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In this paper the investigation of the collective modes 

associated with nuclear pair correlations which has been per

formed in ref~l/ is continued. The pair correlations in the 
system of two kinds of nucleons are considered contr,tr,v to ref<'i/ 

where pair correlations in the system of only one kind of nuc

leons are analysed.This is important, for instance, when we con

sider nuclei with the number of nucleons A~ 40.56. In these 

nuclei neutrons and protons fill the same single - particle 

levels. Hence it is necessary to take into account not only the 

neutron-neutron and proton-proton pair correlations as in hea

vy nuclei but also the neutron-proton pair correlations 121. 

There is a large amo1n1t of experimental data concerning 

two-nucleon transfer reactions in nuclei with A~ 40.56. It ' 

1:. S<'en from these data that the matrix elements for the transi

tions to some I.r. = o+ states are strongly enhanced compared 

with the transition into a pure (/)J = 0 confieu:!'.';J.tion of the 

:v.une nuclei /J, 4/. It means that in these nuclei there exist 

collective modes associated with the pair correlations. 

In the present work the-collective Hamiltonian describine; 

such 1110des is constructed. We use the microscopic model with 

pairine forces only. It may happen that, in prj_nciple, we must 

take into account other forces ,too. For instance, the quadrupole 

forces which a:r:e connected with the symmetry ter:n in the avcra

ee nuclear potential IJI. 
But in order to determine the role of such forces we must 

first of all perform calculations with the pair forces only. 

It is evident that the pair forces must be taken :into a.ccount. 

J 
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Since in light nuclei the isospin { is a good quantum 

number we write the Ramiltonian in a:n isotopically invariant 

form: 

-&J..l.A~ A .. ,_ 
.. _, .., J '"'T J "" l 

J,J c=O,tf (1) 

....... '>c 

where N. 
}oM 

~ is the isospin projection, 

( Li" is the Clebsh-Gordon coefficient. 
~ .. i VI. .. L 

The other notations are the same as in re/.11. Let us intro-

duce the operators T. ,. J ,,. • 

T • ' c .i'l' \-l' . 
..... =-fP~ If. tl 

2 (at a. +a+ ) 
J z. t' .. ··~ ~,.... J ...... J ... -.~ ..... a. , t,•:z. • 6 • I. . ~;a. J-.. ·~ J-"' ~:l 

~, 
The operator of the nuclear isospin 1: is connected with 

these operators in the following way: 

r: :: <;' T. "' . • .L.. J r'M • 

j, oii)C 

The Hamiltonian (1) has been considered in refs / 5 , 6, 71. 

In these papers the attempt has been made to find the solution 

in the limit of strong pair correlations where there exists an 

average pair field. Some qualitative results have been obtained. 
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But a simple o.nd effective method an.:>.J.ocous to the U ·• Z.: Bor,0-

luboY transforr~at:i.cn has not been found. The properties of the 

collective excitations were not considered in these papers. 

·;P- shal1 oe interested in the nt,clear states which can be ob-

tainec by addin;; or removing the pair~ of nucleons froo some 

basic nucl•n~s. As a basic nucleus it is convenient to choose the 

nucleus nith closed subshells. Conse1uently we shall distineuish 

between ;_l.'l.rticle ( j ) and hole ( J• ) states and use the trans-
-+ -

formation: 

J M 
r i 

i (:-) ~ 
T 

J JM"i"' 

f. ~· 
1_ ,}1 :) 1. 

It was shown earlier / 8 , 9 ,l/ that in order to construct the 

collective Hamiltonicm it is convenient to use the boson repre

sentations of fermion operators. Different methods of the cons-

truction of such representations are known. Some of them which 

have been suggested in refs 18 , 10Jll/ 0~n be combined in 0ne 

b.roup. These methods create in:finite boson c':"'t:nsions :-tnd the 

boson images of the hermitean conjueate crc~:ttors 1'Cmain as be-

fore hermitean conjugate operators. Since the bc1snn e-.:p:tnsions 

of fermion operators are infinite series there aris.es n. q_uas-

tion about the convereence of these series. In th'' ~eneral case 

it is impossible to answer this q_uesti .,r. • . :\.s a canzcquenco '.'IC 

can not use these methods for the description of nuclr.i ''ti th 

sufficiently 3trone pair correlations. Ltt~ in the case rf r~ir 

5 



correlations in the system of one type.tf nucleons it is possib

le to get a sum of the series. The sum of the series for binar 

fermion-operators in the physical subspace of the boson space 

is the polynomial of the third degree /l/. Thus in this case 

it is possible to construct the finite Hamiltonian in terms of 

the boson operators. But in the case of two kinds of fermions 

all the expressions are so complicated that practically it is 

impossible to use them. 

