T.Paszkiewicz

SELF-CONSISTENT THEORY
 OF SECOND ORDER ELASTIC CONSTANTS FOR NONIONIC ANHARMONIC CRYSTALS

1972

E4 - 6444

T.Paszkiewicz*

SELF-CONSISTENT THEORY
 OF SECOND ORDER ELASTIC CONSTANTS FOR NONIONIC ANHARMONIC CRYSTALS

Submitted to Physics of Condensed Matter

Introduction.

Calculation of elastic constants can be made by two methods: the methods of homogeneous deformation $[I]$ and the method of long waves [2] .Using these methods elastic constants for dielectric crystals were calculated in the harmonic approximation and the results obtained from both methods were consistent [I]. Götze [3] and Gö́tze and Michel [4] extended both these methods and calculated elastic oonstants for arbitrary dielectric crystal lattices by taking into account the entire anharmonicity of the crystal.

Although results of $[3]$ and $[4]$ are exact of importance is the application of an approximate method which enables us to make numerical computations for strong anharmonic crystals saving at the same time the main exact relations such as elastic sum rules
$[3],[4]$. For quantum crystals or strongly anharmonic crystals of rare gases the role of such an approximate method plays the method of average phonon fields (pseudoharmonic approximation) $[5]$.

For primitive lattices of rare gases Klein at al. [6] cal curated self-consistent isothermal elastic constants by expansion of the pseudoharmonic free energy of the crystal into a power series in deformation
parameters $u_{\alpha \beta}$ and made also some numeriolal. computations.

In the present paper results of Klein et al. [6] are extended to the nonprimitive nonionic crystal lattices. Derivation of elastio constants $[6]$ is modified in such a way that it is possible to compare the obtained results with those from the method of long waves. This comparis on shows that for the results to be consistent it is necessary to take into acoount the vertex corrections $[5,7]$. The obtained relation between the seoond derivative of a free energy and the mass operator of the displaoement Green function makes it possible to eliminate the surface effeots and therefore, to extend the method of a homogeneous deformation to a pseudoharmonio approximation. Comparison of the result of both methods leads to an exaot relation - the sum rule whioh is a partioular case of the general elastic sum rule $[3,4,8,9]$.

The most convenient method for our purposes is that of two-time Green function $[7,10,11]$ - This method enables us to calculate from the same point of Tiew both the free energy and self-energy of displacement Green function.

In Sect.2. we shall give definitions and some results of $[7,10,11]$ necessary for our purposes. Section 3 will be devoted to the method of a homogeneous deformation and to the study of a symmetry properties of elastio constants. In Seot. 4 the method of long maves will be used and
the comparison will be made between the results obtained from both methods.

1. Notation and Definitions.

We shall consider quantum crystals or crystals of rare gases at sufficiently high temperatures, where the harmonic approximation does not work. Sizable fluctuation of the nuclei around their lattice sites are allowed for by assuming their equilibrium positions rather than nuclei themselves to be arranged in a regular array. Thus at given temperature T (or $(\curvearrowleft)=k_{j} T$), we identify the equilibrium value of position operator $\quad \vec{R}(l, x) \equiv \vec{R}_{L}$ with the lattice site $\vec{X}_{l}+\vec{X}_{X} \equiv \vec{X}_{L} \quad$ of $\quad x$-th nucleus in the ℓ-th unit cell. That is

$$
\begin{equation*}
\vec{X}_{L}=\vec{X}_{l}+\vec{X}_{x}=\operatorname{Tr}\left\{\vec{R}_{L} \quad \frac{e^{-\frac{H}{O}}}{\operatorname{Tr} \exp \left[-\frac{H}{O}\right]}\right\} \equiv\left\langle\vec{R}_{L}\right\rangle, \tag{1.1}
\end{equation*}
$$

Where the index L denotes the pair of indices $L \equiv(\varepsilon, x)$ and $x=1, \ldots, 1 ; l=1, \ldots, N$. We calculate the average value (1.1) with Hamiltonian of equilibrium crystal in the presence of external surface forces \vec{F}_{1}.

$$
\begin{equation*}
H=\sum_{L} \frac{P_{L}^{2}}{2 M_{x}}+U\left(\ldots \vec{R}_{L}\right)-\sum_{L} \vec{F}_{L} \vec{u}_{L} \tag{1.2}
\end{equation*}
$$

$$
\vec{F}_{L}=0 \quad \begin{aligned}
& \text { for all the } L \\
& \text { of the orystal }
\end{aligned} \quad \text { in the interior } \quad(1.3)
$$

Expanding the potential energy of the crystal $U\left(\ldots \vec{R}_{6} \ldots\right)$ into a series in the thermal displacements $\vec{u}_{L}=\vec{R}_{L}-\vec{X}_{L}$ leads the Hamiltonian (1.2) to the form $[11]$

$$
\begin{equation*}
H(\lambda)=H_{0}+H_{1}(\lambda), \tag{1.4}
\end{equation*}
$$

where
$H_{0}=\sum_{L} \frac{P_{L}^{2}}{2 M_{x}}+\frac{1}{2} \sum_{1,2} \phi_{12}^{0} u_{1} u_{2}-\sum_{1} F_{1} u_{1}$,
$H_{1}(\lambda)=\sum_{n=1}^{\infty} \frac{\lambda^{n}}{n!} \sum_{1 \ldots n} \phi_{1 \ldots n} u_{1} \ldots u_{n}-\frac{\lambda^{2}}{2} \sum_{1,2} \phi_{12}^{0} u_{1} u_{2}$,
where $1 \equiv(\alpha, x, l) ; \alpha=x, y, z ; \quad H_{0}$ is a trial harmonic Hamiltonian, and its matrix of force constants $\phi^{0} \begin{gathered}\alpha \beta \\ L^{\prime}\end{gathered} \quad$ will be defined further. The trial phonon frequencies $\omega_{h j}$ and vectors of polarization $e_{\alpha}(k, j ; x)$ are determined from the eigenvalue:

equation

$\omega_{k j}^{2} e_{\alpha}\left(\vec{k}_{j} ; x\right)=\sum_{\beta_{,}, x^{\prime}} e_{\beta}\left(\vec{k}_{j ;} x\right) \frac{1}{\sqrt{M_{x} M_{x^{\prime}}}} \sum_{\ell^{\prime}} \phi^{0} \ell \ell^{\prime} e^{-i \vec{k}\left(\vec{x}_{e}-\vec{x}_{e}\right)}$
where \vec{k} is the quasimomentum vector, $j-$ the index of branch and polarization $j=1, \ldots, 3 \mathrm{~s}$
The Hamiltonian contains all vertices of anharmonio interaction

$$
\begin{equation*}
\phi_{1 \ldots n}=\phi_{L_{1} \ldots L_{n}}^{\alpha_{1} \ldots \alpha_{n}}=\nabla_{L_{1} \ldots}^{\alpha_{1}} \nabla_{L_{n}}^{\alpha_{n}} V_{0}\left(\ldots \vec{x}_{L} \ldots\right) . \tag{1.6}
\end{equation*}
$$

