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Introduction.

Ccalculation of elastic constants can be made by
two methods: the methods of homogeneous deformation
[1]_ and the method of long wavés [2] ; Using
these methodé elastic constants for dielectric crystals
were caloulated in the harmonic approximation and the
results obtained from both methods were consistent [1] .

Gotze [3] and Gotze and Michel [4] extended both
these methods and calculated elastio oonstants for
arbitrary dielectrio crystal lattices by taking into

account the ‘entire anharmonicity of the crystal.

Although results of [5] and v[@] are exact
of importance is the application of an appfoximate method
which enables us to make numerical computations for’
strong‘anharmonic crystals saving at the same time
the main exact relations such as elastic sum ruleé

[3] ’ [4] . Fdr quantum crystals or strongly an-
harmonic crystals of rare gases the role of such an
approximate method plays the method of average phonon
f1elds (pseudoharmonic approximation) [5] e

For primitive lattices of rare gases Kleln et al.
[6] cal culated self-consistent isothermal elastic
constants by expansion of the pseudoharmonic free

energy of the crystal into a power series in deformation



parameters 1«*F and made also some numeriolal”

computations,

In the present paper results of Kleinm et al. [6] are
extended to‘the nonprimitive nonionic crystal lattices.
Derivation of elastio oonstants [6] 1s modified in
such a way that it 1s possible to compare the obtailned
results with those from the method of long waves. This
oomparison'showsbthat for tne reeultsvto be consistent
1t 1s necessary to take into acoount the vertex corrections
[5,7] o The obtalned relation between the seoond derivati-~
ve of a free energy and the mass operaton of the diSplaoe—-
ment Green function makes it possible to eliminate the
surface effeots and therefore, to extend the method of a
homogeneous deformation to a pseudoharmonio approximation,
Comparison of the result of both methods leads to an
exaot relation - the sum rule whioh 1s a partioular ocase
‘of the generel elastioc sum rule’[3'4 8 9] .

The most convenient method for our purposes is that of
two-time Green funotion [7,10,11] « This methed enables
us te calculate from the same point of view both the

free energy and self-energy of displacement Green function.

In Sect.2. we shall glve definitions and some results

[7,10,11] necessary for our purposes. Section 3 will be
devoted to the method of a homogeneous deformation and to
the study of a symmetny properties of elastio constants,
In Seot.4 the methoo‘of long waves will be used and



s

the comparison will be made between the results obtained

from both methodse.

1. Notation and Definitions.,

We shall cdnsider quantum crystals or crystals of
rare gases at sufficilently high temﬁeratu.res, where the
harmonic approximation does not work, Sizable fluctuation
of the nuclei around their lattice sites are allowed for
by assuming their equilibrium positions rather than nuclei
themselvesy to be arranged in a regular array. Thus at
given temperature T (or ®= de) y We _:I;dentii‘y _13he
equilibrium value of poiitign ope_z;a.tor R(f,’K) 2 R‘_
with the lattice site Xp+ Xy 2 X of ™ —th nucleus

in the - +h unit cell. That is
- - = - 5 © } (E :

where the index L denotes the pair of indices LE(E,"‘)
and ®ztead ;€= o, N . We calculate the average
value (1.1) with Hamiltonian of equilibrium crystal in the

presence of externmal surface foroces F1_'

5 .
PL - -»> -
=) — .~ R -
H=] M UL-R,.) Z,_ FLu, (1.2)
-> L L
F =0 for all the in the interior
L of the orystal, (1.3)
: . / ed
Expanding the potential energy of the crystal U( _R;-..)

-

- -
into a series in the thermal displacements U, = RL— n
leads the Hamiltonian (1.2) to the form [11]



H)=H, + (), @

where
Pl
L A4 °
— + = w, =
H = Z T 2L byp ity 1Z Fou, ) (1.4a)

(1) = Z ol Z P —’2— Z cp:’z Uy (1.4b)

n=1 12
where 12 (‘"n'x)e) y X=XY,2 Ho 15 a trial
harmonio Hamiltonian, and its matrix of force constants

¢ o« will be defined further. The trial phonon

g .
frequencies WU and vectors of polarization
e,(-(k:,)'j” ) are determined from the eigenvalue.
equation
-o‘—'b .
2 - Z -1 (Xf~XC')
e i) = ) e F(kJ’n)V_“u-“n’ e (1.5)
L B
where k is the qua.s:l.momentum vector, J — the
index of branch and polarization j= 1,..,.34 .

