'S) J ZQ (E)e'(t\ "P(X x ) S .
T = .= —_— ad ] . .
"P VKL dr KKy B0 IMNw, X q)‘r“(34) M(is) “ (‘1 )22_ e’ eyt @, (K) @y (k) 8 (K')eu (k) .
; u’v : W 2MN S TPTTIE SR w,‘w,(;
i nn’ mm’ ' ‘
This result can be obtained from differentiation of ; ; ‘ (‘"‘
. _— i - - 2= d s (k‘)
6&{1 with respect to | . The elastic constants ‘ ok (Xp=¥o )+ 1k (Ym'xnn')[~ ((.'s )-4'1 - (36)
can be obtained from the mass operator le; (“3) ‘ : X e K, KKy =K Z o
+
of the phonon Green function <<Aa, AQ»w where operators
AQ are obtained from expansion of the displacement
19




Now we are in position ® caloulate the difference of the ‘

elastic constants

o ) @d),, “‘L 5
S(d) _3 - 4ZX ( )x u;)xu ) 37

5 £
J‘P)X D‘P:6 L )
As we mentioned in the Introduction from purely themody.namic
argument s [6,7} it follows that the difference of

g

elastic constants is equal to

(ady Gs) T .
Saps ™ s T G e HS <

But from Eqs.(36), (37) and (33), (34) it follows that (37)
will be approximateﬁg equal to right-hand side of Eq. (I)
only if we discard CM) and C(w in all guantities
appearing in Eq.@. This approximation correspodds to the
‘cese of bare phonon bubble considering by Wehner and Klein

[7] .
(ad)

We shall show that Sufl,Js (36) can be obtained
from internal energy by differentiatlion with respect to
strain 'U,(P at constant numbers of oooupation n(K).

It i1s easy to show that

(’bup({; TV (audF n,4uuy 6"’([‘

Using this equation we obtain the second order derivative
of internal energy.

¥E ) ( av] ) R { u:) (d(u ) |
. N =z | + § : £38)
(E’“apa‘*ﬁ ) a Ju nluu) '2X3”?€' a“‘(ﬁ luu) ()uJ\_

Similarly as in ,[16,12] the derivative of the
correlation function is eonnected with the derivative

of the second order vertex

Ju¥ @dyyyrpps 03;‘?) '
(b ' >) Z l— anvre T o A o (39)
n : . ’

o ™ Vol

‘This derivative is the solution of an’ini:egra._l equation

AN psiwe [3F i
7] rs d / .
Y u ) Z [(4 e ,) ]rr'mm' u S

du, e ; .J
L SOLI |

(40)

n, <gu> o
Inserting (39), (40) into Eq. (38), expanding ’__(1 C(G‘”> J
into a series we recover the adiabatic elastic constants

(36)

(6d) L(BIE 5 k- - i ,./
Sdmg =V Guguy In G (41)

The ccnstancy of numbers of occupation 1s equivalent to

constancy of entropy S_

: ”



But the entropy will not changé eveh i1f the numbers of
occupation varies,Bquation (41) means that in obtaiﬁing
the collisionless limit of mass operator My

we completly miésed all dissipativevprocesses connected
with chaﬁges of ‘nk'd . These processes are contained
in’cﬁliision integral of Bolizmann eqqation (see for

exampie []} and references given therein).

4,-Conclusions.

In our work we show that approximated mass operator
ﬂc(w) with all two~phonon processes~accoﬁnted 1s not
sufficient to reproduce the correct thermodynamic result
for the difference of elastic cpnstants. This approximation
glves énly non~dissipative terms connected with the
" interactions of the phonons, As it was shown by Wehner and

‘ ’Klein t7] it is necessarydto consider dissipative terms
" to obtain the difference é;ga‘ f;s in agreement with
classical thermodynamics, The dissipative terms are
ébnnected with three-—phonon processes and have form of a
collision integral in Boltzmann-like equation for
threé-phonon vertex [7] + Thus although four-
phdnon processes are important in obtaining correct
numerical results for elastic constants LIZ} s they

are 1nsufficignt to describe the transport processes

- 1n crystals ( see also [8] ) .

The author thanks Dr.N.M. Plakida for usefull discussions,.
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