Another method £or construction of the boson expansions 

has been suggested by Dyson in spin-wave theory ll 21. This me

thod has been generalized to the case of arbitrary nucleon in

teraction in ref. /lJ/. The method gives us finite boson expan-

sions, consequently there are no questions connected with the 

convergence of the expansions. But this method does not conser

ve the properties of the hermitean conjugation. If two fermion 

operators A and B are connected by the relation A+ = B 
,/\ ,. 

then the boson images of these operators A and B are not 

connected by this relation "+ A A fi B generally. As a result we 
get a nonhermitian Hamiltonian. However,it has been shown in 

refs /lJ,l4/ that the eigenvalues of the transformed Hamilto-

nian are real. The Dyson's transformation conserTes all the com

mutation relations unchanged. 

In the present work we shall follow refs /l2,lJ/ using 

the generalized Dyson's representation in the case of the opera

tor algebra which here is more complicated than in spin-wave 

theory: 



A. 
)rk~ 
+ 

-~b. 
J .. WI'\',; 

b~ 

; >'It' j 

A}. ... .. ~ (1 - 2 h_~ h. ) 6 ~ ~:-r b.. I( .. 2 L-J b 
• " J .... K. 1 ..... 1(. J· ..... i"' 2.. i. "" -.~ F:. 

J .... ·K. 

b 
J.."" "-..) 

b. "'J J_ttt.fi.L , 

J10re i~ the Wiener coefficient, 

:: 2_· CrH 6+ b ~ ,It is easy to see that this bo~on rep::"~-
·t',K. H' l 1'. . j ""1' J .., 1<. -· 

:>entation conserves all the corrunutation relationn unchan~ed. In 

,;uch a rc presentation the Hamiltonian v1ill contain only tv:o -

and four-boson terms. This is very convenient from the practi-

cal roint of view. 

Let us determine the collective pair modes o:f excitation. 

This problem is discussed in detail in ref. /l/. Unlike ref~l/, 
after the transformation to the normal ferm the two-boson part 

of the Hamiltonian becomes a nonhermitean operator. Thus it is 

impossible either to diagonalize this part of the HamiltoniiUl 

or put it in the same form as in /l/ by means of the linear uni

tary transformation. But IVith the help of the linear nonunitn.ry 

7 



l 
canonical (i.e. conse:cvin13; all the commutation rele.tions unch:->.n-

r::cd) transformation it is possible to diagonalize the two-boson 

part cf the Hruniltonian and determine the operators which des

cribe collective modes: 

~ T ·•::: ?_ ( lfk , f. 't" ·t- t)i -·t) ( ~ ) . 
I • ~ ' K .r J tM k • -~ U 

. - ' 't ·-J < I< ;, J .. M I(-;. - j" ' 

b. - L ( iJ B i-i 17- - ~ • .' ) 
JrrW • - .._ t<-1: Jtrlll /.:1 < ... (;:} uk f-,/ •" I r-; ·-·;- ' 

The transformation coefficients satisfy the relations which fol-

loVJ from the fact that the transformation is canonical: 

iJ'-K ' {J • ,of).., Q 1 
-j J-j. 1M j<.+ I)+ 

- zr;,._ ,· ... if._ . ..... ) = 0 J 
I ~ ,._._I) f. 

;:;::-, (.... -
~ vi!_ i ... ui£_ , , 
J(T ' '" I h l4o 

- iJ . if . ,) = 0 
IC:+,}._ ... 1:!.+,11-~"' , 

-~ {'1f 
L- t<--,J:_ ... Z{_ J ..... ' -7J 7J ) - 0 

~ J I!.+,J.: ... "-+,j+""', -

L ( 1{. " .tA if .. I - fJ ·' lf. . L:: t' ., cf I 
k-+ -,h ~dt ... ~f:J.+"'' t+-Jr~'~ J:!:.Jx ....... 