As we need for our purposes the free energy in the lowest approximation we choose the matrix of force constants ϕ_{12}^{0} in pseudoharmonic approximation
$\phi_{s s^{\prime}}^{\alpha \alpha \beta}=\nabla_{s}^{\alpha} \nabla_{s^{\prime}}^{\beta} \widetilde{U}\left(\ldots \vec{x}_{L \ldots}\right)=\nabla_{s}^{\alpha} \nabla_{s^{\prime}}^{\beta} \exp \left\{\frac{1}{2} \sum_{1,2}\left\langle u_{1}, u_{2}\right\rangle \nabla_{1} \nabla_{2}\right\} U_{0},{ }^{(1.7)}$ where $U_{0}\left(\ldots \vec{x}_{L} \ldots\right)$ is the potential energy of a statio lattice.

With this trial Hamilionian we obtain with the heip of one of the mothods - Choquards's methods [12], variational method $[5]$ or method of two-time Green funotions [ii], the free energy in psoudoharmonio approximation.
$F=U_{0}+\sum_{k j} \ln \left(2 \operatorname{sh} \frac{\omega_{k j}}{2 \theta}\right)+\left\{\exp \left[\frac{1}{2,2}\left[\left(u_{1} u_{2}\right) \nabla \nabla_{1}\right]-1\right\} U_{0}-\frac{1}{2} \sum_{1,2} \tilde{\Phi}_{12}\left\langle u_{1} u_{2}\right\rangle\right.$
Index O in $\left\langle u_{1} u_{2}\right\rangle$ denotes that we calculate the oorreLation function with Hamiltonian H_{0}. Let us consider the retarded $G_{\text {reen }}$ funotions of displaoements $G_{i i^{\prime}}^{(r)}\left(t-t^{\prime}\right)$
 where $\langle.\rangle=.\operatorname{Tr}\left(\ldots \frac{e^{-H / \theta}}{\operatorname{Tr}[\exp (-H / \theta)}\right), u_{i}(t)=e^{i H t} u_{i} e^{-i H t}$. We shall cal oulate this funotion in higher approximation. We put in Hamilitonian (1.4) $\quad \lambda=1 \quad$. In the -quation of motion for $\left\langle u_{i}(t) ; u_{i}\left(t^{\prime}\right)\right\rangle$ there appear higher order Green functions $\left\langle u_{1}(t) . . . u_{n}(t) ; u_{i}\left(t^{\prime}\right)\right\rangle$. Making the deooupiing of this higher order Green funotions as proposed in [10] and keeping in the right-hand side of the equation of motion the first term only we obtain
$\left.\left.\sum_{j}\left(M_{i} \omega^{2} \delta_{i j}-\widetilde{\phi}_{i j}\right)\left\langle u_{j} ; u_{i}\right\rangle\right\rangle_{\omega}=\delta_{i i}+\frac{1}{2} \sum_{i, 2} \tilde{\phi}_{i 12}\left\langle u_{1} u_{2} ; u_{i}\right\rangle\right\rangle_{\omega}$

is connected with)

The function $\left.\left.\left\langle u_{1} u_{2} ; u_{i}\right\rangle\right\rangle\left\langle u_{1} P_{2} ; u_{i}\right\rangle\right\rangle,\left\langle\left\langle P_{1} \mu_{2} ; u_{i}\right\rangle\right\rangle$
$\omega\left\langle\left\langle u_{1} u_{2} ; u_{i^{\prime}}\right\rangle\right\rangle_{\omega}=\frac{i}{M_{1}}\left\langle\left\langle P_{1} u_{2} ; u_{i^{\prime}}\right\rangle\right\rangle_{\omega}+\frac{i}{M_{2}}\left\langle\left\langle u_{1} P_{2} ; u_{i^{\prime}}\right\rangle\right\rangle_{\omega}$.
(1.11)

In order to calculate the Green function $\left\langle\left\langle u_{1} u_{2} ; u_{i}\right\rangle\right\rangle_{\omega}$ we must consider the equation of motion for this two functions

$$
\begin{equation*}
\omega\left\langle\left\langle P_{1} u_{2}, u_{i^{\prime}}\right\rangle\right\rangle_{\omega}=\frac{i}{M_{2}}\left\langle\left\langle P_{1} P_{2} ; u_{i^{\prime}}\right\rangle\right\rangle_{\omega}-\frac{i}{2} \sum_{1^{\prime}, 2^{2}, 3^{\prime}}\left\langle u_{2} u_{3^{\prime}}\right\rangle_{0}\left\langle\left\langle u_{1}, u_{2^{\prime}} ; u_{i^{\prime}}\right\rangle\right\rangle_{\omega+}+ \tag{1.12}
\end{equation*}
$$

$-i \sum_{2^{\prime}, 3^{\prime}} \widetilde{\Phi}_{12^{\prime} 3^{\prime}}\left\langle u_{2} u_{2},\right\rangle_{0}\left\langle\left\langle u_{1^{\prime}} ; u_{i}\right\rangle\right\rangle_{\omega}-i \sum_{1^{\prime}} \widetilde{\Phi}_{11^{\prime}}\left\langle\left\langle u_{1}, u_{2^{\prime} ;} u_{i-}\right\rangle\right\rangle_{\omega}$.
where we keep only the first three terms of the sum In the right-hand side of (1.12) ${ }^{+}$, and use the condition of crystal equilibrium in pseudoharmonio approximation

$$
\begin{equation*}
\nabla_{1} \widetilde{U}\left(\ldots x_{L} \ldots\right)=\widetilde{\Phi}_{1}=F_{1} \tag{1.13}
\end{equation*}
$$

This condition iscieasily obtained from the average of the equation of motion for momentum operator

[^0]In derivation of (1.10) and (1.12) we oaloulate all correlation functions, with Hamiltonian H_{0}.

is the renormalized vertex

$$
\widetilde{\Phi}_{1 \ldots n}=\nabla_{1} \ldots \nabla_{n} \widetilde{U}\left(\ldots \vec{x}_{L} \ldots\right)
$$

Equation for $\left.\left\langle u_{1} p_{2} ; u_{i}\right\rangle\right\rangle_{\omega}^{(n)}$ an be obtained from (1.12) by ohanging the indices $1 \nleftarrow 2$.

