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Stamenkavib S. E4-6171 

Theory of Coherent Neutron Scattering by 
Hydrogen-Bonded Ferroelectrics at Low Temperatures 
I. General Expression for Inelastic Coherent 
Scattering of Slow Neutrons and Effective Thermal 
Factors 

The differential cross section for inelastic coherent 
scattering of slow neutrons scattered by hydrogen-bonded 
ferroelectrice at low temperatures has been evaluated.The 
quasi-spin farm factors have been calculated using the 
Blinc,s model. The proton (deuteron)-lattice interaction 
is taken into account and an effective Debye-Waller factor 
is introduced. 
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1. Introduction 

The ferroelectric mode in hydrogen-bonded ferro­

electrics was extensively theoretically /l-8/. studied as 

well as experimentally - using the neutron scattering 

method /9-16/. The theory suggests that the ferroelectric 

mode should be observed by neutron scattering,·although-it 

is expected to be overdamped in ·the whole energy spectrum 

especially at high temperatures. Moreover, some· theoretical 

predictions and comparisons of the results obtained by 

various experimental techniques /9-22/ sh~w that the collec­

tive motion of protons or deuterons can be predominantly 

observed by neutron scattering. 

From the theoretical point of view T~kunaga's./2/ 
differential cross section for coherent neutron scattering, 

derived on the basis of a suitable quasi-spin relaxation 

function, is qualitative in the same sense as De Gennesrs 
cross section for incoherent neutrori scattering /1/. How­

ever, the dynamical consequences due to the presence of 

the hsavy ions are not taken into account while the 

Fourier transforms of the scattering potential. and the 

quasi-spin form factors of De Gennes are not written 
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explicitly as functions of momentmn transfer. Some of the 
above requirements are recently taken into account in two 
exhaustive papers by Cochran /23/ and Novakovic et al./24/. 

Cochran consistently applied the method of Van Hove /25/ 
to a 11 mixed phonon 11 and tunnelling mod~l Hamiltonian /3,4/ 
so that the main feature of his paper was the introduction 
of a wave-number and frequency dependent susceptibility 

~ 

X(k,~Jand its relation to the Fourier transformed pair 
-> 

distribution function S(k,~) which contains the scatte%-
ing properties of the ferroelectric system. Starting from 
the same general theory of van Hove '/25/ Novakovic et 

al.f24/used the method of an effective proton mass.,Ill addi­
tion,as·a correction of the, familiar quasi-spin Hamiltonian, 
which is consistent with the idea that the motion of 
protons. develops adiabatically in a rigid crystal lattice, 
these authors introduced a residual coupling through the 
same quasi-spin ~omponents thus describing an effective 
interaction of protons with heavy ions. However, in both 
.these papers only the critical scattering was discussed 

in terms of lattice dynamics. 
In the present paper,we shall evaluate the differen­

tial cross section for inelastic coherent neutron scatter­
, ing by the KD 2 PO 

4
. crystal at low temperatures since the 

intensity of coherent scattering on the hydrogeneous pro­
_,totype. K,H

2 
P"O 

4 
is very small. To write it explicitly as 

'· a function of scattering momentum and energy transfers·, 
in the 11quasi-spin-lattice interaction11 formalism we shall 
use the model of deuteron potential with two harmonic 
wells/26-29/and a standard procedure analogous to.deriva-

,,. tions of the magnon difj:erential cross section at l.ow 

temperatures /30r3lf. 
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II., The Differential Cross Section 

The scattering of slow neutrons on KDP type ferro­
electric crystals can be described with high accuracy by 
a pure nuclea~ iriteraction while the other interactions 
are negligible as being the effects of considerably less 

order of magnitude. 
Generally, the differential cross section per unit 

~olid angle and unit interval of outgoing energy for the· 
nuclear scattering of slow neutrons by the KD2 P0 4 ferro­

electric can be expressed in the concise form of Van 
Hove/25/. ~owever, to obtain the final expression for ~his 
cross section it is more convenient, in our case, to write 

· immediately equivalent expression by introduci~g correla~ 
tion functions /31/ 

2 ~~ 

--m-=n::...,..l!...'~ ~ +ood i/h(B,-B)t -iqRi (0) 

5 "" "" f te P P < a. e /L 
(2rr)

3
h. P 'IL 

ij /LV -oo 

~ ... 
iq R. (tJ (l) a e •v .>. 

iv . 