In the paper /l/ we determine the 'c~e:fficlents 1{ j'" in such 

a way so that to put the two-boson part of the Hamiltonian in 

thl form: 

(2) 
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We had done this mainly because it Vias impossible to diagona

li?:e this P''rt of the '-tcl.miltonian ifG >& ·r·:Sut to determine 
(.7 ~ 

collective modJR it is sufficient to 1-ut the two-ooilon part 

of the Hamiltonian in the form (2). In our case, due to other 

choice of the boson representation, it is po::sible to diaeonu

li~e the two-boson part of the Eamiltonian and deter~ine coeifi--
cients l( lf for an arbitrary G . As a result we get ~he 

J""' "-il¥1 
folloVIing expressions: 

x~t u-z~~;w) 

]). ' 
tr . 

"!J""' ' - J). .... ' .} 
'·-""- L( . .C:t: 

J .... .. + 

J 
(_( . 

K±,J- •"' 
::: x .... :t:· ( i- 2. P_) 

)>, "X LC ' 
J-""" '"".! 

of particle (hole) 

XI(. ... 

Here P. { f ~) 
I<- .w J. 

is the average nwJbe~ 

pairs in the ::tate v1ithout bosons, ;; )) 
111 

is the module of the 
J! 

renormalized single-IJarticle encrt;y reckcmed from the :t'ermi sur-

face. The renormalizations apre:1.r v1hcn we put the Hamil tonia.n 

in the normal form. For :l.Jl(l ~ 1>. \"ie cet the fol-
2. I~ •"1 

loVIing expressions: 

t J)/ ... :: I E. ! i ~ l li .. - \I 
:t J;. 2 K- "+- ~e.-) •'~ 

·~ 't ... • 

It is seen that the renormali~a.tion remoYeS the single-partlole 

levels away from the Fermi surface. The equations for •_u .·and 
"! 

xr..±xl<t are the followinr,: 

&(? L - 2 fit l'f i - 2 J'. \ 

1 2 
I (J) -+ J ·- t-W 

) 
=-

J>. 
----...!' ---

J m - cL' ]). !, J! 
... IC;i" ) - 1M -t ((./ ., J -

141 "'i 
+ 

9 



I 2 1-2.fj;t.ttf 

\j!."" c~ 1M -Wn).:. 
Ji 

l 
- L 1-2J}-.u )c4) 

i- ..., l'J;. t-1.(/ )2. • 
+ \...:J-"' ~t: 

These equationn v1ill coincide with the equations .. of quasiboson 

O.IJllroxir.la tion /l5/ if we :put j ==0 ' 
Jx"" 

~ ]). ~ = I E ' - A I 
l:;t J:!: 

In quasiboson approximation there is the critical value of G 

( G ) such th:1t for 
tr~t 

G- ) ~-r. r the solutions U.j~ cor-

res:pondlnc to the collective modes become purely imar;inary. The 

solutions of eq. (J) corresponding to the collective modes !\re 

reo.l for arbitrary values of 

and ]). with increasing 

G due to the increase of .f.. ... 
lc 

G. The dependence of U..~ t. on G-

is shown on fic.l. Due to this type of the dependence we can 

diagonalize the two-boson part of the Hamiltonian at arbitrary 
I 

vo.lt~es of G. The numeri(!Pl er.timates show that we can neglect 

thP. contributions of the noncollective modes to j. and J) 
J~..,. lz.._. 

with "' {'<'Oc1 accuracy. In this ce,se we eet a system of equations 

for W 1.. X ;< f. ]). which can .be solved nwnerically. 
-, 1"!, Jt.> J.! ... ' J.t"' 

In eqs (J) and (4) )\ is an arbitrar:· q_uantity. We c::tn fixe 

in such a way so that to get u..• - L'' - , , , • Then vtc get the 
i .. - '"i.-:: ........ 

following system of equations for 

i XttH(? J.-2_f.-
l-2.f: ) -= J ~.., -2. (:». -w)l 

J;04A 

J:t"' 
J .r'"' J_ .,. G· -t- w )~ ~ 

~ It- 1M 

i-:; & ~ t t -2f;_..) ]);,,. ) j .~ l ])~ - l.-L'~ j 
(5) 

)·"' 

2 i - 2. _p. z 1.. -2 P-J 114 
::: J .... 

