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IIntroduction

A simple model descr1b1ng e1ectrons in narrow energy bands o

- is the so-called Hubbard-model 2
H 30 T, ¢ € gt U% Ry M o Mg el oy ', (1)
where clo o Cio are, reSpectlvely, the creatlon and annihila- -

tlon operators for an electron of sp1n o in the Wanmer state at‘
the i th lattice- site, ' T,-,. is the hopping mtegral and U is the -

: ‘electron-electron repulsion between two e1ectrons of oppOS1te sp1ns
»occupymg the same lattice site. .

- Although the Hamiltonian (1) has a very simple form (in ma- -

. ‘ny reSpects it is the s1mp1est many -body operator at all), never- }

& theless, at 1ts app11cat10n, all known d1ff1cu1t1es of the many-body

problem appear Therefore many approx1mat10ns have peen deve- -
“ '10ped (see e. g. ref. /2 /), to study eSpec1a11y the behaviour of the
'f(den51ty of - states m dependence on the parameter U/A where

A 1s a measure of the band w1dth



‘ In consequence of the simple form of (l), some exact conclu-
S1ons can be derived for ‘different extreme cases They are eSpe-‘
c1ally 1mportant as a test for d1fferent approx1mat10ns used at
'present Such an exact solvable case is e. g the one- d1mens1onal

' 3_mode1 with nearest -neighbour 1nteract1on/ /, i.e.

H“=E [c.*:',(c o )—-L—n n ]

ig ig i+1.a+. i=1,0 9 i~0 0 ' (2)
(We have chosen T, = 1)

: Bes1des the poss1b1l1ty to test approx1mat1ons the model
- (2) is of 1mportance also with respect to really existing systems,
jwh1ch can be- well approx1mated by the one dimensional narrow
_,band model Such a system 1s, for instance, the TCNG- molecule,
* forming tetragonal body- centred crystals with ¢/« >»1/ /
| . For the Ham1lton1an (2), Lieb and Wu have obtamed an exact
‘result for the ground state energy and its dependence on /3/_
" Beyond -it,. 1n the present paper the density of states depending on
Uoand n = <n R isvcalculated.ATherefore we use the analogy
to the_one-dimensional‘ 5 -gas and the disordered oscillator chain.
For these systems, the density of states can be obtained numerical-
1y using the so-called phase'method/5/,‘which we apply to the Sys-
tem (2).
| For the spemal case. U =« and n =1 Brmkman and R1ce/6/
have also calculated the denS1ty of states of the system (2). They
obtain the strange result, that the density of states in the strong

- correlated limit U - ~ is the same as in the free electron case



¢ .

U = 0 in contrad1ct1on to our result wh1ch g1ves s1gn1f1cant dl.f-_
ferences between these two cases. L1kew1se the ground state ener-
gy in the solut10n of Brmkman and Rlce is the same as in the free
electron case, wh1ch is in . contrad1ct1on w1th the exact result of j
Lieb and Wu/ 3/ and also with general propert1es of 1nteract1ngv
systems My op1n1on is, that the transformatmn H -~ Hin the paper
of Brinkman and Rice can conta1n some 1ncorrectnesses even-for.
U .~. since the neglected terms are of the forn1 0. Itis. poss1ble,
that these: terms have d1fferent effects in the one—d1mens1onal and
in the three- d1men51onal case, analoglcally to the behav1our of
5 -potentials.