The Hamiltonian contains all vertices of anharmonic
interaction

oly... Olp «, o, -5
- v
O L= VLVl X ). (1.6)
As we need for our purposes the free energy in the
lowest approximation we choose the matrix of foroce

constants (Pm in pseudoharmonic approximation



Cucp v “ 1
¢ = V V .. X ) = VSV,exp{;Z@,uz)vﬂz U, a.n

557
where U( ,_) 1s the potential energy of a
statio lattice,

With this trial Hamiltonian we obtain with = the help of
ene of the methods ~ Choquards’s methods [12] ’
variational method [5] or method of two-time
Green. funotions [11] s the free energy in
pseudoharmonio approximation.

w, ..
F=U,+ Y fn(2sh IE? )+{exp[%’);;(u,u,)V,F’z]—1}(}‘, -1y 5,2041“;) (1.8)
kJ' 4 1.2 o

Index Oin {uu,?> denotes that we calculate the oorre-
lation funoction with Hamiltonian H + Lot us

consider the retarded Green runotions of displacements Gu' (t-t')

g )

G (ft) &uilh);u L,(t))):-i@lt-t')([ui(f),u;'lt')])=£%’e L), °(1.9)

- H/e TR
where ¢\ Tr|. m)) wit)=e u; e
We shall caloulate this funotion in higher approximation.
We put in Hamiltonian (1.4) N =1 « In the
squation of motion for &u;lt); ui-(t)> there appear
higher order Green funotiens &u, (). u,(t); uy (t)D
Making the deoouplin.g of this higher oxder Sreen funotions
as proposed im ‘[lo] and keeping in the right-hand
side of the equatien of motion the first term only

we obtaln



jZ(Mi wZS;J' - $ij)<<uj‘ 'Ji)z’ S %Z ('.44uz Up )) (1.10)

1s connected with) v
The funotlon Wuz;u;-M» ' QP u) , KPing s wie

, L : (1.11)
Wy Ui M, = ’,I,L';«P,u,_}ui’»w + o L up D, ,

In order to caloulate the Green funotion « 44Uz N,
we must oonsider the equatlion of motion for this two
funotions T

: L i
w((l’;.uz,ut,))w = Mz((P,P,_;ui,))m ~ ZZ<“1“3’>°«“1'“2’5 UM +

1;213’
(1.12)

c b L P gy, Kuyyup M, - 0 L q’\);‘,«u‘,u,_,jug,»w
21131 > i’ .

where we keep only the first three terms of the sum
in the right-hand side /of (1.12)"', a.nﬂ u'sé the condition B
of orystal equilibrium in pseudoharmonio approximation

EG(--:YLM): "E v: Fq K (1.13)

This oconditlon 1s:easily obtained from the a.verage of
the equation of motion for momentum operator P “‘) .

TThis method of claculation of Green funot:l.on
was proposed by N.M. Plakida -



In derivatien of (1l.10) and (1.12) we caloulate all
sorrelation funotions, with Hamiltonian Ho .
$4...n is the renormal:l.zed vertex
B =Wt Ul %)
Equation for (u,5; u; )) can be obtained from (1.12)
vy ohanging the indices 122 .

Using period:l.o boundary oonditions we go to the
?

expansion of UL and L in plane waves. The polari-
zation veotors E(kj,’)() form a.n orthonermal and oomplete
set and we ohoose U‘h") =¢ ("‘J»"‘) . Differentiating
Eqs. for {WR); w 19D ana AW E);ug ()"
onoe more with respeot to t and expanding U, PL
in the plane waves we obtaln a system of equations
which allows us to find KA A s Ba M,y where

= A% =g+ Wy , Q=(3)) , - Q= Fid) Putting this
oxpressionuito equation for ((Atu qu » whioh oan be
obtained from (1l.1lo) negleoting & polarization

mixing (J = 3') we obtain

o 1w, ~
A ,A+ = 8 . (1.14)
Che G» - (ud + 2wy Tl () .

