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Teopua xorepenTHoro paccesHmst HefTpOHOB Ha CerHeToaleKTpuKax
.C BONOPOAHOH CBABBIO NPH HU3KHX TeMmeparypax {] )

Paccmorpeno nuddepennnansroe’:ceuenne meynpyroro KOI'@PEeHTHOrD
paccesiHis MedeHHbX HEeATPOHOB HA CErHETOSIEKTPHKAX C BOADPOOHBLIMH
|| CBAI3AME NpH HASKUX Temneparypax. Berumcnenit xeasmcnmnossie dopmbakTopsi
Ha ocnoBe Mopenu Bimana. YunTeisaercs B3aMMone#cTBEe NpoTOHOB (nefitpo-
HOB) C peuweTKoifi M BBOOMTCH obbeKk THBHLI baxTop [leGas-Bannepa.
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Theory of Coherent Neutron Scattering by :
Hydrogen-Bonded Ferroelectrics at Low Temperatures
I. General Expression for Inelastic Coherent

Scattering of Slow Neutrons and Effective Thermal
Factors :

The differential cross section for inelastic coherent
scattering of slow neutrons scattered by hydrogen-bonded
ferroelectrice at low temperatures has been evaluated.The
quasi-spin form factors have been calculated using the
Blincrs model. The proton (deuteron)~lattice interaction

is taken into account and an effective Debye-Waller factor
is introduced. :
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1. Introduction

The ferroelectric mode in hydrogen-bonded ferro-
électrics was extensively theoretically‘/l—S/-studied as
well as expérimeﬁtally - using the neutron scattering
method /9-16/, The theory suggests that the ferroelectric
mode should be observed by neutron scattering, although-it
is expected to be overdamped in the whole energy spectrum
especially at high temperatures. Moreover, some: theoretical
predictions and comparisons of the results obtained by
various experimental techniques /9-22/ show that the collec- .

tive motion of protons or ‘deuterons can be. predomlnantly i

observed by neutron scattering.

From the theoretical point of view. Tokunaga’S /2/
differential cross section for coherent neutron scattering,
derived on the basis of a suitable qua51-spin relaxation
function, is qualitative in the same sense as De  Gennes's -
cross section for incoherent neutrorn scattering /l/. How=-
ever, the dynamical consequences due to the presencé of
the heavy ions are not taken into account while the
Fourier transforms of the‘scattering potential and the
quasi-spin form factors of De Gennes are not written



explicitly as functions of momentum transfer. Some of the
above requirements are recently taken into account in two
exhaustive papers by Cochran /23/ and Novakovié et al. /24/
Cochran consistently applied the method of Van Hove /25/
to a "mixed phonon" and tunnelllng model Hamiltonian /3,4/
so that the main feature of his paper was the introduction
of a wave—numbet and frequency dependent susceptibility

- X(k, »)and its relation to the Fourier transformed pair
distribution function S(k o) which contains the scatter-
ing properties of the ferroelectric system. Starting from
the same general theory of Van Hove /25/ Novakovié et

al. /24/used the method of an effective. proton mass.In addi-
tion,as"a correction of the familiar qua51-sp1n Hamiltonian,
which is consistent with the idea that the motion of
- protons. develops adiabatically in a rigid crystal lattice,
,these authors introduced a residual coupllng through the’
;same quasi-spin components thus describing an effective
}1nteractlon of protons with heavy ions. However, in both
-these papers only .the critical scattering was discussed
,1n terms of. lattice dynamics.
) In the present paper we shall evaluate the differen-
tial cross section for inelastic coherent neutron scatter-
‘ing by the KD,PO, crystal at low temperatures since the
uintensity of coherent scattering on the hydrogeneous pro-
..totype : KH2P04; is very small. To write it explic;tly as
a function of scattering momentum and energy transfers,
in' the "quasi—spln—lattlce interaction" formalism we shall
" use the model of deuteron potential with two harmonic
wells/26 29/and a standard procedure analogous to.deriva-
wtions of the magnonfdifferential'crossvsection at low

‘temperatures /30,31/,



IT.. The’Differential Cross Section

The scattering of slow neutrons on KDP type ferro-
electric crystals can be described with high accuracy by
a pure nuclear interaction while the other interactions
are negligible as being the effects of cons1derably less
order of magnitude.. ‘

-Generally, the differential cross section per unit
SOlld angle and unit interval of outgoing energy for the
nuclear scattering of slow neutrons by the KD, PO, ferro-
electric can be expressed in the concise. form of van
Hove/25/ However, to obtain the final expression for this
cross sectlon it is more convenient, in our case, to wr1te
immedlately equivalent expression by introducing correla—‘
tion functions /31/ :