Here mn is the neutron mass, ij = p -p', E = E .-E is momentum 
. . p p . . 

and energy transfers and p, E P and p', Ep' are initial and 

final wave vectors and energies, respectively.· The index 
i denotes N unit cells in the crystal. In the i-th cell 

a designates both the various ions and the three coordi­
nates x ·, r , z so that a runs from 1 to 3n; the deute.;.. 
rons are labelled by the index r ( 1 :;; r ~ n' ) • The corres-

' ... ... 
pending position vectors are marked by RIa and R 1r , respec-
tively. The indicies /L and v are connected with the : 
indicies a and r: IL•v = a(l ~a ~3n)or 3n+r (1 ~ r <£ n'). 

a. =A. + B. (I I ) 
'IL 'IL. 'IL n itL 

are the scattering amplitudes of 

nuclei ( In , I
1

/L - spin operators of neutron and nuclei, 

respectively, and A 1/L and B 1/L- the corresponding nuclear 

constants) • 5 



In the most recent examinations based on a simplified 
model for ferroelectric mode /17/ (which, otherwise can 

be shown to be consistent with. a more exact proce­

dure /3,4,7,23/) as ~ell as on the expression for the 

differential cross section of neutron scatterina and the 
experiment itself /14,15/ it was established that this 

mode. is extremely. overdamped. However, it. has been studied 

under small wave vectors by an extrapolation of the scat-
-+ 

tering intensity to q -+ 0 • These experiments were carried 

out on KD 2 P? 4 in the vicinity of the transition tem-

perature Tc .~ in the paraelectronic phase, where the 

unstable ferroelectric mode is responsible for the change 

of the crystal structure 132/·The si~ilar qcialitative 

situation can be expected for the s6attering intensity on 

the polariz~tion mode as well, provided that, with a good 

energy resolution, one could observe rather sharp scans 

at ],ow temperature. 

As we deal with the scattering at low temperatures 

we· shall use the adiabatic approximation. Since at if = o the 

"ph!Jnon-like" mode is greater than the "deuteron-like" mode 

( cu: > cu; 13 ' 4' 7 I ) the correlators in (1) of the form 
-+-+ 

< a -; q R; (OJ 
ia e a a . ,e 

Ja 

-+-+ 

i q Ria '(t} > 

and mixed correlators of deuterons and heavy ions 
-+ -+ -+ -+ 

.. · -iqR;a(OJ iqRi
1

(t} 
< a1ae a 1 ,e > 

{2) 

{3) 

will as a good approximation determine only the Bragg 

scattering, i.e. a "background" to which the scattering 

6 
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tion. Since at q = o the 

he. "deuteron-like" mode 

::>rs in (1) of the form 

(2) 

1s and heavy ions 

(3) 

~rmine only the Bragg 

) which the scattering 

intensity on the polarization ("deuteron-like") mode 

would be superposed. According to /14,l5/, for the reci~ 
procal lattice point <. 303 ) the contribution of deute­

rium atoms to the scattering structure factor is much 

greater than that of other atoms. Therefore, in the mode 

analysis around [010] zone the above approximation is 

likely adjusted. So for the coherent scattering of unpo­

larized neutrons we can write 

2 
d a cob 

2 ....... -+-+ 
m p' +oo ./ n itb (R -R) - -iqRi (0) iqR. ,(t) · ----p ~ ~ f dte p' P«a1,a1r'>><e 'e " >.(4) 

(2") 3 h 5 
ij rr'-oo dOdEp_' 

Here the symbol <<. · · » denotes the averaging over 'hydx:o­

gen isotopes as well as over deuteron spin orientations, 

. and.the line above denotes the averaging over the initial 

orientations of neutron spins x/. 

To calculate the corr~lator in (4) ·it is necessary 

to find the equivalent correlator of quasi-spins. With 

this aim let us perform decomposition of the (ir)-th 

deuteron position vector 

-+ -+ -+o ...,.o 
R ir = Ri + ·R ir + ~ ;, + u;, ' (5) 

where refers to the middle point of the (ir)-th 
• , .-+o -+o -+o 

0-D ... O bond~ng l~ne, u 1, = <u 1, > + v 1, is the displacement of 

the (ir)-th deuteron potential centre from the equilib­

rium position above the Curie point due to deuteron-phonon 

x/ Such independent averaging is justified by a 
negligible interaction between ions and quasi-spins with 
real deuteron spins. 
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interaction 