The funotion {(Aa Ar* )) 1s an analytic continuation

of retarded Green funotion into the oomplex plane of
w . The mass operator of Green funotion ((AQ,AE )20
Tre(w) 18 equal to [4,7] ,



| =1 9 Y \ Y
ﬂ; = %Z (Q rkz\)[("‘ C(w)) J F{K;)Kliw)\é (Q)-Kﬂ-kl) > (1.15)
KK 'k ] Kﬁkﬂk;le'

where V(Ku ;Kn ) is the phonon vertex
~ e (K, )(i . ea{ (kh ‘"n) i.l(,;‘_’ r.t ii”'[."»- of,.. &
VIK,...6) =(2N) . — "t (1426

o "nzm(”x, ..... wg,)'/z ¢ ¢ L b, (1.16)
FO(K1|K2;' (0)

is a phonon 'bub'ble

. 2 (wy+ W) (g, 1 +1) 2 (W -0, ) (Mg, = i)
F (Kh kl ‘-0) T8 2 -T2
! W~ (wK1+ wkl) W= (WK"‘ wkz)L ,(1'17)
fad 3 -4
Ny, = Nilv,) = (e@-/I) ,

o ~
[ ¢ (w)]K,Kz; Ky K, = kF {K"k“‘")vlt ('K4,'K2> K5, K") .

In the calculation of the mass operator we take
into acoount all two-phonon processes., As we shall see
further this renormalization - of three phonon iiertioea
is necessary to obtain a correspondence between results
of the method of homogenecus deformation and the method
of long waves, The real part of the mass operator

Ty (w+ig)

gives renorma.lized phonon frequency

;Q’- (w) = w; + 2wg Re Tl (w+ie), (1.18)

and its imaginary part gives the life-time of phonons.



2., Method of the Homogeneous Deformation.
Symmetries of Elastic Constants,.

We shall discuss the case of finite stresses:in
.the initig..ldequilibrium state, whioh are. produced by}
forces Fs applied to surface atoms. The homogeneous
elastic deformation df 'a orystal_’is caused by additional
applied small surfaoe forces 'I[s « In this case
both the free ensrgy and potential energy of a orystal
depend glso on a deformation u“F (primitive lajtices)
and also on relative displaocements of sublattiloes u‘,(
(nonprimitive lattioes). l

To obtaln total derivatives (spaoe) we shall assume
aoodrding to Choquard [12] and Klein et al. [6]
the‘ set of correlation»funotions <U-i,“J' )o to be
intermediate varilables describing fluotuational state
of a crystal and then we shall use the chaln rule of ‘
differentiation. As:we are interested in crystals
we assume that an influenoe of external forces leads
to a change in qoordinates of atoms but the fluctuational
state of the sy;s'tem does not change. This means that the
derivative (F'aa—;,‘; )T 1n (1.13) denotes the derivative

at constant _ T and (Uz QZ,‘ )o
. — .
5. (3 U)o .
= - S ! ol8
o8 X5 rcuw

Pseudoharmonic free energy (1.8) 1s stationary with

: o’
respect to varlation of < u; Uy, >D .



.
Following Choguard [12] and Klein et al. [_6} we
obtain the second derivative of free energy with

respect to spacelike varibles (1.e. 1t doeé not depend

on temperature) &i, &2 in terms of isofluctional

derivatives only

§ L~ v oy op” - or mp! ~ ppt
pe) o) o8 2 oy (?fp .
(be.azz r '(i)s"cEJ * Z_ OF; L:s-'u': [ Lio s

»
Y )
Twr | b1 0f, TMi¢ey (2.1

where

oo ] ) ; \ ; '
i - (..L)Z ,e" lK,K)e:’(K,X_') e‘o (K ) ep' (k,')f;) ik [XI"XS’) vik (X %) F ?K)(z. 2)
S5 Ll 2N ” (MxM;"Mn'Mui’)uz e

ZI-OQK 9
PR {

s = ) N eppax ARy (2.3
(1 C )RR" MM’ 80“ SEF-'spnsRlM.l Z (p } )

J . R L = L MM/
R
Ly

s _o
F (K)  is hydrodynamic (isothermal) limit of F(Kuw)

