$\frac{c 326}{p-31}$
Соовщения ОБЪЕДИНЕННОГО института ЯДерных ИССЛЕДОвАНИЙ
дубна
$2991 / 2-72$
T.Paszkiewicz

AАБОРАТОРНЯ ТЕОРЕТИИЕLКОЙ ФИЗИКИ
THERMODYNAMICS OF THE CRYSTAL IN PSEUDOHARMONIC APPROXIMATION

1972

E4 - 6453

T.Paszkiewicz*

THERMODYNAMICS OF THE CRYSTAL IN PSEUDOHARMONIC APPROXIMATION

 ตпy GHEDHUTEHA

- On leave from the Institute of Theoretical Physics University of Wrocław, Wrocław, Poland.

Recently Götze and Michel proposed a phenomenological quasiparticle picture of the crystal $[1]$. Generalizing a concept used by Landau in the theory of Fermi liquids the internal energy of the crystal is assumed to be given as a functional of deformation parameters $u_{\alpha \beta}$ and number of excitations $n(\vec{p} j)$ with quasimomentum \vec{p} and polarization branch j. The dependence on $u_{\alpha \beta}$ refleots the static energy of the crystal - the "background" state. At the temperature $T \neq 0$ quasiparticles are excited above this "background".

Usually only small perturbations of the equilibrium state are studied. Therefore we do not need complete knowledge of the functional

$$
E=E\left\{u_{\alpha \beta,}, n(\vec{p}, j)\right\}
$$

Only first and second derivatives of E are quantities of interest. All the important parameters of the phonon gas and some thermodynamic functions describing the state of the "background" are to be defined in terms of the first and. second derivatives of E.

Usually it is a formidable task to compute these derivatives microscopically, without using the methods of thermodynamics, and simple models are invited. For these reasons anharmonic crystal in pseudoharmonic approximation
is frequently used. The crystal in this approximation
is equivalent to a gas of noninteracting harmonic oscillators with temperature dependent frequencies (see for example Werthamer

Some of a quasiparticle parameters in pseudoharmonic approximation were considered by Gotze and dichel $[3,4]$ and some of a thermodynamic quantities by Werthamer [2]. The second order derivatives of the internal energy E or free energy F with respect to strain u give the second order elastic constants, adiabatic $S_{\alpha \beta, \gamma \in}^{~_{c} /, \alpha \beta}$ or Isothermal $S_{a \beta, y \delta}^{\text {(isi }}$ respectively.

As it has been pointed firstly by Cowles [5] the hydrodynamic limit of phonon Green funotion mass operator $\Pi_{k j}(\omega)$ gives-isothermal elastic constants $S_{\alpha \beta, \gamma \delta}^{(i s)}$ and its collisionless limit gives $S_{\alpha \beta, \gamma^{s}}^{(a d)}$ the adiabatic one. For the difference of elastic constants macrosoopic thermodynamics gives $[6,7]$

$$
\begin{equation*}
S_{\alpha \beta, \gamma \delta}^{(\alpha d)}-S_{\alpha \beta, \gamma \delta}^{(i s)}=\frac{T}{C_{V}} \tau_{\alpha \beta} \tau_{\gamma \delta}, \tag{I}
\end{equation*}
$$

(C_{v} being the heat capacity at constant strain,

$$
\tau_{\alpha \beta} \quad \text { tension tensor). It is possible to }
$$

calculate the mass operator of phonon Green function $\left\lceil\prod_{k j}(\omega)\right.$ accounting for all two-phonon prooesses $[4,8,9,10]$ and relate its hydrodynamic limit to isothermal elastic constants derived from pseudoharmonic free energy $[4,8,10]$.

If we compute the thermodynamic functions appearing on the right-hand side of Eq.(1) we may prove this relation, as it was done by Wehner and Klein for harmonic lattice with three-phonon interactions $[7]$ 。

In this work we will derive some quasi particle parameters from pseudoharmonic internal energy and some thermodynamic functions from pseudoharmonio free energy oonsidering after Choquard $[11]$ and Klein et al. [12] , the set of correlation functions of the displacements of atoms to be intermediate variables describing fluctuational state of the crystal. In such a way we are in a position to relate considered quasiparticle parameters and thermodynamic functions to quantities describing two-phonon processes as the phonon bubble F^{0} or four phonon renormalized vertex.

In section 2 , we give some definitions and notations and derive the quasipartiole parameters. In Section 3 we compute same thermodynamic functions and consider equation (I),

Section 2.

Let us consider, for simplicity, a Bravais lattioe and denote the average of the instanteous position operator of $\ell-$ th atom $\vec{R}_{\ell} \quad(\ell=1, \ldots, N)$ by \vec{X}_{ℓ}

$$
x_{l} \equiv\left\langle R_{l}\right\rangle=\operatorname{Tr}\left(R_{L} \frac{e^{-\frac{H}{\theta}}}{\operatorname{Tr} \exp [-H / \omega]}\right)
$$