Using periodic boundary oonditions we go to the expansion of \vec{u}_{L} and \vec{p}_{L} in plane waves. The polarization rotors $\vec{e}(k j, x)$ form an orthonormal and complete set and we ohoose $\vec{e}_{\alpha}\left(k_{j} ; x\right)=\vec{e}^{*}\left(-k_{j} ; x\right)$. Differentiating Eq. for $\left\langle\left\langle u_{1}(t) P_{2}(t) ; u_{i^{\prime}}\left(t^{\prime}\right)\right\rangle\right\rangle^{(n)}$ and $\left\langle\left\langle P_{1}(t) u_{2}(t) ; u_{i^{\prime}}\left(t^{\prime}\right)\right\rangle\right\rangle^{(n)}$ once more with respect to t and expanding u_{L}, P_{L} in the plane waves we obtain a system of equations which allows us to find $\left.\left\langle A_{K_{1}} A_{k_{2}} ; A_{Q}\right\rangle\right\rangle_{w}$, where $A_{Q}=A_{-Q}^{+}=a_{Q}+a_{-Q}^{+}, Q=(\stackrel{\rightharpoonup}{q}, j),-Q=(\vec{q}, j)$. Putting this expression into equation for $\left\langle\left\langle A_{q^{j}}, A_{q}^{+} j^{\prime}\right\rangle\right\rangle_{\omega}^{(r)}$ which an be obtained from (1.10) negleoting a polarization mixing $\left(j=j^{\prime}\right)$ we obtain

$$
\begin{equation*}
\left\langle\left\langle A_{Q}, A_{Q}^{+}\right\rangle{ }_{\omega}=\frac{2 \omega_{Q}}{\omega^{2}-\left(\omega_{Q}^{2}+2 \omega_{Q} \Pi_{Q}(\omega)\right)}\right. \tag{1.14}
\end{equation*}
$$

The function $\left\langle\left\langle A_{Q}, A_{Q}^{+}\right\rangle\right\rangle_{\omega}$ is an analytic continuation of retarded Green function into the complex plane of ω. The mass operator of Green function $\left\langle A_{Q} ; A_{Q}^{+}\right\rangle_{\omega}$ $\prod_{Q}(\omega)$ is equal to $[4,7]$,

$$
\begin{aligned}
& \prod_{Q}(\omega)=\frac{1}{2} \sum_{K_{1} K_{2} K_{1}^{\prime} K_{2}^{\prime}} \widetilde{V}_{\left(-Q, K_{1}, K_{2}\right)}\left[(1-C(\omega))^{-1}\right]_{K_{1}, k_{2} ; k_{1}, K_{2}^{\prime}} \quad F^{0}\left(K_{1}^{\prime}, K_{2}^{\prime} ; \omega\right) \widetilde{V}_{3}\left(Q,-K_{1}^{\prime},-K_{2}^{\prime}\right), \\
& \text { where } \widetilde{V}\left(K_{1}, \ldots, K_{n}\right) \quad \text { is the phonon vertex }
\end{aligned}
$$

$$
\begin{aligned}
& F^{0}\left(K_{1}, K_{2} ; \omega\right) \\
& F^{0}\left(k_{1}, k_{2}, \omega\right)=\frac{2\left(\omega_{k_{1}}+\omega_{k_{2}}\right)\left(n_{k_{1}}+n_{k_{2}}+1\right)}{\omega^{2}-\left(\omega_{k_{1}}+\omega_{k_{2}}\right)^{2}}-\frac{2\left(\omega_{k_{1}}-\omega_{k_{2}}\right)\left(n_{k_{1}}-n_{k_{2}}\right)}{\omega^{2}-\left(\omega_{k_{1}}-\omega_{k_{2}}\right)^{2},(1.17)} \\
& n_{K_{1}}=n\left(\omega_{k_{1}}\right)=\left(e^{\frac{\omega_{k_{1}}}{\theta}}-1\right)^{-1} \text {, } \\
& {\left[((\omega)]_{K_{1} K_{2} ; K_{3} K_{4}}=F^{0}\left(K_{1}, K_{2} ; \omega\right) \widetilde{V}_{4}\left(-K_{1},-K_{2}, K_{3}, K_{4}\right) .\right.}
\end{aligned}
$$

In the calculation of the mass operator we take into account all tro-phonon processes. As we shall see further this renormalization of three phonon vertices is necessary to obtain a correspondence between results of the method of homogeneous deformation and the method of long wares. The real part of the mass operator

$$
\begin{align*}
& \Pi_{Q}(\omega+i \varepsilon) \quad \text { gives renormalized phonon frequency } \\
& \widetilde{\omega}_{Q}^{2}(\omega)=\omega_{Q}^{2}+2 \omega_{Q} \operatorname{Re} \Pi_{Q}(\omega+i \varepsilon), \tag{1.18}
\end{align*}
$$

and its imaginary part gives the lifetime of phonons.

2. Method of the Homogeneous Deformation.

 Symmetries of Elastic Constants.We shall discuss the case of finite stressestin the indtial equilibrium state, whioh are produced by forces \vec{F}_{s} applied to surface atoms. The homogeneous elastic deformation of a orystal is caused by additional applied small surfaoe forces \vec{f}_{s}. In this case both the free energy and potential energy of a orystal depend also on a deformation $u_{\alpha \beta}$ (primitive lattices) and also on relative displaoements of sublattioes \vec{u}_{x} (nonprimitive lattioes).