‘ {2, + 1
F (K) = Lim  Um F%hq_,j;-k,j;w) = M‘&E’—‘f—)'(&'ﬂ

1126 w0 M %

The applied procedure of evaluation of derivatives
of the free energy is similar to the differentiation

of quasiharmonic free energy where u)k_: are functlon

of the volume. After differentiation of quasiharmonic

free energy with respeot to volume the terms wilth

12



three—-phonons and four-phonon vertices appear. (see foi-

* example [1] Y

In the theory of elastioity £'s are oohsidered
as homogeneous straln parameter ‘Nq-(, ('Du " Z Xu axu
and relative displacement parameter uy =
P P x (duy 7 2% 3x~ ).
We expand free energy density '\7 in the strain

parameters «p a.nd relative displacement parameters ux

. «
@ Jﬁ 1ZC Y x’ Z_ Suxuﬁ;(2.5)

E_E,T
v _.v_o 2','3 9"‘P Zzuqaxb “”

The first derivatives of the density of free energy

: i QE) .
S«(*:V(buaé'r ) Yep Uy =0 (2:6)

are the stresses in the initial state. The coeffioients

in terms of second order in (2.5) are defined as

A

b N
Sap,ysge-(auﬂpbuw) ZX {(PKK M's “ }XS (2.72)

Va

1]

Pl i 1 O'F is ' .
e ™ L g bu) 12{49"'”“ ay, ™

]

au . _i('blF ) {,\.u; "’“db’ ]S XS (2.7¢)
18 7V A dugedp -—Z Ve

K



M 13 “g
uv is equal to

—_ _-"-lv ’ ¢ 4 P ?Pf‘}"~ '
MI“‘K :Z_q.) v L,V ?F [(1_(:!5) ] q)b()'/u (2.8)

Uv USs” g5 RRY RR7Mmr B VMM’
v
$SRR MM/
A A o((l '\' A

Mat_:rices S"‘F"ﬂ ) (' nn, ¢ % 68 are generallzations
of Lharmonic matrices of Lelibfried and Ludwig [l] .
In Sect. we shall show trat M" L) 13 a function of
Xu "xtr « This allows us to eliminate surface effects
as it was done by Leibfried and Ludwig [l] « In such an
elimination we use the condition of translation invariance

of the potential energy (see Ludwig [l] )
B
2; ¢ n L= 0. (2.9a)

In the Lhird term of (2.5) elimination of surface effects
1s not possible, but in physically interesting- formulas
occur only comblnation %(Sdﬁ,ﬂi + S«’S,x(l)"hich

permits such an elimination.

The free energy density still depends on relative

of
displacements Uy . This can be eliminated by
usi_{xg the equilibrium condition after the small forces
?S have been applied
DU LX)
% « v Kpae
Fo+ fs = — (2.10)
T s 0X T, <ue

Expanding U(XL) in udP and u",“ and taking into
account the equilibrium oondition (1.13a) we obtain the



equation which gilves the relatlion between these two

rarameters

I Gl Z c.
na >,y & “ye (2.11)
B, %
Here we have neglected )( s as it 1s sufficlent to solve
o
(2.11) in the interlor of the crystal. Matrices C,m:

L%
C o, ,g have the same properties as harmonic ones defined

by Liebfried and Ludwig 11} . Equation (2.11) differs

from equatlon of Lelbfried and Ludwig by definitlon of
«p

FEEEN Cd'Jg ’ only, so we give here only

fipal results

R0 A |
~ Z xn, —ppR SR (2.12)
ppﬂ-‘)q
where. the R is symmetric (in indices «X and K )
~ :
right-hand side reciprocal to C matrix

2 oAp pé & o
Z (';m, R‘!xm' = ap Cun
i A, Hy .
Now we insert (2.12) into the righ-hamd side of (2.5)
and fimlly we obtain

/ .
F_ kK - u U . 2.13)
kY +st(3uaf’: k ‘Z;!,S-M,‘_ P (
where qu,xg 1s the second ocrder elastic
constant equal to

S ¢={§ +Z R (M } (2.14)

apiye 30 A ” ETT O PR

>. g . i e ‘



Let us consider the symmetry properties of S“P' §5 .
As the mtrix R is symmetric gp {5 is symmetric
too in the pair or indloes

gdp,gs = 518,«(3.