2 > >

2 >
do m_ too (B, ~E)t —~igR; (0) igR, (t v
i a e q’ "V(.)>.(l)

2 b dte [4 ¥ <a e i
deEp, , (2) h p / ip Ay

ij py —oo

Here m, is the neutron hass, 3::5_;',5 = E.-E, is momentum‘,
and energy transfers and p,Ep and p ‘, E,, are initial andrf
final wave vectors and energies, respectlvely. The index.s
i denotes N unit cells in the crystal. In the i-th cell
« designates both the various ions and the three coordi-
nates * ', ¥ , ¢ so that « runs from 1 to 3n; the deute-
rons are labelled by the index T (1< r<n’ ). The corres-

ponding position vectors are marked by R iq and R,,, respec—j
tively. The indicies p and v are connected with the o
indicies a and r: pv =afl<a €30)OF 3047 (1 < 1 <n’)s

a,, = Aq;+ B”l(lnli#) ‘ are;the scattering amplitudes‘of
nuclei ( z,,fnl - spin operators of neutron and nuclei,
respectively, and Ai# and Bi#- the corresponding nuclear

. constants) . ‘ ' 5



In the most recent examinations based:on a simplified
model for ferroelectric mode /17/ (Whlch,,otherwise can
be shown to be consistent with a more exact proce-
- dure /3 4 7 23/) as well _as on the expressionwforlthe
d;fferential_cross section of neutron scatterinag and the
experiment itself /14,15/ it was established that this
mode is extremely overdamped. However, it has been studied
under small wave vectors by an extrapolation‘offthe scat~

tering intensity to ¢ - 0 . These experiments were carried
out on KD,PO, in the vicinity of the transition tem~

perature 7} ; in the paraelectronlc phase, where the
unstable ferroelectric mode is respon51ble for the change

of the crystal structure /32/, The similar qualltativer
situation can be expected for the scatterlng 1ntensity on
the'polarization mode as well, proVided that, with a good

- energy resolution, one could observe rather sharp scans

,Tfat low temperature.
‘ As we deal with the scattering at low temperatures
we shall use the adiabatic approximation. Since at ¢ = gthe

"phonon—llke" mode is greater than the "deuteron-llke" mode

+ -
(ab > mo /3:4,7/ ) the correlators in (1) of the form
~igR,_(0) f;l; )
<aiae 'a' L fa > g (2)

and mixed correlators of deuterons and heavy ions
’ . dind -+ >
o ~1qR, (0] igR, (1) : :
.. a X
<a e a;.e i > - (3)

will as a good approximation determine only the Bragg
scattering, i.e. a "background" to which the scattering



intensity on the polarization ("deuteron-like") mode
would be superposed. According to /14'15/, for the reci-
procal lattice point (. 303 ) the contribution of deute-
rlum atoms to the scatterlng structure factor is much
greater than that of other atoms. Therefore, in the mode
analysis around [010] zone the above approximation is
likely adjusted So for the coherent. scatterlng of unpo-

larlzed neutrons we can wrlte

p i/b (B FE) -i;I;,,(O) . -';I_;,.,'(t) (a

: » . a, >>< .

AQIE," “(3)°h° P 4, > g e Gy Oy e € >.(4)
R rr’—oo :

2 2
d° o 0p m p’ +o00

Here the symbol <..- > denotes the averaging over hydro-\
gen isotopes as well as over deuteron spin orientations,
.and the line above denotes the averaging over the initial
orientations of neutron spins X/,

To calculate the correlator in (4) 'it is necessary
to find the equivalent correlator of gquasi-spins. With
this aim let us perform decomposition of the (ir)-th
deuteron position vector '

20 ) -

R‘“=R'L+'I.{i'+ v, o+ B, i L (5)

- 3P ir

where R:» refers to the middle point of the (ir)-th
-> >0 =0

0-D..0 bonding line, u; =<u’> + v,° is the displacement of
the (ir)-~th deuteron potential centre from the equilib-
rium position above the Curie point due to deuteron-phonon

x/ Such independent averaging is justified by a
negligible interaction between ions and quasi-spins with
real deuteron splns. : - .

i\
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 1nteraction ( v,f-— the deviationfuo from the average

value <u“- at a given temperature ) /and iﬂ =<u, >+

cor Tir ir
is the’displacement of the (ir)—th deuteron with reépect
,to the centre of its potential above the Curie p01nt ( v, =
the deviation from the average value <u" >=0at a glveﬁ
temperature). - TN
Further, according to De Gennes /1/ we can erte
igv

’ i i i
R PR PRI P (6)

ir

ir ir

where the quasi-spin form factors ar r B and vy, are

given by
'a';’= f[‘l‘ (R)+‘P (ﬁ)]e RE
s ;'r _ - - “‘;E - N ) ' (7)
‘ Bq - f ‘P_L.h(R) ‘PR.ir (R)e aR ’ . '
y"= f[‘l' (R)—‘P o (B)] ¢ TRIR .