To obtain total derivatives (spaoe) we shall assume aocording to Choquard $[12]$ and Klein et al. $[6]$ the set of correlation funotions $\left\langle u_{i} u_{j}\right\rangle_{0}$ to be Intermediate variables describing fluotuational state of a crystal and then we shall use the chain rule of differentiation, Aswe are interested in crystals we assume that an influenoe of external forces leads to a ohange in coordinates of atoms but the fluctuational state of the system does not change. This means that the derivative $\left(\frac{\partial \widetilde{U}}{\partial x_{5}^{2}}\right)_{T}$ in (1.13) denotes the derivative at constant T and $\left\langle u_{s}^{\gamma} u_{s^{\prime}}^{\gamma^{\prime}}\right\rangle_{0}$

$$
\begin{equation*}
\tilde{\phi}_{S}^{\alpha}=\left(\frac{\partial \widetilde{U}\left(\ldots \vec{x}_{L . .}\right)}{\partial x_{S}^{\alpha}}\right)_{T_{,}\langle u u\rangle}=F_{S}^{\alpha} . \tag{1.13a}
\end{equation*}
$$

Pseudoharmonic free energy (1.8) is stationary with respect to variation of $\left\langle u_{s}^{*} u_{s^{\prime}}^{\alpha^{\prime}}\right\rangle_{0}$.

Following choquard [12] and Klein et al. [6] we obtain the second derivative of free energy with respect to spacelike varibles (1.e. It does not depend on temperature) $\varepsilon_{1}, \varepsilon_{2}$ in terms of isofluctional

where

$F^{\text {is }}(K)$ is hydrodynamic (isothermal) imit of $F^{0}(K, w)$
$F^{i s}(k)=\lim _{|\bar{q}| \rightarrow 0} \lim _{w \rightarrow 0} F^{0}(k+2, j ;-k, j, w)=\frac{\partial\left(2 n_{k}+1\right)}{\partial \omega_{k}}-\frac{\left(1+2 n_{k}\right)}{\omega_{k}}$ (2.4)
The applied procedure of evaluation of derivatives of the free energy is similar to the differentiation of quastharnonic free energy where $\omega_{k j}$ are function of the volume. After differentiation of quasiharmonic free energy with respect to volume the terms with
three-phonons and four-phonon vertices appear (see for example $[1]$).

In the theory of elasticity $\varepsilon^{\prime} s$ are considered as homogeneous strain parameter $u_{\alpha \beta}\left(\frac{\partial}{\partial u_{\alpha \beta}}=\sum_{v} x_{v}^{\beta} \frac{\partial}{\partial x_{u}^{\alpha}}\right)$ and relative displacement parameter $u_{x}^{\alpha}\left(\frac{\partial}{\partial u_{x}^{\alpha}}=\sum_{u} \frac{\partial}{\partial X_{u}^{-u}}\right)$. We expand free energy density $\frac{F}{V}$ in the strain parameters $u_{\alpha \beta}$ and relative displacement parameters u_{x}^{α}

The first derivatives of the density of free energy

$$
\begin{equation*}
S_{\alpha \beta}=\frac{1}{V}\left(\frac{\partial F}{\partial u_{\alpha \beta}}\right)_{T}, \quad u_{\alpha \beta}=u_{\gamma}^{\alpha}=0 \tag{2.6}
\end{equation*}
$$

are the stresses in the initial state. The coefficients in terms of second order in (2.5) are defined as

$$
\begin{equation*}
\hat{C}_{\alpha, \gamma \delta}^{x} \equiv-\frac{1}{V}\left(\frac{\partial^{2} F}{\partial u_{x}^{\alpha} \partial u_{\gamma \delta} \delta}\right)_{T}=-\frac{1}{V} \sum_{u, v}\left\{\tilde{\phi}_{u}^{\alpha \gamma} x_{v}+\tilde{M}_{u}^{i_{\alpha}^{\alpha \gamma}} \underset{u_{v}}{\}}\right\} X_{V .}^{\delta} . \tag{2.7c}
\end{equation*}
$$

$$
\begin{align*}
& \hat{S}_{\alpha \beta, \gamma \delta} \equiv \frac{1}{V}\left(\frac{\partial^{2} F}{\partial u_{\alpha \beta} \partial u_{\gamma \delta}}\right)_{T}=\frac{1}{v} \sum_{U, V} X_{U}^{\beta}\left\{\tilde{\phi}_{u v}^{\alpha \gamma}+\tilde{M}_{u v}^{\alpha s^{\alpha \gamma}}\right\} X_{V,}^{\delta} \tag{2.7a}
\end{align*}
$$

Matrices $\hat{S}_{\alpha \beta, \gamma 5}, \hat{C}_{n n^{\prime}}^{\alpha \beta}, \hat{C}_{\alpha, \gamma \delta}^{x}$ are generalizations of Larmonic matrices of Leibfried and Ludwig [1]. In Sect. 3 we shall show that $M^{\prime \prime}{ }_{U V}^{\alpha \gamma} \quad$ is a function of $\vec{X}_{u}-\vec{X}_{U}$. This allows us to eliminate surface effects as it was done by Leibfried and Ludwig [I]. In such an elimination we use the condition of translation invariance of the potential energy (see Ludwig [1])

$$
\begin{equation*}
\sum_{S} \tilde{\phi}_{S R \ldots}^{\alpha \beta \ldots}=0 . \tag{2.9a}
\end{equation*}
$$

In the third term of (2.5) elimination of surface effects is not possible, but in physically interesting formulas occur only combination $\frac{1}{2}\left(S_{\alpha \beta, \gamma \delta}+S_{\alpha,, \gamma \beta}\right)$ which permits such an elimination.

The free energy density still depends on relative displacements u_{x}^{α}. This can be eliminated by using the equilibrium condition after the small forces \vec{f}_{s} have been applied

$$
\begin{equation*}
F_{S}^{\alpha}+f_{S}^{\alpha}=\left(\frac{\partial \widetilde{u}\left(\ldots \vec{x}_{L} \ldots\right)}{\partial x_{s}^{\alpha}}\right)_{T,\langle u u\rangle} \tag{2.10}
\end{equation*}
$$

Expanding $\widetilde{U}\left(\ldots \vec{x}_{L} \ldots\right)$ in $u_{\alpha \beta}$ and u_{x}^{α} and taking into account the equilibrium oondition (1.13a) we obtain the
equation which gives the relation between these two parameters

$$
\begin{equation*}
\sum_{\beta, x^{\prime}} \hat{C}_{\gamma x^{\prime}}^{\alpha \beta} u_{x^{\prime}}^{\beta}=-\sum_{\gamma, \varepsilon} \hat{C}_{\alpha, \gamma \delta}^{x} u_{\gamma \hat{c}} \tag{2.11}
\end{equation*}
$$