We derive symmetry propertiles of S‘;’p.r.‘g conneoted with
changes of X <> P y ye 6 with the help

(2.1%a)

of the conditions of rotational invariance of the potential
energy [1] o

Z@sz = Z :5{3 A.f‘,_ , (2.16a)
[¥] J
(2.160)

PS 55 (2. 16¢)
SS'S “pss' Sot e

~ xS
DI R T I IR Zqﬂ‘s"x
v

SS’

Following Liebfried and Ludwig.it 1s possible to show
that a part of sxp,gs

"U 1 5
Sapgh Z Xy

has the symmetry properties of - Born and Huang

¢ L5 s @ s

“ﬁ)‘é Ap 65 So((;,SK p& th L] ; a)

16



A (4 1(4)
\ . S § .
5 %3, §¥ + Sds Sr,s = N Bl g g b}y R (2.17v)
2 () g(t) R _ (2.170)
3 = o 0.
Sapgt = 362 % pnsy * pe Ouy

It can be seen from invariance condition (2.16a.) that the

stresses are symmetric

S‘"P = gf”“ . (2.15b)
The full elastic constants S“p,,gg have to fulfil the
Born-Huang symmetry relations (2.17). Negleoting a surface
term from the invariance comdition (2.16b) and stability
condition (1.19a) we obtain for the interior of the

orystal
Ay A

(' d.‘s = C 0‘.8‘( *
This means that the second part of S“‘F-GE does not olange

under < &, Y ) . Let us oonsider the last term
A

of S“P»U,s —~the second part of S*[‘.JS connected .
with M . As 1t can be seen from (2.16c) after
change olé—)];‘ ¥y < & four additional terms appear
~«d
of a type ¢ . SPK « But these additional terms _
canoel each other. This van be proved with the definition
of frequenoles W (1.5) ard the definition of
o o
M’ us . ‘We have proved that S*P'AS has

a symmetry properties.of Bor‘r;‘ and Huang (2.17‘).

¥



In classical theory of elastioity the‘appropriate
qua.ntitj,' to desoribe true strains is,,the tensor of finite
strain ’Yl,“,

. 4 :
Mep = 2 (ug e upe 2 yu 5 )-

The ooefficilent of the second order term in expansion

of the free energy in ,1«[* has the complete Voigt
symmetry properties
pr,gﬁ = CP""J'S = Coc(’n&é’ = C(;.,('S( . (2.18)
C«(A.sg is connected with g“P'EE

apiyd = BO(P' ¢ gs Oy -
Relation (2.18), (2.i9) are equivalent to Born-Huang
relations for Su{P,‘J&
The symmetrized quantitj‘

S Xps = ;12_ (Sd(;,ré + S«a,y[&)-

«<¥»
appears in the equation ot motion for displacement of
Phenomenological theory of elasticity (see for example

[13] )« The solution of this equation 'is a plane wave
uof: < -
u, (Xt) = ax y  SUpUy = Sy
where '71 is a polarization 1ndex of an aocooustio wa.ve.

With these displacements the equa.t:l.on of motion beoomes

7 Vo5 0‘ uxc'
= "I p Y § 2,2
T MN s " TR e
where Mc is the mass of unit cell MC = Z M—,( .

H=4



We shall oompare this expression with hydrodynamio
limit of G(; (W) N Following Leibfried and Ludwig
[l] it is pessible to f£ind So('g 0'8 in terms

of measured quantity S"‘(h F,s and SD((; s OT
lattice theoretical expressions: So((, sy second
term in the right hand side of (2.14) and symmetrio

p"rtdSpUS o

3. The Method of Long Waves,

(ol
2
Let us consider the hydrodynamio limit of wa((o)