H being the Hamiltonian of the lattice

$$
\begin{aligned}
H= & \sum_{\ell=1}^{N} \frac{P_{L}^{2}}{2 M}+U\left(R_{1}, \ldots, R_{N}\right), \\
& \text { the mass of the atoms, } \quad \vec{P}_{\ell} \text {-momentum }
\end{aligned}
$$ operator, U-potential energy of the crystal. The displacement operator $\vec{u}_{\mathcal{l}}$ of ℓ-th atom is given as

$$
\vec{u}_{i}=\vec{R}_{l}-\vec{X}_{l} \ldots
$$

In pseudoharmonic approximation the frequencies ω_{Q} and polarization vectors $\vec{e}(Q)$ (we use the abbreviation

$$
Q=(\vec{q}, j) \quad \text { here and in the following) are }
$$

solutions of an eigenvalue equation

$$
\omega_{Q}^{2} e_{\alpha}(Q)=\frac{1}{M N} \sum_{l, \ell^{\prime} \beta} \sum_{\beta}(Q) e^{-\vec{i}\left(\vec{x}_{2}-\vec{x}_{\ell}\right)_{\nu^{\prime} \alpha \beta}} \widetilde{\phi}_{p^{\prime}} \cdot(1)
$$

The vectors of polarization form the complete and orthonormal set. $\oint_{\chi}^{\alpha \beta} \dot{\theta}^{\prime}$ is the second order renormalized vertex which we obtain by differentiation of the pseudoharmonic potential energy $\widetilde{U}\left(X_{1}, X_{N}\right)$. Generally $n-t h$ order renormalized vertex is defined as

$$
\begin{equation*}
\widetilde{\phi}_{e_{1} \ldots e_{n}}^{\alpha_{1} \ldots \alpha_{n}}=\nabla_{e_{1} \ldots \nabla_{e_{n}}^{\alpha_{1}}}^{\alpha_{n}} \widetilde{U}\left(\ldots \vec{X}_{e} \ldots\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{U}\left(\ldots \vec{x}_{l} \ldots\right)=\exp \left[\frac{1}{2} \sum_{1,2}\left\langle u_{1} u_{2}\right\rangle \nabla_{1} \nabla_{2}\right] U_{0}\left(\ldots \vec{x}_{l} \ldots\right) \tag{3}
\end{equation*}
$$

with U_{0} being the statio potential energy of the orystal. It is easy to compute the free energy and internal energy in the pseudoharmonic approximation (see for example $[13]$)

$$
\begin{align*}
& F=\tilde{U}-\frac{1}{4} \sum_{k} \omega_{k}\left(2 n_{k}+1\right)+\left(n \sum_{k} \ln \left[2 \operatorname{sh} \frac{\omega_{k}}{2 \theta}\right]\right. \tag{4}\\
& E=\widetilde{U}+\frac{1}{4} \sum \omega_{k}\left(2 n_{k}+1\right) \tag{5}
\end{align*}
$$

with $\quad \eta_{k} \quad$ the average number of phonon with quasimomentum \vec{k} and polarization j

$$
n_{k}=\left(\exp \left[\frac{\omega_{k}}{2 \theta}\right]-1\right)^{-1}, \quad \omega=\frac{1}{\beta}=k T
$$

As we mentioned in the introduction these expressions correspond to the assembly of free osolllators, entropy of which is equal to

$$
\begin{equation*}
S=k \sum_{k}\left\{\left(n_{k}+1\right) \ln \left(n_{k}+1\right)-n_{k} \ln n_{k}\right\} \tag{6}
\end{equation*}
$$

and the difference of $E(5)$ and $F(4)$ has to
fulfill the thermodynamic identity

$$
\begin{equation*}
E=F+T S \tag{7}
\end{equation*}
$$

If we negle ot the polarization mixing in pseudoharmonic approximation the correlation function $\left\langle u_{L}^{\gamma} u_{L^{\prime}}^{\gamma^{\prime}}\right\rangle$ is given by

$$
\begin{equation*}
\left\langle u_{l}^{\gamma} u_{l^{\prime}}^{\gamma^{\prime}}\right\rangle=\sum_{k} \frac{e_{\gamma}(k) e_{\gamma^{\prime}}(k)}{2 M N \omega_{k}}\left(2 n_{k}+1\right) e^{i k\left(x_{e}-x_{e^{\prime}}\right)} \tag{8}
\end{equation*}
$$

Let us denote the expression corresponding to free phonon bubble by $F^{0}\left(K_{1}, K_{2} ; \omega\right)$

$$
\begin{equation*}
F^{0}\left(k_{1}, k_{2}, \omega\right)=\frac{2\left(\omega_{k_{1}}+\omega_{k_{1}}\right)\left(n_{k_{1}}+n_{k_{2}}+1\right)}{\omega^{2}-\left(\omega_{k_{1}}+\omega_{k_{2}}\right)^{2}}-\frac{2\left(\omega_{k_{1}}-\omega_{k_{2}}\right)\left(n_{k_{1}}-n_{k_{2}}\right)}{\omega^{2}-\left(\omega_{k_{1}}-\omega_{k_{2}}\right)^{2}} \tag{9}
\end{equation*}
$$

If $\left|\vec{k}_{1}\right| \rightarrow\left|\vec{k}_{2}\right|$ and $\omega \rightarrow 0$ for $j_{1}=j_{2} F^{0}$ behaves singularily as noted by Cowley $\left.[5],{ }_{\rightarrow}^{\text {Gotze }}, \overrightarrow{d 4}\right] \underset{\rightarrow}{\text { and }}$
 For small $\vec{q}, \omega \quad$ we have $(k=(\vec{k}, j))$

$$
\begin{equation*}
F^{0}\left(\vec{k}+q_{q},-\vec{k}, j, \omega\right)=-\frac{2 n_{k}+1}{\omega_{k}}-2 \frac{(\vec{v} \vec{q})^{2}}{\omega^{2}-(\vec{v} \vec{q})^{2}} \frac{d n_{k}}{d \omega_{k}} . \tag{10}
\end{equation*}
$$