1)

2. Funct1ona1 Equat1on for the Dens1ty of States

We cons1der an approprlate funct1on |

aJ

(’-_1, (m) fdt eza_) 2 )’ <c'a{t)c ,>l,/ cia(i),:eilltciae—th’ (3)

wl'iclc el represents a spec1al d1str1but1on v of N. electrons on
spms and on N, latt1ce s1tes The y are free parameters,
' wluch can be chosen arb1trar11y A | B

Wn 1 H lrom (2), we get the relatlon

W : RN




where

v R iot j v ' + v
I‘w (o) =[dte_3 , IZ‘.;wyio, <"~i.-0 (t)c'.‘a(t) Cipr > =
¢ i o -0 ‘

(5)

' Lo =lwt v . + v
= [ dt e Sy <n. . ¢ ¢ ,(t)> .
L jo” BAFY) SEE i, =0 . i0 io

In thé last .equatiolh we use the fact, that the expectation value de-
" pends only on time differences. '
" With the definitions '

S 2 : v )
tan —2L - Crmipl®/ ’ gV = Iy (o) (s
L2 'Gl:o (0 ) io G;JU (o) ‘

| . we. obfain frorﬁ (4) the relation

¢i = 2[@-1 (co‘— Ug:_’o - cot ¢2>'+1 ) ; (7)

:between. neighbour phases. In this relation the only important fact
is, | whether or not, in the distribution v  an electron with spin
~c ‘is present at the i th afom. This is comp'\letelly'analogi_cal
to the case of the disordered oscillator chain, in which only the

/5/

-system (N, ,N, »= ,N,/N, =n) and taking into account a set

: masses m; appear in the phase relation’ %’/ . Assuming an infinite
k va states “v ~  the phase relation (7) is:independent of the speci-
~ ‘al lattice site. Then, using the Knotensatz, we obtain the functional

‘equation (see ref‘/ 5/ for the detailed derivation of an analogical

‘equation in the case of oscillator chains)

6



Wa [¢;0] _.(I—n_o)W [2tan (m—coti), o ] }+ (8)

+n W [tan? (0 -U- —cot-ib-)'a)]—W [n,m]
- O
in the range 0 <¢ <2n and
W, ¢ +2n50 ) =1 +W,[d50 ) ' (9) .

elsewhere. Herein ., = 1is the probability for an eiectron'with'
spin -0 at any_sitev, reSulting’ in ‘the value 1 for the belongihg
g from (6), and (1 - g ) is the probability for & -0, respective-
The density of states D, (@ ) follows 'from (8) directly with “

M, (o) = [ de’ D, (o) -V, Lo ) o0
- where M, (o ) is the integrated dens1ty of states.
For U -+~ we obtain from (8)

W:[gb;m]:(l'—-rf_q){: W:[than_l(w—cbt—gé);w 1- W:[-rr,' wlt. (11)

Consequently, also in the strong correlated limit the density of

states can be calculated exactly.

3. Numerical Calculat1ons

- The funct1ona1 equat1ons (8) and (11) can be numerically sol-“:
ved dividing the range 0 <¢ <2 into finite steps. Then a purely

algebraic system of equations followﬂs,, which is solvable with usu-



‘al :methods.r‘As widths of'.stepsar:ev'chOSen Agp =260 dhd,i_\(;,,; 0.1,
for several special ranges'aiso A¢=27/120 and dw = 0.0l The
‘numerical errors of ", (o‘)*are at most smaller than ‘2'%, only
:for small U they are, larger at the. band edges “We have calculat-
ced i (w)andD (w) for ulr 0.01, 0.1, 0.3, 0.5, 0.6, 0.8 and
10.99 and U- 0., 0.5, 141, 4.0, 20.0 and =~ . The numerical calcu-
klatlons are carr1ed out at the BESM 6 1n Dubna ‘ ‘
e Some character1st1c graphs of the 1ntegrated dens1ty of states
My (o) are plotted in the fmuresl and 2. A representat1on of DA(u) does
.’,not contam add1t10na1 mformatlon , but by d1fferent1at1on of Walaw) the

errors are 1arger Therefore ‘we have renounced to draw D.( o /.