j ... ))_2 > - \A.~ . ])_:z. - u.}· .. J .... J .... • J_ ;04 

10 
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~r'" = l/ fjt- >./ -r Z ~('L I fJt -\/ -t-fl/.-+ 12-~_): 1~) _iff -),} -u.l 
r i" 1 .. 1 

• j 

i 

2 _ 2tf/.t ->./ +W 

]). .... "1- w 
H 

Th.i~; system o:f equations can be solved by ]tPr~tions. After th.c 

r,npff;_cicnts uk+ ·· and iJi. '"" have been found VIc CV."l de--J..,. ~ :t) 

terr.tinc 7J . 
1 

e..nd Lf "' for k :f. i. • '.!.'hen we cr.n e::-.1-
"" "t I J '" k '!:. / j •V 

rt•latc the constants for the anharmonic terms in H which ch2..-

rar-tcrize the interaction of bosons of diff•n·ent types. ·rhc Te-

snlts ~how that the interactlon of the r,ollective modes ·,·lith 

noncollective ones is much weaker than that betrlc<m the collec-

tlvc modes themselves. For these reasons we shall consider only 1 

11 
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l'lherc· thn constants G(.,) are expressed through the coef-

] ,. 
ficients li . [I . and the sien: ; ~ rne.?.ns norr.1:<l p::-"-

i !, I"" ~ 1 !, J""' - . - ~ J- "'-

duct.i.:o:rnnver[ii'f1i- "~C.L"' S+t>• o.nd[f'f] "'~C ... t-lrP[i 
I .ll1 ··VI<. i'i'H:./t'JJ(. .r,... L"',o;, j,;-il< , .. ,.,._ 

If we conserve only ihe collective bosons the~ the opera-

tr.rs of the particle nwnber and the isotoric spin take the form: 

N~21. -~ , 1-" 'rL·.", L·, .. - rL·,f(. !L .J -,- = il'. (cfl+ r· 1 [ r· ... p, J ) , , ,. r1 + J- rt- 1" . • .. .1 .1_>~ .~ 

In the case o:f' the weak anharmonicity the bosons B,. 
fit 't' •J 

r;ive u::.: a ::;oon basis fo:r the construction of the solution. J;ut 

in the General case the eicenvalues and the eigenfunctions of 

the H..1I.1iltonian (6) can be found nunerically. In order to ana-

lyse the situation qualitatively in the case of strone ~air cor-

~elations it is more convenient to consider the Hamiltonian in 

sone other representation. Since the deviations [ &(J.)- (.-( '!] 
and l C.: l :!>J - c.;. ( "1) J from zero are due to the asymmetry of 

the single-particle scheme with respect to the Fermi surface, 

and the asymmetry effect is small in the case of strong pair 

correlations we can put G-{t) ~&(z) and (;. ( 3) ~ (,- ( 4) 

in this case. 

and 

( 
1 .v ) Let us introduce the operators 'J:. :-A:. B -t- L-J ., /), + 

"t" ' li+ '<' . J.- .;: 
P, -:: ~ (A.,. _ <..-J..t-<' B _,) q,,. ~.-which satisfy the foll'o-
't' v'r' Y:tf,? 1 1.-. -, 1 ~,,, 

commutation relations: wing 

[~r)~l,.c\~.~, L~i"s~~J~ [~. H:J =[fr,P~l--L~~.P:r~o. 
In th~.s representation the operators of the particle number and 

1Rotopi'! f>l)i!l take the form: 

i 

12 
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.. 

IV= 2~ Z (Cj,~ P .. 
k t<. I k 

.,... • r:-1 ')' c .i ~ 
I = • ~l.· L. r rr< .1t<. i·-t 

) J 

( c- -t o~ o ) r r I r< - -v t<.. p'"' . 

For the Hamiltonian we get the following expression: 

H~,u = M.lp~p_t- C ['l--tq.]. .... A(L'} .. CV]J~"~"~]"-}~-t't·1~iJ.)-t 
+ t)_(Lrvft.tLf' ... pJ" .. h c) - ~ (2 uvrl.)p+rt-]~ t- 2b-,+r..l . .(;;J~ 
- L't'l~.lpPJc -lfpJ,JHic t-A/[9--rcdcCr+'Pl<'-AtLt~t~.[q+-(J,]c- f-2). 

