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In this paper the investigation of the collective modes
assoclated with nuclear pair correlations which has been per-
f{l/ is continued., The pair correlations in the

system of two kinds of nucleons are considered contrary to reffa’

formed in re

where palr correlations in the system of only one kind of nuc-
leons are analysed.This is important, for instance, when we con-—
sider nuclei with the number of nucleons A % 40.56. In thesec
nuclei neutrons and protons f£ill the same single —~ particle
levels, Hence it is necessary to take into account not only the
ncutron-neutron and proton—-proton pair correlations as in hea-
vy nucleil but also thé neutron-proton pair correclations /2/.

There is a large amount of experimental data concerning
two-nucleon transfer reactions in nuclei with A > 40.56, It '
is seen from these data that the matrix elements for the transi-
tions to some IJr= 0% states are strongly enhanced compared
with the transition into a pure (jz)J = 0 configuration of the
same nuclei /3’4/. It means that in these nuclel therc exist
collective modes associated with the pair correlations.,

In the present work the collective Hamiltonian describing
such modes is constructed. ‘e use the microscopic model with
pairing forces only. It may happen that, in principle, we must
take into account other forces ,toco. For instance, the quadrupole
forces which are connected with the symmetry term in the avera-
ge nuclear npotentisl /3/.

Lut in order to determine the role of such forces we must
first of all perform calculations with the pailr forces only.

It 1s evident that the pair forces must be taken into account.
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Since in light nuclei the isospin I is a good quantum

number we write the Hamiltonian in an isotopically invariant

Torm:

H=2@-N, -6 Z 2K AL

J,m>cC Te0 “ 4 D)
-u,->c
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T is the isospin projection,

AT
R is the Clebsh~Gordon coefficlent.

The other notations are the same as 1n refl/ Let us 1intro-

duce the operators T e :
J 12
) K {4 ‘/z
T“.r:——:-Z.Cy‘ g af s qt
T, 11T JuTE g aT ety ai"*f.

e
The operator of the nuclear lsospln l_t, is connected with

these operators 1n the followlng way:

T2,

m)c
The Hamiltonian (1) has been considered 1n refs /556, 7/

In these papers the attempt has been made to find the solution
in the limlt of strong pair correlations where there exists an

average palr field. Some qualitative results have been obtalned.
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But a simple and effective method analogous to the U - Bogo-
lubov transformaticn has not been found. The properties of the
collective excitations werc not considered in these papers.

e shall be interested in the nuclear states which can be 9b-
tainsé by adding or removing the pairs of nucleons from some
basic nucleus, As a basic nucleus it 1s convenient to choose the
nucleus with closed subshells., Consequently we shall distinguish
between osarticle ( J; ) and hole ( j,) states and use the trans—

formation:

A ~ N ?

A" 1M JE). er»je}* T):mn",l“'i
j.uf‘= L-% ’IVM" ) ,'M,..: .
oA L. ) Sl
LT )€ 4 A/);m,jéj_ | “-jé]"
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It was shown earlier /859,1/ that in order to construct the
collective Hamiltcnion it 1s convenient to use the boson repre-
sentations of fermion operators. Different methods of the cons—
tructlion of such representations are known, Some of them which

have been suggested in refs /8,10,11/

can be combined in nne
group. These methods create infinite boson ecxpansions and the
boson images of the hermitean conjugate cperators remain as be-
fore hermitean conjugate operators. Sincc the boson expansions
of fermion operators are infinite series there arises a gues-
tion about the convergence of these series. In the general case
it is impossible to answer this questinsn. As a conscguence we

can not use these methods for the description of nuclei with

sufficlently strong pair correlations. Lut in the case of proir



correlations in the system of one type-%f nucleons it is possib-
le to get a sum of the series. The sum of the series for binar
fermion-operators in the physical subspace of the bosﬁn space
is the polynomial of the third degree /1/. Thus in this case

1t is possible to construct the finite Hamiltonlan in terms of
the boson operators. But in the case of two kinds of fermions
all the expressions are so complicated that practically it is
impossible to use them.

Another method for construction of the boson expansions
has been suggested by Dyson in spin-wave theory /12/. This me-
thod has been generalized to the case of arbitrary nucleon in-
teraction in ref. /13/. The method gives us finite boson expan-
slons, consequently there are no questions connected with the |
convergence of the expansions, But this method does not conser-
ve the properties of the hermitean conjugation. If two fermion
operators A and ﬁ are connected by the relation 2? = %

A A
then the boson lmages of these operators A and B are not

A A
connected by this relation At £ B generally. As a result we
get a nonhermitian Hamiltonian. However,it has been shown in

refs /13,14/ that the eigenvalues of the transformed Hamlilto-—
nian are real. The Dyson's transformatlion conserves all the com—
mutation relations unchanged.