The hydrodynamic limit of F^{0} is defined as

$$
\lim _{q \rightarrow 0}\left\{\lim _{\omega \rightarrow 0} F^{0}(k+q,-k, j ; \omega)\right\}=-\frac{2 n_{k}+1}{\omega_{k}}+2 \frac{d n_{k}}{d \omega_{k}}=F_{(k)}^{(i)}(11)
$$

and collisionless limit

$$
\begin{equation*}
\lim _{w \rightarrow 0}\left\{\lim _{q \rightarrow 0} F^{0}(\vec{k}+\underline{q},-\vec{k}, j ; \omega)\right\}=-\frac{2 n_{k}+1}{w_{k}} \equiv F^{(a \dot{d})}(k) \tag{12}
\end{equation*}
$$

The pseudoharmonio free energy is stationary with respect to change of the correlation function

$$
\begin{equation*}
\frac{\delta F}{\delta\left\langle u_{\imath}^{\gamma} u_{\ell^{\prime}}^{\gamma^{\prime}}\right\rangle}=0 \tag{13}
\end{equation*}
$$

Let us consider the first derivative of F with respect to temperature T at constant $U_{\alpha \beta}$

$$
\left(\frac{\partial F}{\partial T}\right)_{u_{\alpha \beta}}=\left(\frac{\partial F}{\partial T}\right)_{u_{\phi p},\langle u u\rangle}+\sum_{\substack{\gamma \gamma^{\prime} \nu^{\prime}}} \frac{\partial F}{\partial\left\langle u_{1}^{\gamma} u_{i^{\prime}}^{\prime}\right\rangle}\left(\frac{\partial\left\langle u_{1}^{\gamma} u_{\gamma^{\prime}}^{\gamma}\right\rangle}{\partial T}\right)_{u_{u p}}
$$

But the first two terms of F depend on T only implicitely via $\left\langle u_{l}^{Y_{l}^{\prime}}{ }_{l}^{\prime}\right\rangle$ and due to the stationarity of F we obtain

$$
\begin{equation*}
\left(\frac{\partial F}{\partial T}\right)_{u_{\alpha \beta}}=\left(\frac{\partial F}{\partial T}\right)_{u_{\alpha \beta .}\langle u u\rangle}=-S \tag{14}
\end{equation*}
$$

Differentiating the identity (7) with respect to at constant strain $u_{\alpha \beta}$ and making use of Eq. (14) we obtain the rmodynamic identity

$$
\begin{equation*}
\Gamma\left(\frac{\partial S}{\partial T}\right)_{u_{\alpha \beta}}=\left(\frac{\partial E}{\partial T}\right)_{u_{\alpha \beta}}=C_{V} \tag{14a}
\end{equation*}
$$

C_{V} is the heat capacity at constant strain. This identity Fill be proved further.
The first derivative of F with respect to strain parameter $u_{\alpha \beta}$ at constant T gives the stress tensor $\quad \sigma_{\alpha \beta}$

$$
V_{\sigma_{\alpha \beta}}=\left(\frac{\partial F}{\partial u_{\alpha \beta}}\right)_{T}=\left(\frac{\partial F}{\partial u_{\alpha \beta}}\right)_{T_{1}\langle u u\rangle}+\sum_{\gamma \gamma_{i \gamma^{\prime}}^{\prime}} \frac{\partial F}{\partial\left\langle u_{i}^{\gamma} u_{i^{\prime}}^{\gamma \prime}\right.}\left(\frac{\partial\left\langle u_{i}^{\gamma} u_{u^{\prime}}^{\prime}\right\rangle}{\partial u_{\alpha \beta}}\right)_{T},
$$

where V is the volume of the orystal.
From stationarity equation (13) the second term disappears and we obtain

$$
\begin{equation*}
V_{\sigma_{\alpha \beta}}=\sum_{u} X_{u}^{\beta} \tilde{\varphi}_{u}^{\alpha}, \tag{15}
\end{equation*}
$$

where $\bar{\phi}_{u}^{\alpha}$ is first order renormalized vertex.
In view of rotational invariance of the potential energy

$$
\sigma_{\alpha \beta} \quad \text { is symmetric } \quad[16]
$$

$$
\sigma_{\alpha \beta}=\sigma_{\beta \alpha}
$$

Let us consider the derivatives of the internal energy The first derivative of E with respect to number of quasipartioles $n(K)$ gives the first quasiparticle parameter-energy of quasiparticles $\omega(K)$

$$
\left.\left(\frac{\partial E}{\partial n_{k}}\right)_{u_{\alpha \beta}}=\left(\frac{\partial E}{\partial n_{k}}\right)_{u_{\alpha \beta},}, u u\right\rangle \sum_{\substack{\gamma \gamma^{\prime}}} \frac{\partial E}{\partial\left\langle u_{l}^{\gamma} u_{l^{\prime}}^{\gamma^{\prime}}\right\rangle}\left(\frac{\partial\left\langle u_{l}^{\gamma} u_{l^{\prime}}^{\gamma^{\prime}}\right\rangle}{\partial n_{k}}\right)_{u_{\alpha \beta}}
$$

With the help of Eq. (5) using the definition of second order vertex (2) and frequencies ω_{Q} (1) we obtain. $x[1,3,4]$

$$
\begin{equation*}
\left(\frac{\partial E}{\partial n_{k}}\right)_{u_{\alpha \beta}}=\omega(k) \tag{16}
\end{equation*}
$$