value <;;.0 > 

0 
( vir 

~0 -
- the deviation u;, from the average 

~lven temperature )x/and 
.... ~ .... 
u ir = <;: U ir > + Vir 

" 
at a 

is the displacement of the (ir)-th deuteron with respect 

to the centre of its potential·above the Curie point ( ~.-
~ 

the deviation from the average value < u 1, > "'0 at a given 
temperature) • 

Further, according to De Gennes'/1/ we can write 

e i ;?if:- a ir + 2 {3 ir S "' + 2 ir S ~ + 2 8 ir S ~ ' ,,- q q ir Y q ., q ., 

ir 
where the quasi-spin form factors a 

q 

given by 
~~ 

air 
• q 

1 2 ~ 2 ~ iq R -> 
=- J['PL.(R)+'PR. (R)]e dR, 

2 ·" . ·" 

f3 1'=r'~' rRJ'P rRJei;RdR, 
q _L,ir R,ir 

ir 
y 

........ 
~ f['P2 (RJ- 'I' 2 rin eiqRdR .. 
2 L,ir R,ir q 

, {3 
ir ;, and y q 

q 

(6) 

are 

(7) 

The basis functions, 'I' L,ir and '~'. n,;, (associated with the 
two minima of the deuteron potential well) , are assumed 

;, 
.to be real, in which case o = o • • q 

x/Here a change.in position of the middle potential 
point due to deuteron-deuteron interactions is descarded. 
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R,ir (associated with the 
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By decomposition (5) and an expansion of deviation 

~o ... 
v 1, in power of deviations v 1a (introducing normal coor-

dinateS! b ;a for phonons) x/ 

;;,o =I. , 
ia .... 

A i r vir + (8) 

(the constants ia 
A;, being written explicitly hereafter), 

as well as by neglecting some mixed scattering events 
when both collective deuteron modes and phonons are excit­
ed, the presence of heavy ions can be taken into account 
up to an effective Debye-Waller factor·denoted below as 

-2 w 
e q • In this way another of the adiabatic approxima-

tion is made in addition to that already performed by 
replacing the "pure" deuteron mode w qr by the hybridized 
("mixed") mode w 

qr 

Rejecting the "Bragg background" (from (2) and (3)), 
and after applying the standard procedure analogous to 
that used for derivation of the maqnon differential cross 
section /30,31/, in the vicinity of the reciprocal lattice 

... 
vector g one obtains 

+ 
d u - , 

cob N p' -2 wt: , 2 H, 
--:-::--:-~-'- = - u - I. e I Fa I -=- X dOd E P, TT cob p 

1 
b W q 

1 

x/ We neglect variations in the shape of unit cell 
with temperature, i.e. we work with a clamped.crystal 

(9) 

( i! ia = 'ir ia - <il1a >; ir Ia are the displacements from equilib-
rium position above r and < _, > its mean values at a 
given temperature) • c u ia · 
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where a 
cob 

<a> 2 • , <a> ~ as c s' 
s 

(10) 

c s - the concentration of H - isotopes for which a. = a • I 1 S 

Here, the above sign ( + ) refers to the scattering with 
emission and the lower ( - ) to the scattering with absorp­
tion of the quasi-spin wave. cu ;, and r qr are the collective 

frequency and energy width of the deuteron-like mode of 
the type r , respectively(given in refs. /3,4,7,8/) ,while 

H, is the deuteron molecular field and 

(
.... ( bcu- /It T -I 

n q) = · e qr B - 1] (11) 
, 

is the boson distribution function for the averaqe numbers 
of deuteron-like modes in the state ( q , r )xi.'The ef-

, 
fective quasi-spin form factor Fq represents a peculiar 

thermal factor which is due to the interference of neutron 
waves in the region of deuteron localization(- l = 

0.34R )/9,l2,13,28/ and together with the effective Debye-, 
. -2 w Waller factor e q can be related to the very anisotropic 

x/ Note that following the Holstein-Primakoff /331 
(or the Tosic-Agranovich.representation /34/)we can make 
the familiar quasi-spin-wave approximation at zero tempe­
rature /3,8/ which allows us to express the quasi-spin 
variable in terms of boson creation and annihilation opera­
tors b.~ and their Fourier transforms. 

