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!.Introduction 

A simple model describing electrons in narrow energy bands 

is the so-called Hubbard-model /1/ 

H =~ T,.
1
• c.~ c 

1
.a + U ~ n ,· n ..• 

i ;a , • z. 
nia 

+ 
= cia cia (1) 

where c ia , c ia 
are, respectively, the creation and annihila-

tion operators for an electron of spin a in the Wannier state at 

the i th lattice site, T i; is the hopping integral, and u is the· 

electron-.electron repulsion between two electrons of opposite spins 

occupying the same lattice site. 

Although the Hamiltonian (1) has a very simple form (in ma-

ny respects it is the. simplest many-body operator at all), never-
. ,. 

theless, at its application, all known difficulties of the many-body 

problem appear~ Therefore many approximations have be~n deve

loped (see e.g. ref/2/), to study ~~pecially the behaviour of the 

density of states in dependence on the parameter u I !1. , where 

~.·is a measure of the band width. 
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In· consequence of the simple form of {1), some exact conclu

sions can be derived for different extreme cases. They are espe

cially important. as a test for different approximations used at 

·present. Such an exact solvable case is e.g. the cine-dimensional 

._model with nearest-neighbour interaction/31, i.e. 

. u . 
II =I [c"'(c +c ) +-n 11 ] • 

;a ;a i+l.o i-I.a 2 ~ i.-a ;a {2) 

(We have chosen T01 ,-. I ). 

Besides the possibility to test approximations, the model 

(2) is of importance also with respect to really existing systems, 

which can be well ctpproximated by the one-dimensional narrow 

band model. Such a system is, for instance, the TCNQ-molecule, 
' . . /4/ 

forming tetragonal body-centred crystals with c.' a >>1 • 

For the Hamiltonian (2}, Lieb and Wu have obtained an exact 

·result for the ground state energy and its dependence on c 131. 
Beyond . it, in the present paper the density of states dep~nding on 

u. and n a = < n ;a ·> is. calculated. Therefore we use the analogy 

to the one-dimensional a -gas and the disordered oscillafor ~hain. 

For these systems, the density of states can be obtained numerical

ly using the so-called phase method/51, which we apply to the sys

tem (2). 

, .. For the special case u ="" and n = I , Brinkman and Rice/~/ 
have also calculated the density of states of the system {2). They 

obtain the strange result, that the density of states in the strong 

correlated limit u c- "" is the same as in the free electron case 
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F = o. in contradiction to our result, which gives significant dif

ferences between these two cases. Likewise,the ground stateener-: 

gy in the solution of Brinkman and Rice is the same as in the free 

electron case; which is in . contradiction with the exact result of 

Lieb and Wu/3/ and also with general properties of interacting 

systeri1s. My opinion is, that the transformation II ... II ' in the paper 

~ -.. r 

. . 
of Brinkman and Rice can contain some incorrectnesses even for· 

u ., ....... since the neglected terms are of the form ·""' o. It is pos~ible, 

that these terms have different effects in-the. one-dimensior~:al and 

in the three-dimensional case, analogically to the behaviour of 

,·) -potentials. 

2. Functional Equation for the Density of States 

We consider an appropriate function 

1: ,. ( ''' ) ,:, f dt e iU.lt ~ y~ , .<c. (t)c + ,,>~ c. (t}=eill 1c. e-iHt, (3) 
,a . , 1a i(J JU 10 aa ,a . . 

where ···.'' represen~s · ~ special distribution ,;v· "of N e elect~ons on .· 

Hpi~ls ·and. on N~· .lattice sites. The, r1~
which can be chosen arbit~arily . 

Wi~:1 II from (2), :we :get the relation 

.. ' 

. : ~ .•. 

,I J 
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where 

rv ( w) = I dt e iW I ~. 
ia . ; 

f dt e-iwt~ 
ja' 

Ja 

v 
yia' 

<ni.-a (t}cia(t} 
v 

·y ia' 

.< n c c + , ( t} > v 
i, -a ;a ja 

+ v 
cia' ~> = 

(5) 

In the last equation we use the fact, that the expectation value de

pends only on time differences. 