{Qm Z(u.)) .(I

]qPO w-o 9
From (1.15) 1t oan be seen that when Iqj->o l(,-r ,,k,-> k

Let us write the mass operator in a more convenient
form ’ _)(-o -
ig(K,-X,) * :
QR PR IS Tux L IO
“)Q(Mu Mx)" s

where -
~ oL VY o~ ’ Lk *)-X’ -J: ;,
{HH clkyq)Xg=cky Xy
Moy (§ )= i()Z b use @ e € .
uv WH‘,;?T‘. 'K, usst T vmm
i “"“wum
) e;(k ¢q)XM -1 XM “‘"‘l o 4)6 “44,)4,",) e (k'fi jl,ﬂ,)g(kzlz,ua)

i
(ki"q-j' kfj; kz‘?t):. I{,_]{) (M)‘(H"f' H"r“’(z’)z

(3.2)

° ' ;4
+ .1'-k 1’; 1' ((w) . . . . .
x 2F ll Tl U w)[( ) Jk’*‘lh"hh’s kytqida Kyji o

19



#e are interested in the behavior of Eq. .(3.2) for small
w and lCLl « For a.:L'l. but one type of oontri-
butions to this equation (9_ w) is oontinuous,
The exception are those terms in Eq. (3.2) for whioh
o= 40y dum it Flloggickis @)
behaves singularly for small w and l?]'_, s the
hydredynamio limit is different from the cellisionless

one

Lim { m F (l<+q_3,-k 4 ,w)}# &m{ﬂr.. |z+q,j,-lg,u)}.

1919 w0 wo glap
The singular behavier of C(w) is due to the coupling

with F° , To ebtain a conneotion with the theory of
elastiolty we conaider only the part irregular in the
limit of small & and [Q) of the real part of the mass
operator Re Tra(‘o) s L.e. we put j,l:j(, h#jt .

It will be seen from further oonsiderations that in the
hydrodynamic limit anﬂ"hen. we limit ourselves to terms
of the order ‘qlz we may neglect the dependence of
irregular part of Mw (q,w) on ’q_, . Thcg

we denote <
M4 ) T 5 g &y (ko) €3, (k) 8u Ky xp) €, (K, )
= lan us:' v MW - wp g (My H-»(,Mx’ Mag) %

SEMMS
! ppe ) )
T (X=X )+ i k7 (Xm=Xnr ooy F
'y et 3.3
e | [(-C) Ve T, OB
is
where C 13 the hydrodynamic limit of

[C(w]k"lojp-kj»““?_r.l') Kj and it is equal to

C, = VKo ke -Ke ke ) TR,

Ku_K'i K‘;Kl-

20



M (1-0)
Expanding in uv \ in the series and using

~r

the definition af vx, (1.16) we prove that

~"d)’ is on(
ov - M .

M B
Frem (3,1) it follows that wv, depends on the

difference of coordinates Xu - )( _ ¢« This enables
us to exclude surface effeots from the combination
de, p s - .
The translated invariance condition (2.9a) leads to
— N Y oY
Z_ Muv = Z M v =0 . (2.9b)
v v v

. S~
Let us consider the long-wave limit of w; (o)
In this limit we put [2] (¢ l‘{"" Elql ¢ is a formal

parame ter of expansion)

eF (Q)“') = e(;) (J,M‘) t (2 e(f? (Q,)(') + % EZ e({ﬁ) (Q/ )(')4"... | (3043)

and for wa(o) = Wg

~ ) 2
Ge = (W@ (3041

Putting (3.4a,b) inte equation

..'

~Z ‘X’ e le ) “'?i( .‘
erg)= £y AP g 320 Ml ©09)
’ N-u,VY (My M) { }°

2|



which oan be obtained from the definitien ef renormalired
frequenocies ';Q (w) (1.18), equating to zere 0cesi~
cients of terms of different order in € we obtain
the system of equations of the theory of perturbatiens. '
From oonditions (29a,b) it follows that the equation

of zero~order in £

Al ~ | if ot .
g(MxMx') l(‘?:ﬂ +M Uf,) e;(J,fx') =0 (3.6)
has a solution [2]
©, My - G.7
eq (i) = (=2 g | =1,4,3.
s (‘l " (Mc ) d 84”1 "l

whers we introduce three polarization veotors desoribing

in long waves limit acoustioc osolllations

- . . ’
L O e-“'i’)”l»’” (M )4/1 o (3.8)
L ﬁ""o ‘ (M) C‘. : ‘
These veotors do not depend on 2 o From the

oondition of oompleteness of the set of veotors e,‘(ci J x)