Here we have neglected f_{S}^{α} as it is sufficient to solve (2.11) in the interior of the crystal. Matrices $\hat{C}_{\alpha x^{\prime}}^{\alpha \beta}$ \hat{C}_{x}^{x} by Liebfried and Ludwig [1]. Equation (2.11) differs from equation of Leibfried and Ludwig by definition of $C_{x, \alpha,}^{\alpha \beta} \quad C_{\alpha, \gamma \delta}^{x} \quad$ only, so we give here only
final results

$$
\begin{equation*}
u_{x}^{\alpha}=-\sum_{\mu \rho \lambda x_{1}} R_{x x_{1}}^{\alpha \mu} \hat{C}_{\mu_{1} \rho \lambda}^{x_{1}} u_{\rho \lambda}, \tag{2.12}
\end{equation*}
$$

where the R is symmetric (in indices αx and μx_{1}) right-hand side reciprocal to \hat{C} matrix

$$
\sum_{\beta_{1} H_{1}} \hat{C}_{x x_{1}}^{\alpha \beta} R_{x_{1} x^{\prime}}^{\beta \mathcal{E}}=\delta_{\alpha \beta} \delta_{x, \mu^{\prime}}
$$

Now we insert (2.12) Into the righ-hand side of (2.5) and finally we obtain
$\frac{F}{V}=\frac{F_{0}}{V}+\sum_{\alpha \beta} S_{\alpha \beta} u_{\alpha \beta}+\frac{1}{2} \sum_{\beta_{\gamma} \delta} S_{\alpha \beta, \gamma}=u_{\alpha \beta, \gamma} u_{\gamma}$,
where $\int_{\alpha \beta, \gamma^{\delta}}$ is the second order elastic
constant equal to

Let us consider the symmetry properties of $S_{\alpha \beta, \gamma \delta}$. As the matrix R is symmetric $S_{\alpha \beta, \gamma \delta}$ is symmetric too in the pair of indioes

$$
\begin{equation*}
S_{\alpha \beta, \gamma^{\delta}}=S_{\gamma \delta, \alpha \beta} . \tag{2.1ヶa}
\end{equation*}
$$

We derive symmetry properties of $\int_{\alpha \beta, \gamma} \mathcal{E}^{\text {connoted with }}$ changes of $\alpha \leftrightarrow \beta \quad, \gamma \leftrightarrow \delta \quad$ with the help of the conditions of rotational invariance of the potential energy [1]
$\sum_{u} \bar{\phi}_{v}^{\alpha} \chi_{v}^{\beta}=\sum_{v} \tilde{\phi}_{v}^{\beta} \lambda_{u}^{\alpha}$,
$\sum_{M} \widetilde{\phi}_{M N}^{\alpha \lambda} x_{M}^{\beta}+\widetilde{\Phi}_{N}^{\alpha} \delta_{\beta \lambda}=\sum_{M} \tilde{\phi}_{M N}^{\beta \lambda} X_{M}^{\alpha}+\widetilde{\phi}_{N}^{\beta} \delta_{\alpha \lambda}$,

Following Liebfried and Ludwig it is possible to show that a part of $S_{\alpha \beta, \gamma} \varepsilon$

$$
\hat{S}_{\alpha \beta, \gamma \delta}^{(1)} \equiv \frac{1}{v} \sum_{v, v} X_{v}^{\beta} \tilde{\phi}_{v v}^{\alpha \beta} X_{v}^{\delta}
$$

has the symmetry properties of Born and Huang

$$
\begin{equation*}
\hat{S}_{\alpha \beta, \gamma \delta}^{(1)}+S_{\alpha \beta} \delta_{\gamma \delta}=\hat{S}_{\alpha \beta, \delta \gamma}^{(1)}+S_{\beta \delta} \delta_{\alpha \gamma}, \tag{2.17a}
\end{equation*}
$$

$$
\begin{equation*}
\hat{S}_{\alpha \beta, \gamma \delta}^{1(1)}+S_{\alpha \delta} \delta_{\beta \gamma}=\hat{S}_{\beta \alpha, \gamma^{2}}^{(1)}+S_{\beta \delta} \delta_{\alpha \gamma}, \tag{2.17b}
\end{equation*}
$$

$$
\begin{equation*}
\hat{S}_{\alpha \beta, \delta^{\delta}}^{(1)}+S_{\gamma^{\delta}} \delta_{\alpha \beta}=\hat{S}_{\beta \alpha, \delta \gamma}^{(1)}+S_{\beta \delta} J_{\alpha \gamma} . \tag{2.17c}
\end{equation*}
$$

It can be seen from invariance condition (2.16a) that the stresses are symmetric

$$
\begin{equation*}
S_{\alpha \beta}=S_{\beta \alpha} . \tag{2.15b}
\end{equation*}
$$

The full elastic constants $\int_{\alpha \beta, \gamma} \varepsilon$ have to fulfil the Born-Huang symmetry relations (2.17). Neglecting a surface term from the invariance condition (2.16b) and stability condition (1.19a) we obtain for the interior of the crystal

$$
\hat{C}_{\alpha, \gamma \delta}^{x}=\hat{C}_{\alpha, \delta \gamma}^{x}
$$

This means that the second part of $S_{\alpha \beta, \gamma} \delta^{\delta}$ does not orange or under $\alpha \leftrightarrow \beta, \gamma \leftrightarrow \delta$. Let us oonsider the last term of $S_{\alpha \beta, \gamma^{\delta}} \quad$-the second part of $\hat{S}_{\alpha \beta, \gamma^{5}}$ connected with $M^{\text {is }}$. As it can be seen from (2.16c) after change $\alpha \leftrightarrow \beta, \gamma \leftrightarrow \delta \quad$ four additional terms appear of a type $\tilde{\phi}_{\text {s }}^{\alpha \delta} S_{\beta \gamma}$ - But these additional terms cancel each other. This can be proved with the definition of frequencies $\omega_{Q} \quad(1.5)$ and the definition of

a symmetry properties of Born and Huang (2.17).