Here [<V<t.l.-1cz..: Cf,,__J ['t- ... 't ... ]~-= 2(-JIC..o t-n+ . fi,•.,1-= :2. .,. , 
"' "' ... I<. .... _ .... ., 1.{' t " J<. f "'- r"" ~ 

[q,-tpJ,. = ~ (.-J" Ci-~ f.K. • The coefficients A,B,C,Mo are expressed 

through uu and the boson interaction constants. The coef~i

cient C > 0 in the case of strong pair correlations and 

C < 0 in the case of weak pair correlations. 

Let us use the differential representation of the operators 

where l:. 
f" is a complex variable since ~r is a nonhermite

an operator. Let us introduce also the new variables L\;~ 'i' ..u 'f.~ 
" I f.11 .£>~ 

~ . 
l: :: 2. .b 1 ('t. ~ ...L) Q . A ; ~ n '':!:~·- .9· 

t.4 r"' • l.z. I, ., ., U"=U =-e :l..v- Q ..:fle 1..-C!\ .• 
1 · K..:o;~~ "' .... , ' ~ ..... "' ... -.1. {£' .:1 c 

i .j. (8) 
J> ( 'f.t '+L't5.) is the Wigner function. The three Euler 

fo41C. J ' 
Here 

angles describe the rotation in isotopic space. Since ~-J. 'f ~ 
1 1. ;j '.3 

are the dynamical variables, the transformation (8) is equiva-

lent to the transition to the coordinate system rotating in iso-

space. The variables Ql<. are the inner coordinates with res-

lJ 
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rcct to the new coordinate system. The nuclear isotopic spin 

operator is connected with the operators of the isoepin projec-

tions on the new coordinate axes ;,L ~ in the follo-
wing way: 

T=2 
t" #(. 

'1\i..;. )"f. 
j) ( 't J.. , '+2 I '+3, f<. :J rtc. 

·r:"'T~ j Tri T\ ::!: (·T'Z-
- - J - ... ,rzr 

where ,._. 't '() 

{
'-".> i (-r =; ~ ,.'t'J. . 0 ) ( 0 l 

- (c.i 't2.?'f-3 - J,., ~r,:''f, ], ~ l • ., T.2. 

T - '{- ~ ... "t ( r;; - ~:.~L· Q__) 
- t ~ C\ T.l..') 

y ! '., 'f-.z. L 'f'f. • 'f-:3 -~~~9~,]_, 
t--r' • 0 '"':: -, ·-. .... r.j 't'!. 

The variable 5f , canonically conjugated to the particle num

ber operator had been introduced in ref/1~ The particle num

ber operator in the new variables takel! the form N = 2: tj~ 
The quantities A and ·9 describe the pairine vibrations. 

The Hamiltonian can be written in terms of new variables as fol-

lows: 

H<.c~ ::. T:,, b T Tn-t + V 

'f. :: Me (- -L._ 0 >. 'J _ 1 Q_ ~"' '18 ((J ) 
v,b '-1 L!,.~AA£lA JJtS-\..,.4~0.9 Q~ ' 

'r '=- & ( 
t"<t 't If'-

( p -·r.J.l. ·r2. 2 (9) x + ~ ... 1.1 J T. 2. "Z r.,.) 
T + ~ + --:2._ 

Cc_,~ 4 2.-8 " tc..l! .9 L..'.:; _, 

v::: - c ll'- + A 4/':llj { 3- ec.) Lt -8 j 
l 

14 

j 



\"/hen we passed from (7) to (9) we consefved in "fv: b and 

ll~or only the terms which are linportant for ~ualitative 
consideration. The first term in (9) is the kinetic energy of 

/1 and -9 vibrations. The term proportional to N2 in T...~t
is knmvn from the consideration of the systems of one type of 

nucleons /l/. The collective motion connected with them ir; the 

pairing rotation /J/. The other part of Tnt for the e::cP-p-

tion of the term proportional to has tho sace form 

as the Hamiltonian of the asymmetric rotator in the three-dimen

sional space. We shall call this part of the Ha..-nil tonian the 

energy of the rotation in isospacc. The fact that in 

there is a term proportional to AI·~ means the.t the rota-

tions in isospace and in gauge space are not separated from one 1 

another. The third term in HcoU is the potential cnerr~ 

of ll and -,9 vibrations. Due to the dependence of the nomen-

ta of inertia on /1 and 9 the rotation~ ore connected with 

the vibrations. 