In the present work we shall follow refs /12,13/

using
the generalized Dyson's representation in the case of the opera-
tor algebra which here is more complicated than in spin-wave

theory:
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Here 147 is the Viigner coefficient, J - J,- ™

= 2{(;TH b* p* _-It is easy to see that this boson repre-
{V AK Tt jM K
)ontation conserves all the commutation relations unchanged, In
such a representation the Hamiltonian will contain only two -
and four-boson terms. This is very convenient from the practi-
cal voint of view.
Let us determine the collective palir moades of excitation.
This problem is discussed in detail in ref. /Y | Galike refﬁl’
after the transformation to the normal ferm the two-bnson part
of the Hamiltonlian becomes a nonhermitean operator. Thus it is
impossible either to diagonalize this part of the Hamiltonian
/1/

or put it in the same form as in by means of the linear uni-

tary transformation. But with the help of the linear nonunitary
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canonical (i.e. conserving all the commutatlon relstions unchrn-
red) transformation it 1s possible to diargonalize the two-boson
part of the Hamiltonian and determine the operators which des-—

cribe collective riodes:

1-7

b,'.m ” 2 ( k:l ™ Fu;r +¢) Un;,,’_m ks ”7);

’i~~=§<m,-,mP T )

The transformation coei‘flclents sat:.s::y the reiations which fol-

low from the fact that the transformation 1s canonical:

26, U T, )4

U
K*’I,,_-“ K+
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In the paper 1/ we determine the coefficients .U—Kfm in such

a way so that to put the two-boson part of the Hamiltonian in

the form:

Z o B pu e LR QLR Pp)
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e had done this mainly because it was impossible to diagona~
1ize this part of the Hamiltonian 1f(_; >({r_t,?3ut to determine
collective modes 1t 1s sufficient to put th; two-boson part
of the Hamiltonian in the form (2). In our case, due to other
choice 9f the boson representation, it is possible to diagona-
lize the two-boson part of the hamiltonian and determine coeffi-
cients v Lr for an arbitrary G . As a result we get the

KymI "% pa
following expressions:

U . - XKL (i 2p m) [IL _ X&z
K r = I3 AL S—
'-’}rm ) 4 ‘t;l'w D T ’

IR o T
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Here J? ( fZ ) 13 the average number of particle (hele)
Jo ™ J.™

pairs in the state without bosons,lz]b "

renormalized single-particle energy reckoned from the Fermi sur-

is the module of the

face, The renormalizations appear when we put the Hamiltonian

in the normal form. For j2 and L D ve get the fol-
): 2 ,_'aq
lowing expressions:
RS- B | o TS
M T2 g bi,)t“'L‘;/Jz“‘ J
.L;D i ~
. = . 3 '
Z Ty IEJLIiz_XK—L - ‘M
- Kf +

It is seen that the renormalisation 1emove% the single-particle
levels away from the Fermi surface. The equations for ¢/ . and
KT

'X X are the following:
Kt Kt

L~ . - ] \\
- 6(2 = 5 D o
YT )
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1‘ XK, th . N = S S (4)
T I‘m ( - f - . . . , 2
- g™ ) S ])J;m'”'”zz) :
These equations will coincide with the equations of quasiboson
5 4 .
approxinztion /157 if we put j) =0 , > ])} w = l&‘- - A’
7™ * T
In quasiboson approximation there is the critical value of G
( G ) such that for G > G r the solutions (W cor—
il e ix
responding to the collective modes become purely imaginary. The

solutions of eq.(3) corresponding to the collective modes are

resl for arbitrary values of G due to the increase of _@ w
. r
and —13 ™ with increasing G. The dependence of U—'“ on G
. t
is shown on fig.l. Due to this type of the dependence we can

diagonalize the two~boson part of the Hamiltonian at arbitrary
valves of G. The numericsl estimates show that we can neglect'

the contributions of the noncollective modes to f’ and D:
s+ Jy

with a peod accuracy. In this case we get a system of equatio~ns
for Wiy, X X f’ ] which can be solved numerically.

RIFERAT SAS € Ryl Iy
In egs (3) and (4) )\ 1s an arbitrary quantity. We can fixe
in such a way so that to get @y :u":t
following system of equations for

FRIVIC Then we get the

s 12 -
g™ (3.: LL) };m @‘-M +UJ)2' 5
¥
- ¢z [ &28.) Y |
J'“( );f_ _— 7 &2
-2 5 5 1? P .