The basis functions, Y., and ‘P,lh(associated with the
two minima of the deuteron potential well) , are assumed

to be real, in which case 5 =0 .

, X/Here a change .in position of the middle potential
- point due to deuteron-deuteron interactions is descarded.

8



By decomposition (5) and an expansion of deviation

) . -

v;, in power of deviations v, (introducing normal coor=-.

ir

. a x/
dinates b7, for phonons)
D A N S ' (8)

(the constants Aﬁi being written explicitly hereafter),

as well as by neglecting some mixed scattering events
when both collective deuteron modes and phonons: are excit-
‘ed, the presence of heavy ions can be taken into account
up to an effective Debye~Waller factor denoted below as.
--2"’»' Lavy
e a - In this way another of the adiabatic approxima-
tion is made in addition to that already performed by
replacing the "pure" deuteron mode w 4, by the hybridized
("mixed") mode I '

Rejecting the "Bragg background" (from (2) and (3)),
and after applying the standard procedure analogous to
that used for derivation of the magnon differential cross
section /30,31/, in the vicinity of the reciprocal lattice

>
vector , one obtains

r
dacobr, N . p -2 W r 2 H
- —=

Cl)q

(9)

> ] .
x [n (q)+ 5t 3}] e,
‘ [(Epw—Ep)thmq’] + T,

x/ We neglect variations in the shape of unit cell
with temperature, i e. we work with a clamped crystal
(u,a =z, ia — <u,.a>,- u, are the displacements from equilib-
rium position above 7T and <«i. > its mean values at a
given temperature). ° e '

9



where o , = ———3——7-<a>2; <e>=Sa o, o o)

¢, = the concentration of H - isotopes for which o, =4a_.
Here, the above sign (+ ) refers to the scattering with
emission and the lower ( - ) to the scattering with absorp-
tion of the quasi-spin wave. é;} and I' ,are the collective
frequency and energy width of the deuteron-like mode of

the type r , respectively (given in refs. /3+4,7,8/) ,while

4, is the deuteron molecular field and
w (7)) = L0t - 117 (11)

is the boson distribution function for the average numbers
of deuteron-like modes in the state (g r )X/ The ef-

-fective quasi-spin form factor F, represents a peculiar

, q
thermal factor which is due to the interference of neutron

waves in the region of deuteron localization (~! =
0.34R8 )/9'12'13'28/'and together with the effective Debye-

Waller factor e "2%¢ gan be related to the very anisotropic

%/ Note that following the Holstein-Primakoff /33/
(or the To$id-Agranovich representation /34/ywe can make
the familiar quasi-spin-wave approximation at zero tempe-

rature 3,8/ which allows us to express the quasi-spin
variable in terms of boson creation and annihilation opera-

tors zyﬁ and their Fourier transforms. -

10



structure factor introduced in /15/, For the sake of simp=

licity the both effective factors are assumed to be inde-

pendent of index i.

TIT. The Quasi-Spin Form Factor

The effective.quesi-spin form factor in (9)

Fq'= B;coee - y;‘sme', (sin6=Hx/H, cos O =Hz/H)' (12)

where the molecular field intensity

. ‘ 1 ‘
poowt e w1 : (13)

( H, and H , being its components/3'4'8/ assumed to be

independent of indices i and r ), can be calculated in the
approximation of two interacting linear oscillators X/.
We take the basis functions for every i and r in the‘
form /26,28/
1/4 —1/2 £
-1/4, 1
A ‘I’L.R(x) =7 b expl—-—;—'-l—zl, (14)
where , -1 _
z, = b (x + 1l/2), x < d (15)

-1
xp= b (x - 1/2), x> d;

By »
b = ¢( ) and o is the classical frequency of a single

= (7>
linear oscillatorAwhich is theoretically and experimentally -

x/ We did ‘not take Here more exact eigenfunctione
expressed in terms of a parabolic cylinder function /35/,

11



- estimated in refs. /5'9'36/' d=4d;,=H, /my el 1s the
‘parameter. of .deuteron potent1a1 asymmetry, 1 is. the dls—
 tance between the two minima inside the (1r)—th double
potential well and m, is the mass of deuteron. Then the‘
above form factor becomes )

2.2
SR ! e
F =1le 25 cosg + isin( g')sine]e 4 ,

g ' 2 (15)

= |E| cos(g-brt;,).