>y e @, G5x = S

olzq4 A=t
it follows that the set of veotors g (")‘4)2,3)

is the orthonmormal one

3 L o _ 8 -
Z, u/') u 1'), - "71)/ . (309)
A=



The vectors u,) can be found from the equat:l.on of )

v U .
the second order, in §, f’ g, 9 can be eva.luated :
from the equation of the first order in €&

A o S !i A)(

);)(:C’m’( ) ex{‘]_iq]) = '(MC 'PK fr)qa' (3410)
}

This equatlon is identical to (2.11) and its solut:l.on 1s -

known as
A x4

i ) ;
(@ Ma\2 S’
ey (1.”1,“') = - (Nc) Z Rx’m C/A,ﬁf u~) 92 (3.11)
AT Ay
Let us oonslder the equa.t:l.on oi’ the second order in €&

4) =y e ) - ol i
COGmTecmn= -5 7 V(WW,.,,{&P 0 em (e

(X -X )qpqa'l' 1 Z K(‘i'" %) {cpa 'NY} < (3.12)
[SuV(Mx Mxn-) F(Mp MA)™® v \

x(XP Xp)qp+ m ‘l’?ﬂ‘){ VLIS

' yuV (MyMy/) )% uv ot

The system of homogeneous equations connected with (3.12)

has a solution of the type (3.7). The system of non-

homogeneous equations has a solution I1f and only if - non-

homogenity is orthogonal to the solutions of the

homogeneous equations, This condition leads to the

equation
0 1 Vs & wx.x - :
(w (‘h”])) = MCMZF ES"‘X'{S& uvbuq‘q(ﬂg‘ . (3.13)
<Py ) '

Equation (3.13) is identical with (2.20)
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The result (3.,13) can be used to derive a sum rule for
the spectral function ( Uu) definéd as follows

/[ Ag! ,,'*"‘b = )du ;Q(w)e‘“”,{)

—c)d

For ((AQ)”022 the usual spectral representatlon can
be derlved [14]

10 X .
. + i i 3 » Q(w:)
bolw) = €Ay A2, = am _J:,M @ ~w

-1
Substituting (3.13) into the static limit of @a(w)

we get the relation

4+ 00

I 3: Q ) 4 ;-‘u: qu } =
) = im 2, -
30(553 "‘.G'X‘) " - quqs : (3.15) ‘
MV
~? is the density of the orystal SJ— o

As we take only the diagonal part of the phonon Green
function the sum rule [3,4J

4, Conolusions.

We have presented the derivation of the elastilc
constants for strongly anharmonic crystals in the pseudo-
harmonic approximation by the method of homogeneous
deformation and the method of long waves, This gives a
relation between the statio self-energy of Green functlon
of displacements and éecond derivative of the free cnergy
equivalent to sum rule. This connectlion enables us to
exclude the surface effeots and to extend the Liebfried ;

and Ludwig method to the pseudoharmonic approximation.

PR (3.14)



The elastic oonstants have the symmetry properties wﬁioh
lead to the rotational lnvarianoe of the free energy.
Vertex oorrections are valld as 1t follows from the

oomparison of results obtalned from both methods,

The éame results obtalned from both the long waves and
the homogeneous deformation methods in the pseudoharmonio
approximgtion give us the very important information as
it 1s usually much easler to ®@loulate the mass operator
than the free eneréj (e.g. for metals or some models of
flpids). In addition, the mass operator enables us to
find the adiﬁbatio elastic constants and the life-time
of phonons as well, This glves ﬁs the possibility of
caloculating the sound atténuation in the hydrodynamiocs
and collislionless regimes whioh will be considered in
the forthooming‘papers.

Finally we mention some inoonsistenoy in Klein et
al. [6] and our oalculatio;s. As 13 seen from calculation
of the mass operator TIg(w) we do not take into account
the corrections of the seoond order in the self-oonsistent
determination of phonon vertices and frequenciles [7] *,
This may lead to some improvement of the numeriloal
results of Klein et al.}[G] .

The author thanks Dr. N.M. Plakida for many valuable
disoussions and Dr.H. Konwent for encouragement and ori-

tical reading'qf the manusoript.

*The author 1s indebted to N.M.Plakida for drawing his
attention to this problem.
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