In classical theory of elastioity the appropriate quantity to describe true strains is the tensor of finite strain $\eta_{\alpha \beta}$

$$
\eta_{\alpha \beta}=\frac{1}{2}\left(u_{\alpha \beta}+u_{\beta \alpha}+\sum_{\gamma} u_{\gamma \alpha} u_{\gamma \beta}\right)
$$

The coefficient of the second order term in expansion of the free energy in $\eta_{\alpha \beta}$ has the complete Voigt symmetry properties

$$
\begin{align*}
& C_{\alpha \beta, \gamma \delta}=C_{\beta \alpha, \gamma \delta}=C_{\alpha \beta, \delta \gamma}=C_{\beta \alpha, \delta \gamma} \tag{2.18}\\
& C_{\alpha \beta, \gamma \delta} \quad \text { is connected with } \\
& C_{\alpha \beta, \gamma \delta}=S_{\alpha \beta, \gamma \delta} \tag{2.19}\\
&
\end{align*}
$$

Relation (2.18), (2.19) are equivalent to Born-Huang relations for $S_{\alpha \beta, \gamma \delta}$
The symmetrized quantity

$$
\bar{S}_{\alpha \gamma, \beta \delta}=\frac{1}{2}\left(S_{\alpha \beta, \gamma \delta}+S_{\alpha \delta, \gamma \beta}\right)
$$

appears in the equation of motion for displacement of phenomenological theory of elasticity (see for example [13]). The solution of this equation is a plane wave

$$
u_{\alpha}(\vec{X}, t)=u_{\eta}^{\alpha} e^{i \omega t-i \vec{q} \vec{x}}, \quad \sum_{i} u_{\eta}^{\alpha} u_{\eta^{\prime}}^{\alpha}=\delta_{\eta, \eta},
$$

where η is a polarization index of an aoooustio ware. With these displaoments the equation of motion beoomes

$$
\omega_{q \eta}^{2}=\frac{v}{M_{\varepsilon} N} \sum_{\alpha \beta \gamma \gamma \gamma} u_{\eta}^{\gamma} q_{p} \bar{S}_{\alpha \delta, \beta \delta} u_{\eta}^{\gamma} q_{\delta}, \quad(2.20)
$$

mere M_{c} is the mass of unit col $M_{c}=\sum_{x=1}^{B} M_{x}$.

We shall compare this expression with hydrodynamic limit of $\tilde{\omega}_{Q}^{2}(\omega)$ - Following Leibfried and Ludwig $[1]$ it is possible to find $S_{\alpha \beta, \gamma \delta}$ in terms of measured quantity $\bar{S}_{\alpha \gamma, \beta \delta}$ and $S_{\alpha \beta}$, or lattice theoretical expressions: $\int_{\alpha \beta}$, second term in the right hand side of (2.14) and symmetric part of $\int_{\alpha \beta, \gamma^{\delta}}$.
3. The Method of Long Waves.

Let us consider the hydrodynamic limit of $\tilde{\omega}_{Q}^{2}(\omega)$

$$
\lim _{|q| \rightarrow 0}\left\{\lim _{w \rightarrow 0} \widetilde{\omega}_{Q}^{2}(w)\right\}
$$

From (1.15) it on be seen that when $|\vec{q}| \rightarrow 0, \vec{k}_{1} \rightarrow-\vec{k}_{2}, \vec{k}_{1} \rightarrow-\vec{k}_{2}$, Let us write the mass operator in a more convenient form

$$
\Pi_{Q}(\omega)=\frac{1}{2 N} \sum_{u, v} M_{U V}^{\alpha \gamma}(\vec{q}, \omega) e^{\overrightarrow{i q}\left(\vec{x}_{u}-\vec{x}_{v}\right)} \frac{e_{\alpha}(Q, x) e_{\beta}\left(Q, x^{\prime}\right)}{\omega_{Q}\left(M_{X} M_{X^{\prime}}\right)^{1 / 2}}
$$

where

$$
\begin{align*}
& i\left(\overrightarrow{k_{2}}+\vec{q}\right) \vec{x}_{M}-\overrightarrow{i k}_{z} \vec{X}_{M} \\
& x e \\
& \frac{e_{v}\left(\vec{k}_{1}+\vec{q}_{,}, x_{1}\right) e_{\nu^{\prime}}^{*}\left(k_{1}, j_{1} j_{1}^{\prime}\right) e_{\mu}\left(\vec{k}_{2}+\vec{q}_{2} j_{2} ; x_{2}\right) e_{\mu^{\prime}}^{*}\left(\overrightarrow{k_{2}} \vec{j}_{2}^{\prime} ; x_{2}^{\prime}\right)}{\left(\omega_{k_{1}+q j_{1}} \omega_{k_{1} j_{1}^{\prime}} \omega_{k_{2}+q_{1} i_{2}} \omega_{k_{2} j_{2}^{\prime}}\right)^{1 / 2}\left(M_{x_{1}} M_{x_{i}} M_{x_{2}} M_{x_{2}^{\prime}}\right)^{1 / 2}} \times \\
& \times 2 F^{0}\left(k_{1}+q, j j_{2} ;-k_{2} j_{2}^{\prime} ; \omega\right)\left[\left(1-((\omega))^{-1}\right]_{k_{1}+q j_{1}, k_{1} j_{1} ; k_{2}+q, j_{2},-k_{2}, j_{2}^{\prime}} .\right. \tag{3.2}
\end{align*}
$$

We are interested in the behavior of Eq. (3.2) for small
ω and $|\vec{q}|$. For all but one type of oontributions to this equation $M_{U V}^{\alpha \gamma}(q, \omega)$ is oontinuous. The exception are those terms in Eq. (3.2) for vhioh

$$
j_{1}=j_{1}^{\prime}, j_{2}=j_{2}^{\prime} \quad F^{0}\left(k+q_{1} j_{j}-k_{1} j ; \omega\right)
$$

behaves singularly for small ω and $|\vec{q}|$, the hydrodynamio limit is different from the collisionless one

$$
\lim _{|q| \rightarrow}\left\{\lim _{\omega \rightarrow 0} F^{0}(k+q, j ;-k, j ; \omega)\right\} \neq \lim _{\omega \rightarrow 0}\left\{\lim _{|q| \rightarrow 0} F^{0}\left(k+q_{1} j ;-k j ; \omega\right)\right\} .
$$