"IV. The Effective Debye-Waller

Factor

On the basis of the expansion (8) and after the usual
. procedure /31/ the exponent of the Debye-Waller factor

9W in (9) can be written in the form
=3|a'e 2y pe, ‘ ' (17)-
- ir q } .

fd i .
The constants A ,, (i.e. Ati from the expansion (8)) can

‘\Zbe found from the equivalency of "coordinate" and: quasi-

spin" representation of deuteron~-phonon interaction, i.e.
.from the requirement that the correspdnding‘matrix elements
~of these two representations are equal:

- ra 5 o z - ra . ‘
2 o,y (Vi Vjqg) <=> 3 Sip(di; via ), (18)
ijar _djar
where

ra 2 *ra 3 o 2ra
Aiiz (2 e* |l“[/|R”| )-ortR‘_]_,

12



ia. ) 1, x>0
®:?= ko A L2000, - d; ) -1 6fx) = it . (19)
' ‘ 0, x<0
k, =m0 2 is the force constant of the single linear
ir . : : :

oscillator, e*2= (1 + 0,5)e? 1is the square of an effective
charge measuring the Coulomb interaction between deuterons

and heavy ions and ﬁ:f is the vector connecting the
centre.of the (ir)- ~-th deuteron-bond and the position of the
( ia )-th heavy 1on.

One obtains that these constants are proportional to

the coupllng constants of the deuteron—lattice 1nteraction b
ra o

A, (19):
1]‘ .

2rq . - - . . R
)‘].('1' - (A‘.j—’oort u,—:.a) 1—1’ . | _ (20)
H (ort I, - ort uia) '
dlhe —[!2+(l:-)2]
LU I 2100 k() +

e | ®  en

T m el
e )+—¢(f—T)]l f=—

+2\/rrf[1 - — ¢>(f+

2
-t

and ¢(z) = 2/V@ fje dt 1is the Gauss function.

In the expression (17) 2Wa is the familiar exponeﬁt,i

of the Debye—Waller factor which corresponds to the a =th

phonon branch

13



. - , 2
a b LgEd(k)] I
2V = 3 L (ne(k) + =1; ;
« T W o e (k) + 3 (22)

a
ha'

ﬁa stands for the ion mass, A (k) is the frequency of
‘the «’ -th phonon branch,s (H is the a’ =th projection
IOf'the polarization vector of the a«.-th phonon branch and
L b) '(:)/hB.T ' ,, Y
n (k) = [e @ 1] o (23)
‘is the distribution- function for the averagée numbers of
‘phonons in the state ( k, a’ ). ST

For the real structure of the KDP crystal the calcu-
lation of exponents (22) is practically unfeasible. How-
. ever, with some simplifications the contributions of
‘acoustical and optical (phonon-like)‘branches can be esti-
mated. Thus the arrangement of the [K - P0,] complexes and

their associated deuterons can be approximated by the

/3=5,7 18/

‘simple Bravais lattice We also assume one quasi-

'spin per unit cell coupled w1th one phonon branch
only /3+4,7,8/, Then the contribution of the phonon-like
branch in (17) is ‘

+

b w .
+ ort h[q D”C] - —
W, = 2Wq o [I +2e kT 1, (24)

Dy

whefe mt stands for the reduced mass of thé'[K—I%k]complex.
The contribution of acoustic branches can be estima-
ted in the Debye approximation (on condition that the above

Bravais lattice is nearly cubic)/314

14



2 2 ’ :
we. 3 kyT |
2w e 2L (2w p(e/ky 1) (=) - (25)
T . T .

q m

r ha’max =vzﬁ6ﬂ2n/uo is the Debye temperature in ener-
gy units, v, is the sound velocity, V¢ is the volhme,of

the unit cell and

: Tk, T 2 /. T xd
D(r/kyT) = (=) [ 7 ==
co- (] e -

(26)

is the function expressed numerically Whiéh in our case
can be approximated'by the expression -

D(e/k,T) = L= (—5)", BT < 1. (27)

In the conclusion we would like to point out that in
the second part of this paper (reffered to as II) we“shall
use the presented approach to study the charadteristics of
quasy—elastic neutron scattering in more detail.: The
interpretatidn of the tunnelling quasi-spin model, the
nature of the low temperature ferroelectric state as well.
as the deuterlum vibrations along the ¢ -crystal axis will
also be discussed with reference to the refined neutron

scatterlng~propert1es at small angles.
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