Next we are going to perform the calculation of the second derivative of the internal energy with respect to n_{p} defining the quasiparticle interaction $f\left(P, P^{\prime}\right)$

$$
\begin{equation*}
f\left(P, P^{\prime}\right) \equiv\left(\frac{\partial^{2} E}{\partial n_{p} \partial n_{p}}\right)_{u_{\alpha \beta}}=\frac{1}{2 \omega_{p}}\left(\frac{\partial \omega_{p}^{2}}{\partial n_{p^{\prime}}}\right)_{u_{\alpha \beta}} \tag{17}
\end{equation*}
$$

Using the definition of $\omega_{Q}(1)$ and the second order vertex (2) we put Eq. (1.7) in the form

$$
\begin{equation*}
f\left(\rho, \rho^{\prime}\right)=\frac{1}{2} \sum_{\substack{\gamma \gamma^{\prime} \rho^{\prime} \rho^{\prime} \\ l l^{\prime} r r^{\prime}}} \frac{e_{p}^{\gamma} e_{p}^{\gamma^{\prime}}}{2 M N \omega_{p}} e^{\left.\overrightarrow{i p\left(\vec{x}_{i}\right.} \vec{x}_{q}\right)} \tilde{\varphi}_{\ell l^{\prime} r \gamma^{\prime} \rho \rho^{\prime}}^{\gamma}\left(\frac{\partial\left\langle u_{r}^{\rho} u \rho_{p^{\prime}}^{\prime}\right\rangle}{\partial n_{p^{\prime}}^{\prime}}\right)_{u_{\alpha \beta}^{\prime}} \tag{18}
\end{equation*}
$$

For the derivative of correlation function with respect to $n_{P^{\prime}}$ following Choquard [II] and Klein et al [[12] We obtain an integral equation
where

Putting the solution of the integral equation (19) into expression (18) we get
where

$$
[\widetilde{C}(a d)]_{n n^{\prime} r r^{\prime}}^{\nu \nu^{\prime} \rho \rho^{\prime}} \equiv \sum_{\substack{\mu \mu^{\prime} \\ m m^{\prime}}} \mathbb{L}^{(a a)^{\nu} \nu^{\prime} \mu \mu^{\prime}} \underset{m m^{\prime}}{ } \underset{\phi}{\mu \mu^{\prime} \rho f^{\prime}} \underset{m m^{\prime} \rho r^{\prime}}{\sim}
$$

Following $[10]$ we put (21) in the form in which only phonon quantities appear. Expanding $\left(1-\overline{\mathrm{C}}^{\text {add }}\right)^{-1}$ into a series and using the definition of the phonon vertices

$$
V_{n}\left(k_{1}, \ldots k_{n}\right)=\left(\frac{1}{2 M N}\right)^{\frac{n}{2}} \sum_{\alpha_{1},, \alpha_{n}} \frac{e_{x_{1}}\left(k_{1}\right) \ldots e_{x_{n}}\left(k_{n}\right)}{\left(w_{k_{n}}\right)^{1 / 2}} e^{\overrightarrow{k_{1} \vec{x}_{p_{1}}+\ldots}+\overrightarrow{i k}_{n} \vec{x}_{t_{n}}} \tilde{\alpha}_{1}, \ldots \alpha_{n}
$$

we obtain

$$
\begin{equation*}
f\left(P_{1} P_{i}\right)=\sum_{K} \widetilde{V}(P,-P ; K,-K)\left[\left(1-C^{(a d)}\right)^{-1}\right]_{K,-K_{j} p_{1},-P_{1}} \tag{23}
\end{equation*}
$$

$c^{(a d)}$
is the collisionless limit of the irregular part of $[C(\omega)]_{k_{1} k_{i} ; r_{i}^{\prime} k_{i}^{\prime}}[9,10]$

$$
\begin{align*}
& {\left[((\omega)]_{K_{1} K_{2} ; K_{1}^{\prime} k_{2}^{\prime}}=\frac{1}{2} F^{\circ}\left(K_{1} K_{2} ; \omega\right) \widetilde{V}_{4}\left(-K_{1},-k_{2} ; K_{1}^{\prime}, K_{2}^{\prime}\right),\right.} \tag{24}\\
& {\left[C^{(a \dot{a})}\right]_{k,-k ; P_{t},-p_{1}}=\lim _{\omega \rightarrow 0}\left\{\lim _{y \rightarrow 0} \frac{1}{2} F^{0}\left(\vec{k}+q_{,}, \overrightarrow{k_{1}}, \omega\right) \widetilde{V}_{4}\left(-\vec{k} \cdot \vec{q}, j, \vec{k}_{j ;} ; p_{1}+\vec{q}_{j_{1}},-p_{1}, j_{1}\right)\right\} .}
\end{align*}
$$

It is possible to give Eq. (23) a diagramatic representation

$$
, \quad Q=\left(\vec{q}_{1}, j\right), Q_{1}=\left(\vec{q}, j j_{1}\right)
$$

where the effective two-phonon interaction vertex is a solution of equation

The result (23) differs from that obtained by Götze and Michel $[3,4]$ by regular part of F^{0} which we drop as we have neglected the polarization mixing. The regular part of $F^{0}\left(K_{1}, K_{2} ; \omega\right) \quad\left(j_{1} \neq j_{2}\right)$ is practically Ind ependent of \vec{q} and $\omega \quad[7]$ - The generalization of the Eq. (23) was recently given by Werthamer $[17]$.