I 1 

10 
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where 
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md 

(11) 
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~ ·· ( q , r ) x/. The ef-
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interference of neutron 
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to the very anisotropic 

lstein-Primakoff /331 
ation /34/)we can make 
xirnation at zero tempe­
press the quasi-spin 
n'and annihilation opera-
'rms., 

structure factor introduced in / 15/. For the sake of simp­
licity the both effective factors are assumed to be inde~ 

pendent of index i.· 

III. The Quasi-Spin Form Factor 

The effective quasi-spin form factor in (9) 

F '= {3 ' cos e - y'. sin e ; (sin e = H /H, cos e = H /H ) , 
q q . q " z 

(12) 

where the molecular field intensity 

2 2 l/ 

H = [H + H ]
12 

" z 

(13) 

( H" and Hz being its componentsl 3
r
4

r
8 / assumed to be 

independent of indices i and r ) , can be calculated in the 
approximation of two interacting linear oscillators x/. 
We take the basis functions for every i and r in the 

form /26,28/ 

'l' (x) 
L,R 

(14) 

where -1 
X = b (X + l/2), 

L 
X < d (15) 

-1 
X R = b (X - l/2), X > d; 

h ~ b = (--) 2 and w is the classical frequency of a single 
mdw 

linear oscillator which is theoret:ically and experimentally 

x/ We did not take liere more exact eigenfunctions . 
expressed in terms of a parabolic cylinder function /35/. 
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estimated .in refs. /S, 9 , 361; d "':' d1,=Hzlmdcu 2 l is the 

parameter of deuteron po~.ential asymmetry, l is the dis­
tance between the two minima inside the (ir}-th double 
potential well and m d is the mass of deuteron. Then the 
above form factor becomes 

2 2 I 2 [ . b g
1 , -(-) g --

F = [ e 2 b cos 8 + i sin (--' ) sin 8] e 4 
g 2 

... ... ... 
g, = I g I cos r g • ort z, J • 

IV. The Effective Debye-Waller 

Factor 

(16) 

On the basis of the expansion (8) and after the usual 
procedure /31/ the exponent of the Debye-Waller factor 

?W' in (9) can be written in the form u Q 

2W'= ~~,\i.a 122 wa. 
q . 'r q 

(17) 

iG fa 
The constants ,\ 1 , (i.e. ,\ 1 , from the expansion (8)) can 
be found from the equivalency of "coordinate" and·"quasi­
spin" representation of deuteron-phonon interaction, i.e. 
from the requirement that the corresponding.matrix elements 
of these two representations are equal: 

ra ... ... ) ~ <l>;i (.v;, via 
i ia r 

<=> 
2 -+ ta -+ 

~ s1 ,(Aii V;a), 
iia r 

where 

ra 2 -> ra 3 -+ ra 
A . 1 = (2 e* ll. I I I R. I ) • ort R .. , 

' ', 'i • 1 

12 

(18) 

,I 

~ 

<I> ra = k. ,\ !a[28(v. 
ij " " ·" 

kir=mdcu2 is the for 

.oscillator' e* 2
"" ( 1 .;.. 0, 

charge measuring the.Cc 

and heavy ions and 
centre.of the (ir)-th d 

' , 
( ia )-th heavy ion.· 

One obtains that 
the coupling constants 

A;; (19): 

-+ra -+" 

,\fa 
ij 

(A 11 •ortu 1a) .. - ... ... 
(ort l ,,· ort u

1
a 

2 
I _ 2dlhw -[! +(-

- yrr I e 

. -- 1 h 
+ 2yrr [[1- --.¢({+-

2 2{ 

2 
00 - t 

and cp(x) 2/y'Tr f. e dl 
0 

In the expression 
of the Debye-waller fac 

phonon branch . 



= ~;,.=~Hzlmd cu
2

l i.s the 
lsy~etry, l . is the dis­
; ide the (ir)-th double 
;s of deuteron. Then the 

(16) 

. (8) and after the usual 

.he Debye-Waller factor 

: the form 

(17) 

m the expansion (8)) can 
. . 

"coordinate" and·"quasi-
?honon interaction, i.e. 
~sponding.matrix elements 

3:ilal: 

·' 

~a), (18) 

-> ra 
ort R , 

i/ 

1 

l 
I 

"') 
I 

II> ra = k . A ~a [ 2 8 ( v. - d ) ] ij JT JT JT ir·-1; 
{ 

1, 
8(x) = 

0, X <0 

X> 0 .. 
' (19) 

k i r = md (j) 2 is the force constant of the single linear 

oscillator, e* 2 ,. ( 1 +- 0,5} e 2 is the square of an effective 
charge measuring the Coulomb interaction between deuterons 