The singular behavior of $C(\omega)$ is due to the coupling with F^{0} - To obtain a connection with the theory of elasticity we confider only the part irregular in the limit of small ω and $|\vec{q}|$ of the real part of the mass operator $\operatorname{Re} \prod_{Q}(\omega)$, 1.e. we $p u t j_{1}=j_{1}^{\prime}$, $j_{2} \neq j_{2}^{\prime}$.
It will be seen from further considerations that in the hydrodynamic limit and when we limit ourselves to terms of the order $|\vec{q}|^{2}$ we may neglect the dependence of irregular part of $M_{v \gamma}^{\alpha \gamma}(q, w)$ on $|\vec{q}|$. Then
we denote

$$
\begin{align*}
& e^{i k\left(X_{S}-X_{S}\right)+i k^{\prime}\left(X_{M}-X_{M}\right)}\left[\left(1-C^{i,}\right)^{-1}\right]_{k_{,}-k_{j} k^{\prime},-k^{\prime}} \frac{F\left(k^{\prime}\right)}{2}, \tag{3.3}
\end{align*}
$$

where $C^{\text {is }}$ is the hydrodynamic limit of $[C(\omega)]_{k+q, j i-k j} ; k^{\prime}+q^{\prime}, j^{\prime} j-k^{\prime} j^{\prime} \quad$ and it is equal to

$$
C_{K_{1},-K_{1} ; K_{2} ; K_{2}}^{\text {is }}=\widetilde{V}\left(-K_{1}, K_{1} ;-K_{2} ; K_{2}\right) \frac{1}{2} F\left(K_{1}\right)
$$

Expanding in $\widetilde{M}_{\mathrm{UV}}^{\alpha \gamma}(1-\tilde{C})^{-1}$ in the series and using the definition of \widetilde{V}_{4} (1.16) wo prove that

$$
\widetilde{M}_{U V}^{i_{\alpha \gamma}}=M_{U V}^{i s \alpha \gamma} .
$$

From (3.1) it follows that $M^{i s}{ }^{\text {dY }} \underset{\sim}{W}$ depends on the difference of coordinates $\quad \vec{X}_{u}-\vec{X}_{v}$. This enables us to exclude surface effects from the combination

$$
\bar{S}_{\alpha \gamma, \beta \delta}
$$

The translated invariance condition (2.9a) leads to

$$
\begin{equation*}
\sum_{u} M_{u v}^{\alpha \gamma}=\sum_{v} M_{u v}^{\alpha \gamma}=0 . \tag{2.9b}
\end{equation*}
$$

Let us consider the long-mave limit of $\widetilde{\omega}_{Q}^{2}(0)$. In this limit we put $[2]$ ($|\vec{q}| \rightarrow \varepsilon|\vec{q}|$, ε is a formal parameter of expansion)
$e_{\beta}\left(Q, x^{\prime}\right)=e_{\beta}^{(0)}\left(f, x^{\prime}\right)+i \varepsilon e_{\beta}^{(1)}\left(Q, x^{\prime}\right)+\frac{1}{2} \varepsilon^{2} e_{\beta}^{(2)}\left(Q, x^{\prime}\right)+\ldots$
and for

$$
\begin{equation*}
\tilde{\omega}_{Q}^{2}(0) \equiv \tilde{\omega}_{Q}^{2} \tag{3,4a}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\omega}_{Q}^{2}=\varepsilon^{2}\left(\omega^{(1)}(Q)\right)^{2} \tag{3.4b}
\end{equation*}
$$

Putting (3.4a,b) into equation

Which can be obtained from the definition of renermalized frequencies $\bar{w}_{Q}(\omega)$ (1.18), equating to zero oceffiorients of terms of different order in ε we obtain the system of equations of the theory of perturbations. From conditions (29a,b) it follows that the equation of zero-order in ε

$$
\begin{equation*}
\sum_{V}\left(M_{x} M_{x^{\prime}}\right)^{-1 / 2}\left(\widetilde{\phi}_{u v}^{\alpha \gamma}+M_{u v}^{i s} \alpha \gamma\right) e_{\gamma}^{0}\left(j, x^{\prime}\right)=0 \tag{3.6}
\end{equation*}
$$

has a solution $[2]$

$$
\begin{equation*}
e_{\beta}^{(0)}\left(j, x^{\prime}\right)=\left(\frac{M_{x^{\prime}}}{M_{c}}\right)^{\frac{1}{2}} u_{j}^{\beta} \delta_{j \eta} \quad \eta=1,2,3 \tag{3.7}
\end{equation*}
$$

where we introduce three polarization rectors describing in long waves limit acoustic oscillations

$$
\begin{equation*}
u_{\eta}^{\alpha}=\lim _{|\vec{q}| \rightarrow 0} \frac{e_{\alpha}(\vec{q}, j=\eta, x)}{\left(M_{x}\right)^{1 / 2}}\left(M_{c}\right)^{1 / 2} \tag{3.8}
\end{equation*}
$$

These vectors do not depend on x. From the
condition of completeness of the set of vectors $e_{\alpha}(\vec{q}, j, x)$

$$
\sum_{\alpha=1}^{3} \sum_{x=1}^{s} e_{\alpha}^{*}(\vec{q}, j, x) e_{\alpha}\left(\vec{q}, j^{\prime}, x\right)=\delta_{j j^{\prime}}
$$

it follows that the set of vectors $u_{\eta}(\eta=1,2,3)$
is the orthonormal one

$$
\begin{equation*}
\sum_{\alpha=1}^{3} u_{\eta}^{\alpha} u_{\eta^{\prime}}^{\alpha}=\delta_{\eta \eta^{\prime}} \tag{3.9}
\end{equation*}
$$

The vectors U_{η} can be found from the equation of the second order, in $\varepsilon, e_{\beta}^{(1)}\left(Q, x^{\prime}\right)$ can be evaluated from the equation of the first order in ε
$\sum_{\gamma, x^{\prime}} \hat{C}_{x x^{\prime}}^{\hat{\alpha}}\left(M_{x}\left(M_{x^{\prime}}\right)^{-\frac{1}{2}} e_{\gamma}^{(1)}\left(\vec{q}, \eta, x^{\prime}\right)=-\left(M_{c}\right)^{-\frac{1}{2}} \sum_{\beta \gamma} C_{\alpha, \beta \gamma} u_{\eta}^{\beta} q_{\gamma} \cdot\right.$ (3.10)
This equation is identical to (2.11) and its solution is

known as

$$
\begin{equation*}
e_{\gamma}^{(1)}\left(\underline{\nu}, \eta, x^{\prime}\right)=-\left(\frac{M_{x^{\prime}}}{M_{c}}\right)^{\frac{1}{2}} \sum_{\mu \lambda \rho x_{1}} R_{\mu^{\prime} x_{1}}^{\gamma \mu} \hat{C}_{\mu, \lambda \rho}^{x_{1}} u_{\eta}^{\rho} q_{\lambda} \tag{3.11}
\end{equation*}
$$