4. Discussion
As is shown in fig. 1 and 2, the behaviour of the integrated den-
,51ty of states M, (w)depends very” sens1t1vely on l/ as well as on
'n_,, At f1rst we obtain band splitting into ‘two subbands, if v be-

comes greater than a critical value v, =4.(=2:7,,, where z is the -

01>
number of nearest neighbours). The centres of grav1ty of these
subbands are separated by U and the maximal possible occupation
'of the lower and upper subband is given by (I-»_J and », . respec-
tively. L | ST
Furthermore we obtam a strong change of the form (1n contra-
diction to Hubbard’s simple approxrmatlon/ 1/), yielding eSpec1a11y l'
vat the band edges a significant flattenving of"the density,of .stat_es.l “

Thereby the singularities, which are typical for one-dimensional
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Fig. 2b. Integrated density of states ¥ :(») in dependence on =, for
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?systems, vamsh With 1ncreas1ng U and ng th1s flattenmg re-
sults in effectlve narrowing of the band, remammg flat tails extend-
ing out to the full free particle width. For U and half- f111ed
bands the bands are narrowed by a factor 0.707, Wthh agrees we11
witn the approximate | ‘result 0.745 of Brinkman and Rice for the
three- d1mens1ona1 sc- 1att1ce/ / . (However, as mentioned above, the1r
pred1ct10n for the one-dimensional case is in contrad1ct1on with our
'result) By this effective narrowing the band Sphttmg appears effec-
| ‘t1ve1y at smaller values of U depending on n _, .

. Especially it is worth"‘noting the appearance of peaks in the

:density of states. ‘TheSe peaks become more significant with increas-

ing ¢ ,their position depends also on U. At U= ~ the peaks have
the form of & -functions; whereas their strength depends onn_, thei.r‘
position is)independent of n_, . The largest peak exists inthe middle
of the band (w= 0) and reaches its maximal value at » _, ~ 0.6.
 The physical meaning of these peaks can be related to the existence
ef lecalized. modes. It is even possible that they exist in such an
extreme form only in the one-dimensional s'ystem.' However, ,the
absence of such peaks in-all known approximati.ons appliedto the
’ one- dimensional system seems to 1nd1cate that these approx1ma-
tions do not contain the case U o .

Finally it is possible to study- the magnetic nature of the
. ground state by means of different occupation of the ilp and down
spin band. The result is,.that for all values » = n,+ ,; -oniy the
state n',_' n s stable, in agreement with general propert1es of

/1

one- d1mens1ona1 systems
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sary. In any case the obtained complete band Sphttmg, changmg of

ing. Moreover, the sharp peaks in the density of states at large

5. Concluding Remarks - BRI

From the exact.solvable one-dimensional Hubbard-model we

- have obtained some interesting results. 'Of course, for generaliza-

tion onto the three d1menS1onal case some restrictions are neces- . .
form and effective band narrowing of the subbands have real mean-

"~ values of U indicate directions of further examin'ations,‘ especial-

ly with respect to the basis of approximations.

The' author wishes to thank W. .John, p. Ziesche, W. Weller

and J. Monecke for valuable discussions.

—

References

. J. Hubbard. Proc.Roy.Soc., A276 , 238 (1963).
. L.M. Roth. Phys.Rev., 184, 451 (1969).

W.D. Langer. J. Phys., C4, L56 (1971).
R.L. Jacobs. Sol.State. Comm., 9, 639 (1971).

. E.H. Lieb and F.Y. Wu. Phys.Rev.Lett., 20 , 1445 (1968).

A.J(. Epstein et al. Sol. State Comm., 9, 1803 (1971).

H.-Schmidt. Phys.Rev., 105, 425 (1957).
J. Hori. ’’Spectral Propertxes of leordered Chains and Lat-

tices’’, Oxford, 1968.
W.F. Brinkman and T.M. Rice. Phys.Rev., B2, 1324 (1970).
. BE. L1eb and D.C. Mattis. Phys.Rev., 125, 164 (1962).

‘Received by Pubhshmg Department . -
on Qctober ‘2? 1971.

A