Now we consider the Gruneisen constant $\gamma_{\alpha \beta}(K)$ which defines a change of energy of the quasipartiole With deformation $u_{\alpha \beta}$ at constant temperature

$$
\begin{equation*}
\gamma_{\alpha \beta}(K)=-\frac{1}{\omega_{k}}\left(\frac{\partial \omega_{k}}{\partial u_{\alpha \beta}}\right)_{T} \tag{25}
\end{equation*}
$$

We are concerned with

$$
\begin{aligned}
& \frac{1}{\omega_{k}}\left(\frac{\partial \omega_{k}}{\partial u_{\alpha \beta}}\right)_{T}=\frac{1}{2}\left(\frac{\partial \omega_{k}^{2}}{\partial u_{\alpha \beta}}\right)_{T}=\sum_{\gamma \gamma^{\prime}} \frac{e_{\gamma}(k) e_{\gamma^{\prime}}(k)}{2 M N} e^{i k\left(x_{p}-x_{L^{\prime}}\right)} x \\
& \times\left\{\left(\frac{\partial \tilde{\phi}_{L L^{\prime}}^{\gamma \gamma^{\prime}}}{\partial u_{\alpha \beta}}\right)_{T_{1}\langle u u\rangle}+\sum_{\rho \rho^{\prime}} \frac{\partial \tilde{\phi}^{\gamma \gamma^{\prime}}}{\partial\left\langle u_{r}^{\prime}\right.} u_{r^{\prime}}^{\prime} u_{r^{\prime}}^{\left.\rho^{\prime}\right\rangle}\left(\frac{\partial\left\langle u_{r}^{\rho} u_{r^{\prime}}^{\rho^{\prime}}\right\rangle}{\partial u_{\alpha \beta}}\right)_{T}\right\}
\end{aligned}
$$

Instead of deriving the integral equation for derivative of the correlation function with respect to $u_{\alpha \beta}$ at constant T we use Eq. (8) . In such a way we obtain an integral equation for $\left(\frac{\partial w_{k}}{\partial u_{\alpha \beta}}\right)_{T}$. The solution of this equation is equal to

$$
\left(\frac{\partial \omega_{k}}{\partial u_{\alpha \beta}}\right)_{T}=\sum_{p}\left[\left(1-C^{i s 1}\right)^{-1}\right]_{K-K, p-p} \sum_{\gamma Y^{\prime}} \frac{e_{\gamma}(p) e_{\gamma}(p)}{2 M N \omega_{p}} e^{\overrightarrow{i p}\left(\vec{x}_{L}-\vec{X}_{l}\right)} X_{v}^{\beta} \tilde{\phi}_{v \ell \ell^{\prime}} \quad{ }^{\prime}(26)
$$

where $\left[C^{(i s)}\right]_{K,-K ; P,-P}$ is the hydrodynamic limit of

$$
\left[C^{(i s)}\right]_{k,-k ; p^{\prime}-p^{\prime}}=\lim _{q \rightarrow 0}\left\{\lim _{u \rightarrow 0} \frac{1}{2} F^{0}\left(\vec{k}^{2}+\overrightarrow{q j}_{j}, \vec{k}_{j} ; w\right) \widetilde{V}_{4}\left(-\vec{k}-\overrightarrow{q j}_{j} \vec{k}_{j ;} ; \vec{p}^{\prime}+\vec{q} \dot{j}^{\prime},-\vec{p}^{\prime} j^{\prime}\right)\right\} .
$$

Making use of Eq. (26) finally we obtain the Grüneisen constant in the form

The coordinate representation of this equation was obtained by Klein et al [18] (see also choquard $[11]$, Horner $[19]$, Gótze and Michel $[3,4])$.
Let us consider a change of the phonon energy under external influence leading to the deformation $u_{\alpha \beta}$

$$
\begin{equation*}
\delta \omega(k)=-\sum_{\alpha \beta} \gamma_{\alpha \beta}(k) u_{\alpha \beta} \tag{28}
\end{equation*}
$$

But from the method of long waves $u_{\alpha \beta}$ is equal to (see for example [20])

$$
\begin{equation*}
u_{\alpha \beta}=i q_{\beta} u_{\eta}^{\alpha}, \tag{29}
\end{equation*}
$$

where

$$
u_{\eta}^{\alpha}=\frac{e_{\alpha}(q \eta)}{\sqrt{M}},
$$

$\eta=1,2,3$ is polarization index of the acoustic mode.

Substituting (27) and (29) into Eq. (28) we get $(Q=(\vec{q}, \eta))$
$\mathcal{E} u_{k}=\lim _{\psi \rightarrow 0}\left\{\lim _{w \rightarrow 0} \sum_{P_{1}, P_{2}}\left[\left(1-((w))^{-1}\right]_{k,-k+4 ; P_{1}, p_{2}} \frac{\left(2 \omega_{Q} N\right)^{1 / 2}}{\omega_{k}} \tilde{V}_{3}\left(P_{1}, P_{2}, Q\right)\right\} .(30)\right.$.
It means that a change of the phonon energy ω_{K} can be represented by the following diagrams

9
where the renormalized phonon vertex is equal to

The equation (30) is similar to that obtained by Wehner and Klein $[7]$ who consider the harmonic approximation and three-phonon interactions only.