Let us consider the equation of the second order in ε

$\times\left(X_{u}^{\delta}-X_{v}^{\delta}\right) q_{\beta} q_{\delta}+\frac{1}{2 N} \sum_{\gamma \beta u v} \frac{e_{\gamma}^{(1)}\left(\vec{q}_{, \eta}, x\right)}{\left(M_{x} M_{x}-\right)^{1 / 2}}\left\{\tilde{\phi}_{u v}^{\alpha \gamma}+M_{v v}^{i s \gamma_{v}}\right\} x$
$x\left(X_{v}^{\beta}-X_{v}^{\beta}\right) q_{\beta}+\frac{1}{2 N} \sum_{\gamma u V} \frac{e_{\gamma}^{(2)}\left(\vec{q}_{1} \eta_{,} x^{\prime}\right)}{\left(M_{\gamma} M_{x^{\prime}}\right)^{1 / 2}}\left\{\vec{\phi}_{u v}^{\alpha \gamma}+M_{u v}^{i s} \alpha_{u \gamma}\right\}$.
The system of homogeneous equations connected with (3.12) has a solution of the type (3.7). The system of nonhomogeneous equations has a solution if and only if nonhomogenity is orthogonal to the solutions of the homogeneous equations. This condition leads to the equation

$$
\begin{equation*}
\left(\omega^{(1)}(q, \eta)\right)^{2}=\frac{V}{M_{c} N} \sum_{\alpha \beta \gamma \delta} \bar{S}_{\alpha \gamma, \beta} \delta u_{\eta}^{\alpha} u_{\eta}^{\gamma} q_{\beta} q_{\delta} \tag{3.13}
\end{equation*}
$$

Equation (3.13) is identical with (2.20).

The result (3.13) can be used to derive a sum rule for the spectral function $X_{C}(u)$ defined as follows

$$
\left\langle\left[A_{Q}\left(t^{\prime}, A_{a}^{+}\left(t^{\prime}\right)\right]\right\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega X_{Q}\left(\omega^{-\infty} e^{-i w\left(l-t^{\prime}\right)}\right.\right.
$$

For $\left\langle\left\langle A_{Q}, A_{Q}^{+}\right\rangle\right\rangle_{L}$ the usual spectral representation can be derived [14]

$$
\begin{equation*}
G_{\dot{L}}(\omega)=\left\langle\left\langle A_{Q}, A_{Q}^{+}\right\rangle\right\rangle_{i}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left\langle\omega^{\prime} \frac{X_{Q}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega^{\prime}} .\right. \tag{3.14}
\end{equation*}
$$

Substituting (3.13) into the static limit of $G_{Q}^{-1}(c)$ we get the relation
$\frac{1}{\rho} \sum_{\alpha \beta \gamma \delta} \int_{\alpha \beta, \gamma^{\delta}} u_{\eta}^{\alpha} u^{\beta} \lim _{q \rightarrow 0}\left\{q_{\gamma} q_{\delta} \frac{1}{2 \eta} \int_{-\infty}^{+\infty} d \omega^{\prime} \frac{\chi_{q \eta}\left(\omega^{\prime}\right)}{\omega^{\prime}}\right\}=1$
ρ is the density of the orystal $\rho=\frac{M_{c} N}{V}$. As we take only the diagonal part of the phonon Green function the sum rule $[3,4]$.

4. Conolusions.

We have presented the derivation of the elastic constants for strongly enharmonic crystals in the pseudoharmonic approximation by the method of homogeneous deformation and the method of long waves. This gives a relation between the statio self-energy of Green function of displacements and second derivative of the free energy equivalent to sum rule. This connection enables us to exclude the surface effects and to extend the Liebfried and Ludwig method to the pseudoharmonic approximation.

The elastic oonstants have the symmetry properties whioh lead to the rotational invarianoe of the free energy. Vertex oorrections are valid as 1t follows from the oomparison of results obtained from both methods.

The same results obtained from both the long waves and the homogeneous deformation methods in the pseudoharmonio approximation give us the very important information as It is usually much easier to cal oulate the mass operator than the free energy (e.g. for metals or some models of fluids). In addition, the mass operator enables us to find the adiabatio elastio oonstants and the lifentime of phonons as well. This gives us the possibility of caloulating the sound attenuation in the hydrodynamios and collisionless regimes whioh will be oonsidered in the forthooming papers.

Finally we mention some inoonsistenoy in Klein et al. $[6]$ and our oalculations. As is seen from calculation of the mass operator $\prod_{Q}(\omega)$ we do not take into aocount the correotions of the seoond order in the self-oonsistent determination of phonon vertices and frequencies $[7]+$ This may lead to some improvement of the numerioal results of Klein et al. $[6]$.

The author thanks Dr. N.M. Plakida for many valuable disoussions and $D_{r} . H_{\text {. Konwent for encouragement and ori- }}$ tical reading of the manusoript.

[^1][1] Ludwig, W.: Recent Developments in Lattice Theory. In Springer Tracts in Modern Physics, Vol 34, (1967).
[2] Born, M. Huang, K.: Dynamical Theory of Crystal Lattices. Oxford: Clarendon Press, (1954).
[3] Götze, W.: Phys.Rev. 156, 951 (1965)
[4] Götze, W., Michel, K.H.: Z.Phys. 217, 170 (1968)
[5] Werthamer, N. R.: Phys.Rev. Bl, 572 (1970)
[6] Klein, M.L., Horton, G.K. G oldman, V. V.: Phys.Rev. 2B, 4995 (1970)
[7] Plakida, N.M.: Preprint J.I.N.R. P-4-6066, Dubna 1971.
[8] Meissner, G.: Phys.Rev. 1B, $182 \dot{2}$ (1970)
[9] Meissner, G.: Z.Phys. 247, 203 (1971)
[10 Plakida, N.M.: Teor. i Mat.Fiz. 5, 147 (1970)
[1] Plakida, N.M.: Teor. 1 Mat.Fiz. 11, No3, (1972)
[12] Choquard, P.: The Anharmonio Crystal. New York: Benjamin 1967
[13] Wallace, D.C.: Solid State Physics, 25, 301 (1970)
[14] Zubarev, D.N.: Nonequlibrium Statistioal Thermodynamics, Moscow: Nauka 1971
\[

$$
\begin{gathered}
\text { Received by Pubilshing Department } \\
\text { on May } 16,1972 .
\end{gathered}
$$
\]

[^0]: ${ }^{+T h i s}$ method of claculation of Green function was proposed by N.M.Plakida

[^1]: ${ }^{+}$The author 1s indebted to N.M.Plakide for drawing his attention to this problem.