'w 2 < 2 . 5
)+ j‘\«'u’ J'm tDl - w?
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Thls system of equations can be solved by iterations, After thc
o i oh] )r ’ T s - I3) -

coelficients "kt/jw a.nd\‘ 2&%}_‘, have been fTound we can de
ternine U . and o for K#1 , Then we con anl-

Kt Jon Ke Jv

’

culate the constlants for the anharmonic terms in H which cha-
racterize the interaction of bosons of different types. The re—
snlts show that the interaction of the collective modes with
noncollective ones is much weaker than that between the collec-
tive modes themselves, For these reasons we shall consider only ¢

the collective part of the Hamiltonian :

Hewe = w 2(p0 B+ PLPinl s

 CW (BT pe] gy e L= £ LB p L pil)e

PO EU LU ] - 51y 1 1)

PO L pd L p T - A Lps, o, zfs p V,L] b e

RUNAENS L pl. - lps ol LF;P:,”)J;
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Ly Pl Bl g e

*6(7)(56-[?;/;1] L /3

) ) MR Fi— Plv]o {3 U.p+ ‘ :

. & 3/ ’ i*P.(f] [1- (+ (6)
@ CLLPL e Ly, pd, -5 "y ]:L/; Fr? J].J{:)),6

3 . .
+ G(Q) ( /L [PL- F.{Jo [P;. P!-Z" -QL[P: P;JL[Pj- ﬁi‘]jj”

12



where® the constants C—( ) are expressed through the coef-
ficients Zl U‘ S and the sign: ¢ [ means norma 1 p“‘f‘—
2wy M
. L Ih .
duct. orcover JRra¢ = * +6+ and (B
! Lr F 2,<c1 TR FY’P a L P]_\’»« TR 1?‘1& F“P&
Ii we conserve only the collective bosons then the opera—

ters of the particle number and the isctopic spin take the form:

N=22p: p - — N
PL n.ﬂ FL n“ 'F—\/L([IBJ,1 “*[_pj"_ﬁ‘_]m)'

In the case of the weak anharmonicity the bosons i?h
sive ug a good bazslis for the comstruction of the solution. But
in the gencral case the eigenvalues and the eigenfunctions of
the Baniltonian (6) can be found numerically. In order to ana-
lyse the situvation gqualitatively in the case of strong palr cor-
relations it 1s more convenient to consider the Hamiltonian in
sorte other representation. Since the deviations EG(l)- Cr(?.)]
and [_C‘ (3) - G(")J from zero are due to the asymmetry of
the single-particle scheme with respect to the Fermi surface,
and the asymmetry effect is small in the case of strong pailr
correlations we can put (G (4) (G (2) and G(3) >~ G (4)
in this case.

B
. 1- -

a - 1-7 ) hih tisfy the follo-
an 8: (ﬁ“ - ) ]61-—- q,f’f’w ch satisfy the follo
wing commutqtion relations.

[C"'”"P" ] 5;‘ ’ L(Zf 3. ] i L(% ,‘2:] j LPT,IDJ "[CI@,P”‘(%

In this representation the operators of the particle number and

i ‘
Let us introduce the operators s (/‘;}. . + 6

isotopic snip take the form:

12



N= 2. .ij(q,': ,D;: - CKPJ:

r:‘FZ C“ £ (CP:ID,: -9 P.).

For the Hamiltonian we get the followlng expression:
Hew = M Lprel. - CI9+q.1, *A(lq, G119, ; -1 ‘V‘t‘]&ﬂ)*

+ B(LCV(LI Lptp I+ hoc ) - (2 L‘VPJ ”’ﬂp] "le""il w]
~ 99LLpPL. - PPLUISE + pfprel, ¥l witol, [, —
Here [‘L*‘i] =ZCL* 4, ;Le74"1- Z(-; Qn CI:‘ ) [ppl = LIK.. ,
[q’*P] (" Q% f., . The coefficients 4,B,C,Mo are expressed
through Lu and the boson interaction constants. The coeffi-
cient C>c in the case of strong pair correlations and
C < O 1in the case of weak pair correlations.

Let us use the differential representation of the operators

q

po Pu

q/ 224,«4 9 6‘= 1'»?

'

, Zu ?

where Lz'l“' is a complex variable °ince 9,1 is o nonhermite—
an operator, Let us introduce also the new variables A 9’1*‘1/ \t

= P [ A
Zf'-k 20,44 rK(\P\" +) 1 ‘i‘fz—_e'—e 29.Q=L\€ chy

(8)
Here J) (\h_\l'z_ ;) 1s the Wigner function., The three Euler
angles degcribe the rotation in isotopic space. Since ";[J“\f* ¥+
are the dynamical variables, the transformation (8) is equiva-
lent .to the transition to the coordinate system xrqtating in iso-

space, The variables QK are the inner coordinates with res-

13



rect to the new coordinate system. The nuclear isotopic spin
operator is connected with the operators of the isocpin projec-—

tions on the new coordinate axes {’ .z ]; in the follo-

wing way:

T = ZD (+\#\r)'ﬁ

F.T ~ T T

¢ T\s 5 !Ii = : ﬁﬁ 'Z ,

A\
where
f G o
T_L{_\_i_ 9o Q ’
5 vl v ccwz%)-smt%_}
2 J

The variable ¢ , canonically conjugated to the particle num-
ber operator had been introduced in ref/ /. The particle num—
ber operator in the new variables takes the form N=2: Y

The quantities A and 9 describe the pairing vibrations.
The Hamiltonian can be written in terms of new variables as fol-

lows:

T o= Me [0 52 ! @
bty wealon T Fg Toos W

t Mo A/ ;u.' : x 2 (9)
ret T l’\‘ < (Z ":S '2‘77;] + Z+ T,( . TE )

(es229 " Ces .20 /s
l"
Ve —ea s BB 45 4y
;



When we passed from (7) to (9) we consegved in T;:b and
T}ct only the terms which are important for qualitative

consideratlion. The first term in (9) 1s the kinetlc energy of

Z& and {9 vibrations. The term proportionzl to N2 in T;kf
is known from the conslderation of the systems of one type of
nucleons /1/, The collective motion connected with them 1s the
pairing rotation /3/. The other part of 11¢t for the e:cep-
tion of the term proportional to ﬁ/’7; has the same form
as the Hamiltonlan of the asymmetric rotator in the three—dimen-
sional space., We shall call this part of the Hamiltonian the
energy of the rotation in i1sospace., The fact that in }4‘~ww
there 15 a term proportional to A/‘7; means that the rota-
tions in isospace and in gauge space are not separated from one
another. The third term in F*cael 1s the potential cnergy
of A and 19 vibrations. Due to the dependence of the momen-
ta of inertia on l& and é? the rotations are connccted with
the vibrations. '

As the inner axes /3 and ; are not distinguishadle
from the physical point of view (the axis 1s sihgled out by the
coupling of 7; with HN) we can choose these =:es 1in two
physically equivalent ways. As a result P4L,ee is invariant
under the transformation:

g eI, 9T -9 9> -L .9
Consequently the [3..5; nlane is divided into four nhysically

equlvalent sectors:

15
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e single out the sector - },L £ 195 ‘J’i and consider that \9

chenges in these linmits,

The potential crergy 7V heos the minimunm at 9 = 0 znd
o
A

A =Ac:'

cap in the superfluid nuelear model, As is seeon from (2) the

o« Yhe quantity Ac is the aralog of the enercy

stiffness with respect to A and 19 vibrations increases with
inecreasing Ao - In the 1limit of strong pair correlations
(A D G J the potential energy can be rerlaced by the first

terms of expanslon of V power series in (A~ Ag ) and 19

A

(2= FAN 2 AN (A-8)T + 2 AA9 S

In this linit we can put in 7:4- A=A, 19=O and in

T. A =A. 3n4Y=4%yY, As a result, we get for H

Vi Cece-

s

H el—iAAl" Nc A,E ‘
et 2 ’ +4Af L“/- TT(Trg) - T;] -

P Mo f L0834
v L Caa) T o (A-Af.)z_]f

M.

M ARRVEY) T’
* LL‘{‘:L'?—.;%E + 7;:. + 8AA"€"9‘7
M, .

-~
B
)

The eigenvAalues of this Hamiltonian are®

Enr o= = AA“' M M ]
(; ’TS,”A,nx/)— T +,l/01 Z_ "'T(T'*L)‘.,;)‘*
+\/2AHcAf n. +2n, + 1 3
((A-r Iy'-l"slfz—)s
;
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where "1. = 0y1y2y¢4¢ and h’p = 051,2..,

The elgenfunctions of the Hamiltonlan are proportional to:

S T TN T Il
e 27[D +o) s])ﬂ_g]«? H [z(AA:@‘Lj

X F (—nﬂ, 1+ I'T'»s’, 792.402]/ ._‘?AA(-L),

<

Where H"A is the Hermite polynomial and F(—n! Q, x) is a
degenerate hypergeonmetric function. '

These functions can be used as the basis ones in the limit
of strong palr correlations. 2

In the expression (10) the term M, ‘ﬁ; corresponds to
the energy of the pairing rotations, the term ‘% ['7'(""*'1) -T;}
is the energy of rotations in isospace and the term
\/ﬂ_ﬁc_——' (n +2ny *’TI* )is the energy of A  and 9 vib-
rations.

The ezperimental data /16/ concerning the energies and
cross sections of the two-nucleon transfer reactions are in so-
me oases in agreement with this strong ~coupling scheme, In other
cases the model of approximately independent collective bosons
is in better agreement with the experimental data than the strong
coupling scheme, It means that the intermediate coupling model
corresponds mainly to the experimental situation and we must dia—

gonalized H exactly. This problem will be solved else-

Colt
where,

17
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igel The dcpendence of the cnergy of the collective bosons

+g
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( W . ) on pairing interaction constant .
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