Section 3

In this section we consider the elastic constants and all thermodynamic quantities needed to obtain the correct thermodynamical result for the difference of adiabatic and isothermal elastic constants $S^{a d}-S^{\text {is }}$

Let us begin with deriving the heat capacity at constant strain $u_{\alpha \beta}$.From definition

$$
C_{v}=T\left(\frac{\partial S}{\partial T}\right)_{u_{\alpha \beta}}
$$

Differentiating the entropy S (6) with respect to temperature T we obtain

$$
T\left(\frac{\partial S}{\partial T}\right)_{u_{\alpha \beta}}=\sum_{K} \omega_{K} \frac{d n_{k}}{d T}-T \sum_{\gamma, \gamma_{i}^{\prime}, K}\left(\frac{d n_{k}}{d T}\right) \frac{\partial \omega_{K}}{\partial\left\langle u_{l}^{\gamma} u_{v^{\prime}}^{\gamma^{\prime}}\right\rangle}\left(\frac{\partial\left\langle u_{l}^{\gamma} u_{l}^{\gamma^{\prime}}\right\rangle}{\partial T}\right)_{u_{\alpha \beta}}
$$

For the derivative of the correlation function with respect to T we obtain an integral equation, solution of which is equal to

$$
\left(\frac{\partial\left\langle u_{1}^{\gamma} u_{l^{\prime}}^{\gamma^{\prime}}\right\rangle}{\partial T}\right)_{u_{\alpha \beta}}=\sum_{\substack{\mu \mu^{\prime}\\}}\left[\left(1-\widetilde{C}^{(i s)}\right)^{-1}\right]_{\rho \ell^{\prime} m m^{\prime}}^{\gamma \gamma^{\prime} \mu \mu^{\prime}} \frac{e_{\mu}(\mathrm{P}) \mu_{\mu^{\prime}}(\mathrm{P})}{M N \omega_{P}} e^{\overrightarrow{\dot{p}_{p}}\left(\vec{x}_{m^{\prime}} \cdot \vec{x}_{m^{\prime}}\right)} \frac{d n_{P}}{d T},(32)
$$

where $\left(\widetilde{C}^{(i s)}\right)_{\ell \ell^{\prime} m m^{\prime}}^{\gamma \gamma^{\prime} \mu \prime} \quad$ can be obtained from $\left(\tilde{C}^{\left(a \alpha^{\prime}\right)}\right)_{\ell l^{\prime} m m}^{\gamma \gamma^{\prime} \mu^{\prime}}$ changing in $L^{(d d)}$ (20) $F^{(a d)}$ to $F^{(i s)}$ (11).
Similarly as in the derivation of the formula (23) for

$$
f\left(P, P^{\prime}\right), \quad \text { we expand }\left(1-\widetilde{C}^{(i s)}\right)^{-1} \quad \text { in the }
$$

series and use the definition of phonon vertices (22).
In such a way we get

$$
\left(\frac{\partial\left\langle u_{1}^{\gamma} u_{t^{\prime}}^{\gamma^{\prime}}\right\rangle}{\partial T}\right)_{u_{\alpha \beta}}=\sum_{P, P^{\prime}} \frac{e_{\gamma}(\mathbb{R}) e_{\gamma^{\prime}}(\underline{P})}{M N \omega_{R}} e^{i \vec{p}\left(\vec{x}_{l}-\vec{x}_{L^{\prime}}\right)}\left[\left(1-C^{(i s)}\right)^{-1}\right]_{P_{j}, P_{j}, \rho_{j}^{\prime} \cdot p^{\prime}} \frac{d n_{p^{\prime}}}{d T} .
$$

Inserting this into Eq. (31) we have

$$
\begin{equation*}
C_{V}=\sum_{K} \omega_{k} \frac{d n_{k}}{d T}-T \sum_{K, P, P^{\prime}} \frac{d n_{k}}{d T} \widetilde{V}_{4}(K,-K ; P,-P)\left[\left(1-C^{(i s)}\right)^{-1}\right]_{P,-P_{j} P^{\prime}-P^{\prime}} \frac{d n_{P^{\prime}}}{d T} \tag{33}
\end{equation*}
$$

The heat capacity in this form was firstly obtained by Werthamer $[2]$ - It may be proved that the derivative of the internal energy with respect to temperature gives the same result conforming (14a) .

Another interesting quantity is the tension tensor $\tau_{\alpha \beta}$

$$
\tau_{\alpha \beta}=-\left(\frac{\partial \sigma_{\alpha \beta}}{\partial T}\right)_{u_{u \beta}}=\frac{1}{V} \frac{\partial^{2} F}{\partial u_{\alpha \beta} \partial T}=\frac{1}{V}\left(\frac{\partial S}{\partial u_{\alpha \beta}}\right)_{T}
$$

Using the definition of the entropy we obtain
$\tau_{\alpha \beta}=\frac{1}{V} \sum_{k} \omega_{k} \frac{d n_{k}}{d T}\left[-\frac{1}{\omega_{k}}\left(\frac{\partial w_{k}}{\partial u_{\alpha \beta}}\right)_{T}\right]=\frac{1}{V} \sum_{k} \omega_{k} \frac{d n_{k}}{d T} \gamma_{\alpha \beta}(k)$.
The term in the brackets is the familiar Grüneisen constant $\gamma_{\alpha \beta}(K)$-Using the representation for $\gamma_{\alpha \beta}(k)$ which corresponds to Eq. (27), we obtain the following alternative form
$\tau_{\alpha \beta}=-\frac{1}{v} \sum_{k, L} \frac{d n_{k}}{d T}\left[\left(1-C^{(i s)}\right)^{-1}\right]_{k,-K, E,-E} \sum_{\substack{\gamma \gamma^{\prime}}} \frac{e_{\gamma}(R) e_{\gamma^{\prime}(R)}}{2 M N \omega_{L}} e^{i \vec{p}\left(\vec{x}_{i} \cdot \vec{x}_{L^{\prime}}\right)} X_{v}^{\beta} \vec{\Phi}_{v l l^{\prime}(34)}^{\alpha \delta \gamma^{\prime}}$
'This result can be obtained from differentiation of $\sigma_{\alpha \beta}$ with respect to T. The elastic constants
can be obtained from the mass operator $\prod_{Q}(\omega)$
of the phonon Green function $\left\langle\left\langle A_{Q}, A_{Q}^{+}\right\rangle\right\rangle_{\omega}$ where operators A_{Q} are obtained from expansion of the displacement
operators u_{l} in plane waves