As the inner axes and ~ are not distine;uishable 

from the physical point of view (the axis is singlerl out by the 

coupling of ~ with U) \'le can choose these .-.;:es in tvro 

physically equivalent ways. As a result Hlot'e is invariant 

under the transformation: 

-8 J 

Consequently the ~-9 ~l~ne is diviued into four ~hysic.ally 

equivalent sectors: 

15 
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~ < 5'< ii. ., ... .... ~) II. ~ ~ < 1€ i!!: < ,s. < t..!!:. - ~17 < t9 ~ - u: . ., ..... '~,lr' '~tl ..., ....... .., 

·.~· c f'j.nglc out the s.;ct or - ii ~ ..J ~ E. 
., 'I and consiuer th~t ~ 

chi!-nges· in thr:~;e l:L::ti ts. 

~~e pct<Ont:L:cl encrr,y V h.~f the minimur.1 ~t 19 = 0 c;.nu 

'
~ 

" -1\ - !::. '"11" nu.~ntity u- ,.- r A • ~- ~ .•.• ~c is the ~nRlo~ of th~ ener[J 

t/!Jl in t'hc nu~1erfluid nncl<Ja)~ r.lodcl. J .. s is seen fror. (9) the 

stif:'ncss with rcsiJect to f:l and 8 vibrations increases with 

in0reasin;: /j,c In th0 limit of stronr; pair c OTrela tior.s 

( Ar::>> & ) the :;_Jotcntial cnerey can be re!'lr,.ced by the fil·st 

terms of ezp~>.nsifJn of V rower series irJ ( fl - 11
0 

) and '1.9 

lor 2.. it9'-v ~ - } A ll, ~ 2.. A /j.c~ ( fl - .1.-) + 2 A f1c ·2.- • 

In this limit we can put in T;.~ ll-= .1~ 
7 

;} = 0 ?.nd in 

T;il, .d == Ar. ~. n t.,f)='t.Y, As a result, we get for Hlc<'{!.' 

H,cee ~ - 1. A A 4 Nc L /1/2 
2. '-1, + "'A..~ "71 

M L 0"' ~ 'I c - (l @ -Acjz. '1-

'1' H c L- f {' !9 'Zl 
'tflL ~ft:~ ('-;; 

(· 

'1- r (T '1-1.) - T't;,l.] +-

8A A/ ( .1 -.1r/j .,.. 
HC' 

T:.z 
+~ 

19 ... 
+ 8At:t/.s~ 

k .. , ~. 
The cit~env'1.lucs of this Hamiltoni!ln are~ 

£ (A r T. II r; . J.., - AI!., 4, + No [ tvl. ..... T (T' 'f- i)- T '7t 1 
' \ • 1!.' ,;t L itfl2 'f ~J 

c 

+/2AHc/J.~ (nlj -t-2..vt..>' + 1\J +-}) s 

i 

H 



l 

\ 
j 

J 

~1here n..A = 0,1,2, ••• and n
1 

= 0,1,2 ... 

The eigenfunctions of the Hamiltonian ~~e p~orortional to: 

Where H
11 

is the Hermite polynooial and {: (-n.~ Ct J :x.) is a 
A 

degenerate hyper~eometric function. 

These functions can be used as the basis ones in the limit 

of strong pair correlations. ~ 

C ) N N . t 
In the expression 10 the term c 16 A.,:~.. corresponds to 

the energy of the pairing rotations, the term Nul. ['1'C'r+.t} - T. .l] 
~A:, \ 

is the energy of rotations in isospace and the term 

JiAI-fc flo"-' (r!A+2.n 3 ?J~j+}) is the enerp_,y of ll 

rations. 

and .,9 

The eAperimental data /lG/ concerning the _energies and 

vib-

cross sections of the two-nucleon transfer reactions are in so

me oases in agreement with this strong 'courling scheme. In other 

cases the model of approximately independent collective bosons 

is in better agreement with the experimental data than the strong 

coupling scheme. It means that the intermediate coupling model 

corresponds mainly to the experimental situation and we must dia

gonalized Hcoee exactly. This ,,roblem will be solved else

where. 

17 
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:ne.l The dependence of the cnereY o£ the collective boaons 

( W1t ) on pairine :l.nteraction constant (G). 
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