-> ra 
and heavy ions and R 11 is the vector connecting the 

centre.of the (ir)-th deuteron-bond and the position of the 

( ia )-th heavy ion. 
One obtains that these constants are proportional to 

the coupling constants of the deuteron~lattice interaction 
ra 

A
1
i (19): 

and 

..... ,a _. 
(Ail; ort u 1a) 

-> -> 
(ort l,· ort u1a) 

-1 
I ' 

2 . Hz 2 
2dlhcu -[! +c-J l H 

I= I e 2 /bw sh(_:=_} + 
Y" hw 

. - 1 Hz 1 ·· H. 
+2y"f[1--¢(f+-J+-cp(f--· -)]I; f= 

2 2{hw 2 2{hw 

2 
-t 

¢(x) 2 I y"; f
0 

e dt is the Gauss function. 

(20) 

(21) 

. a 
In the expression (17) 2Wq is the familiar exponent 

the Debye-Waller factor which corresponds to the a -th 

phonon branch 
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a 
2W 

q 

h ... , ... 
- I [ q ·~ ~ ( k)] 2 
Nma... · [ -+ 

A:a' )la'(k) na' (k) + 
1 
yl; (22) 

m stands for the ion mass, h ,(k) is the frequency of a , a . 

~the a' -th phonon branch, £a (k} is the a' -th projection 
a 

of the polarization vector of the a.-th phonon branch and 

... ... 
na' (k) = (e hha'(k)/k T B .. - 1) "(23) 

:is the distribution function for the average numbers of ... 
phonons in the state ( k ; a' ) • 

For the real structure of thE~ KDP crystal the calcu­
lation of exponents (22) is practically unfeasible. How­
ever, with some simplifications the contributions of 
'acoustical and optical (phonon-like) branches can be esti­
mated. Thus the arrangement of the [K- PO ) complexes and 

• • 
their associated deuterons can be approximated by the 

simple Bravais -lattice 13-S, 7 , 8/. ~le also assume one quasi­

·spin per unit cell coupled with one phonon branch 

only /3,4,7,8/. Then the contribution of the phonon-like 

branch in (17) is 

+ 
2W 

q 
2W opt 

q 

h [ ;. ort; 1 [ 
1 

+ 2 e 
+ 

b (r) 0 

-;:--:; ], t.~ B (24) 

where m + stands . for the reduced mass of the [ K - P0
4

] complex. 

The contribution of acoustic branches can be estima­
ted in the Debye approximation (on condition that the above 

Bravais lattice is nearly cubic)/311: 

14 

~ 

• ! 

I 
L 

. h2 2 
2Wac,=· 3 q [!.._ + D(: 

q m r 4 

ac J/ 2 
T = h li.l max = v z y 6 TT n I v 0 

gy units, vr is the SOl 

the unit cell and 

D(r/k
8

T) 

. 
k 8 T 2 

(-} f 
r 

is the function expres~ 

can be approximated by 

D ( 1' I k B T) "' ..1!.3. ( k BT) 2 
6 1' 

In the conclusion 1 

the second part of.this 
use the presented approa 
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1 
yl; 

is the frequency of 

(22) 

is the a, -th projection 

a.-th phonon branch and 

'(23) 

the average numbers of 

~ KDP crystal the calcu­
.ically unfeasible. How­
.. the contributions of 
:e) . branches can be esti-
9 [K - PO 1 complexes and 

4 

be approximated by the 

Ne also assume one quasi­

' one phonon branch 

ltion of the phonon-like 

(24) 

.ss of the [ K- P0
4

] complex. 

branches can be estima­
condition that th~ above 

~lf: 

I 
r 

I 

l 
I 
l 

I 
l 
t 

I 

2W ac~ 
q 

(25) 

is the Debye temperature in ener-

gy units, vz· is the sound velocity, v 0 is the volume of 

the unit cell and 

. 
k 8 T 2 r/A T xdx 

(-} f B --
T 0 ex-1 

(26) 

is the function expressed numerically which in our case 

can be approximated by the expression 

2 k BT 2 
D(r/k T)"' ..lL.(-}' k T « T• 

B 6 T B 

(27) 

In the conclusion we would like to point out that in 
the second part of this paper (reffered to as II) we shall 
use the presented approach to study the characteristics of 
quasy-elastic neutron scattering in more detail. The 
interpretation of the tunnelling quasi-spin model, the 
nature of the'low temperature ferroelectric state as well 
as the deuterium vibrations along the c -crystal axis will 
also be discussed with reference to the refined neutron 

scatteringproperties at small angles. 
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