$$
\begin{gathered}
u_{L}^{\alpha}=\sum_{Q} \frac{e_{\alpha}(Q)}{\left(2 M N w_{Q}\right)^{1 / 2}} e^{i \vec{g}_{L} \vec{x}_{L}} A_{Q} \\
A_{-Q}=A_{Q}^{+}, \quad-Q=(-\vec{q}, j)
\end{gathered}
$$

The mass operator

$$
\Pi_{Q}(\omega)
$$

$\Pi_{Q}(\omega)=\frac{1}{2} \sum_{\substack{K_{1} K_{2} \\ K_{1}^{\prime} K_{2}^{\prime}}} \tilde{V}_{3}\left(-Q, K_{1}, K_{2}\right)\left[(1-C(\omega))^{-1}\right]_{K_{1} K_{2} ; K_{1}^{\prime} K_{2}^{\prime}} F^{c}\left(K_{1}^{\prime}, K_{2}^{\prime} ; \omega\right) V_{V_{3}}\left(Q,-K_{1}^{\prime}, K_{2}^{\prime}\right)$ Using the method of long waves $[20]$ we find from ccllisionless and hydrodynamic limit the adiabatic and isothermal elastic constants $[10]$

$$
\begin{equation*}
S_{\alpha \beta, \gamma \varepsilon}^{\binom{a d}{i s}}=\frac{1}{V} \sum_{u, v} X_{u}^{\beta}\left(\tilde{\phi}_{u v}^{\alpha \gamma}+M^{\left.\binom{a d}{i s}_{k \gamma}\right) X_{u v}^{\delta},}\right. \tag{35}
\end{equation*}
$$

where

$$
\begin{aligned}
& M^{\binom{a d}{i s}} \underset{u v}{\alpha \gamma}=\left(\frac{1}{2 M N}\right)^{2} \sum_{\substack{\nu \nu^{\prime} \mu \mu^{\prime} \\
n n^{\prime} m m^{\prime}}}{\underset{\sim}{u n n^{\prime}}}_{\alpha \nu \nu^{\prime}}^{{\underset{\phi}{v m m^{\prime}}}_{\gamma \mu \mu^{\prime}}^{\gamma} \frac{e_{\nu}(k) e_{\nu}^{\prime}(k) e_{\mu}\left(k^{\prime}\right) e_{\mu^{\prime}}\left(k^{\prime}\right)}{\omega_{k} \omega_{k^{\prime}}} x} \\
& x e^{\overrightarrow{i k}\left(\vec{x}_{n}-\vec{x}_{n}\right)+i \overrightarrow{k^{\prime}}\left(\vec{x}_{m}-\vec{x}_{i^{\prime}}\right)}\left[\left(1-\left(^{\binom{a d}{i s}}\right)^{-1}\right]_{k,-k_{;} k_{j}^{\prime}-k^{\prime}} \frac{F^{\binom{a d}{i s}}\left(k^{\prime}\right)}{2} \cdot\right. \text { (36) }
\end{aligned}
$$

Now we are in position to caloulate the difference of the elastic constants

$$
\begin{equation*}
S_{\alpha \beta, \gamma \delta}^{(a d)}-S_{\alpha \beta, \gamma^{\varepsilon}}^{(i s)}=\frac{1}{v} \sum_{u, v} X_{u}^{\beta}\left(M_{u v}^{(a d)_{\alpha \gamma}}-M_{u, v}^{(i s)}\right) X_{v \gamma}^{\delta} \tag{37}
\end{equation*}
$$

As we mentioned in the Introduction from purely thermodynamic arguments $[6,7]$ it follows that the difference of elastic constants is equal to

$$
\begin{equation*}
S_{\alpha \beta, \gamma \delta}^{\left(a d_{1}\right.}-S_{\alpha \beta, \gamma \delta}^{(i s)}=\frac{T}{C_{v}} \tau_{\alpha \beta} \tau_{\gamma \delta} \tag{I}
\end{equation*}
$$

But from Eqs.(36), (37) and (33), (34) it follows that (37) Will be approximately equal to right-hand side of Eq. (I) only if we discard $C^{(i s)}$ and $C^{(a d)}$ in all quantities appearing in Eq.(I) This approximation correspoids to the case of bare phonon bubble considering by Wehner and Klein $[7]$.

$$
\text { We shail show that } S_{\alpha \beta, \gamma \delta}^{(a d)} \quad \text { (36) can be obtained }
$$ from internal energy by differentiation with respect to strain $U_{\alpha \beta}$ at constant numbers of oooupation $n(k)$. It is easy to show that

$$
\frac{1}{V}\left(\frac{\partial E}{\partial u_{\alpha \beta}}\right)_{n}=\frac{1}{v}\left(\frac{\partial \tilde{u}^{\partial u_{\alpha \beta}}}{)_{n,\langle u u\rangle}}=\sigma_{\alpha \beta}\right.
$$

Using this equation we obtain the second order derivative of internal energy
$\left(\frac{\partial^{2} E}{\partial u_{\alpha \beta} \partial u_{y \delta}}\right)_{n}=\left(\frac{\partial^{2} \tilde{U}}{\partial u_{i \beta} \partial u_{y} \Sigma}\right)_{n,\langle u u\rangle}+\frac{1}{2} \sum_{Y Y^{\prime}}\left(\frac{\partial l^{\prime}}{\partial u_{\langle\beta}}\right)_{\langle u u\rangle}^{\sim \ell^{\prime}}\left(\frac{\partial\left\langle u_{i}^{\gamma} u_{i}^{\gamma^{\prime}}\right.}{\partial u_{y E}}\right)_{n}(38)$
Similarly as in $[10,12]$ the derivative of the correlation function is connected with the derivative of the second order vertex

This derivative is the solution of an integral equation

Inserting (39), (40) into Eq. (38), expanding $\left[\left(1-\widetilde{C}^{(a d)}\right)^{-1}\right]$ into a series we recover the adiabatic elastio constants (36)

$$
\begin{equation*}
S_{\alpha \beta ; \gamma^{5}}^{(a d)}=\frac{1}{V}\left(\frac{\partial^{2} E}{\partial u_{j}{ }_{j}^{2 d} u_{\alpha \beta}}\right)_{\eta} \tag{41}
\end{equation*}
$$

The constancy of numbers of occupation 1s equivalent to constancy of entropy S.

But the entropy will not change even if the numbers of occupation varies. Equation (4I) means that in obtaining the collisionless limit of mass operator $\Pi_{Q}(\omega)$ we completly missed all dissipative processes connected with changes of n_{f} 's These processes are contained in collision integral of Boltmann equation (see for example $[7]$ and references given therein).
4. Conclusions.

In our work we show that approximated mass operator $\prod_{C}(\dot{\omega})$ with all two-phonon processes accounted is not sufficient to reproduce the correct thermodynamic result for the difference of elastic constants. This approximation gives only non-dissipative terms connected with the interactions of the phonons. As it was shown by Wehner and Klein $[7]$ it is necessary to consider dissipative terms to obtain the difference $S_{u, \beta, f}^{(k d)}-\int_{* i, j}^{(i s)} \delta$ in agreement with classical the rmodynamics. The dissipative terms are connected with three-phonon processes and have form of a collision integral in Boltzmann-Iike equation for three-phonon vertex $[7]$. Thus although fourphonon processes are important in obtaining correct numerical results for elastic constants $[12]$, they are insufficient to describe the transport processes in orystals (sece also [$[\mathrm{B}]$).

The author thanks Dr. N.M. Plakida for usefull discussions.

```
[1] W.Götze, K.H. Michel
    Phys.Rev. 156, 963 (1967)
    N.R. Werthamer
    Phys.Rev. Bl; 572 (1970)
    W.Götze, K.H. Michel
        Z,Phys. 217, 170(1968)
    H. Gotze, K.H. Michel
        Z.Phys. 223, 199 (1969)
    R. A. Cawley
        Proc.Phys.Soc. 90, 1127 (1967)
    D.C. Wallace
        Solid State Physics 25, 801 (1970)
    R.K. Wehner, R. Klein
        Physica 52, 92 (1971)
    N.R. Wérthamer
        Phys.Rev. 2A; 2050 (1970)
    N.M. Plakida, Preprint JINR P-4-6066 Dubna 1971
    M.Paszkiewicz
        JINR, E34-6444, Dubna (1972)
    P. Choquard
        The Anharmonic Crystal WA Benjamin, Inc.
        New York 1967
    M.L. Klein, G.H. Horton, V.V. Goldmen
        Phys.Rev. 2B, 4995 (1970)
W.Götze, K.H. Michel Phys.Rev. 156, 963 (1967)
N.R. Werthamer
Phys.Rev. Bl; 572 (1970)
W.Götze, K.H. Michel
Z,Phys. 217, 170(1968)
W. Gotze, K.H. Michel
Z.Phys. 223, 199 (1969)
R.A. Cawley Proc.Phys.Soc. 90, 1127 (1967)
D.C. Wallace Solid State Physics 25, 801 (1970)
M.Paszkiewicz
JINR, E4-6444, Dubna (1972)
P. Choquard
The Nnharmonic Crystal \(W\) i Benjamin, Inc
M.I. Klein, G.H. Hortion, V.V. Goldman
Phys.Rev. 2B, 4995 (1970)
N.M. Plakida, T.Siklos Phys.Stat.Solidi 33, 103 (1969)
W. Gótze
Phys.Rev. 156, 951 (1967)
W. Götze, K. H. Michel Phys.Rev. 157, 738 (1967)
```

[16] W. Ludwig, Recent Development in Lattice Theory. In Springer Tract in Modern Physics Vol. 43, 1967.
N.R. Werthamer Phys.Rev. 5B, 285 (1972)
M.I. Klein, G. G. Chell, V.V. Goldmann, G.K.Horton, J. Phys. 3C, 806 (1970)
[19]
H. Horner Z. Physics 205, 72 (1967)
[20]
M. Born, K. Huang Dynamical Theory of Crystal Lattices, Oxford, Clarend on Press 1954.

Received by Publishing Department on May $26,1972$.