With the definitions 

v 
¢ G;-1/w) 

tan~= 
2 ·cv ( w ) 

ia 

we. obtain from (4) the relation 

gV 
ia 

A.. -1 rP;+1 
'I' = 2tan (w - Ugv -cot -- I 

i ia 2 I. 

r v (w j 
ia 

G ~a (w ) 

(6) 

(7) 

between neighbour phases. In this relation the only important fact 

is, whether or not, in the distribution "!' " an electron with spin 

-a is present at the i th atom. This is completely analogical 

to the case of the disordered· oscillator chain, in. which only the· 

masses ~~ appear in the phase relation/51. Assuming a~ infinite 

system ( N e , N a· .... oo , N e IN a. = n ) and taking into account a set 

of states "v " the phase relation (7) is ind..ependent of the speci

al lattice site. Then, using the Knotensatz, we obtain the functional 

equation (see ref/5/ for the detailed derivat~on of an analogical 

'equation in the case of oscillator chains) 
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i.tz, w~ obtain the functional 
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W [ ./.. ; w 1 = ( 1- n l W [ 2 tan - 1 
( w - cot .!L); w + 

a'~' -<(a 2 

+ n W [ tan-1 ( w - U - cot 
2
¢ ) ; w 1 - W [ -17 ; w 

~ a a 

(8) ' 

in the range o -~ ¢ < 217 and 

= 1 + wa [¢; (.(.) 1 (9) 

elsewhere. Herein n'-a is the probability for an electron with · 

spin -a at any . site, resulting ill the value 1 for the belonging 

g from (6), and (I - n~ ) is the probability for g = o, respective

ly. 

The density of states D a ( w ) follows from (8) directly with 

(.(.) 

M ( w ) = f dw ' D ( w ') =- W [ -17; w 1 
a . a a 

(10). 

where M a ( w ) is the integrated density of states. 

For u ... . oo we obtain from (8) 

W00 [cp;w1=(1-n )I W00 [2.tan - 1
( w -cot .!I!. );w l - Woo [-17; w 1 I . (11) 

a -a a 2 a 

Consequently, also in the strong correlated limit the dens.ity of 

states . can be calculated exactly. 

3. Numerical Calculations 

The functional equations (8) and (ll) can be numerically sol

ved dividing the range o ,s¢ .< 217 into finite steps. Then a purely 

algebraic system of equations follows, which is solvable with usu-
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· al methods. As widths of steps are chosen !1.¢ = 2 rr.' 60 and:\"',; 0.1, 

for several special ranges aiso !1.¢ = 2 rr ,' 120 and ~ w ~ 0.01. The 

numerical errors of M a ( w )' are at most smaller than 2%, only 

for small u they are .larger at the band edges. We have calculat

edMa(w)and Da (w} fbr n-or 0.01, 0.1, ·o.3, 0.5, 0.6, 0.8 and 

0.99 and u ~ 0.1, 0.5, 1.41,. 4.0, 20.0 and "" . The numerical calcu

lations are carried out at the BESM-6 in Dubna. 
'" 

Some characteristic. graphs of the integrated density of states 

M_ 1 ((u) are plotted in the figures 1 and 2. A representation. of D.(v,) does 

not contain additional information , but by, differentiation of !Vcu) the 

errors. are larger. Therefore we have renounced to draw D~ ( u,J. 

4. Discussion 

As is shown in fig. 1 and 2, the beh.aviour of the integrated den

sity of states Ma ( w J depends very ·sensitively on u as well as on 
. , 

n_a At first, we obtain band splitting into· two subbands, if u be-

comes greater thl:m a critical value u c "' 4.• ( =2 z T01 , where :: is the 

• number of nearest neighbours). The centres of gravity of .these 

subbands are separated by U and the maxim·al possible occupation 

of the lower and upper subband is given by 0-n_J and n-o , respec

tively. 

Furthermore. we obtain a strong change of th~ for~ (in contra

diction to Hubbard's simple approx~ma~ion/1/;, yielding especially 
' . ~ ~ - .. 

at the band edges a significant flattening of· the density of states. 

Thereby the singularities,· which are typical for one-dimensional 
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systems, vanish. With increasing V and n-a this flattening re

sults in effective narrowing of the band, remaining flat tails extend

ing out to the full free-particle width. For u ... oo and half-filled 

bands the bands are narrowed by a factor· 0. 707, which agrees well 

witn the approximate ,result 0.745 of Brinkman and Rice for the 

three-dimensional sc-lattice/6/. (However, as mentioned above, their 

prediction for the one-dimensional case is in contradiction with our 

result). By this effective narrowing the band splitting appears effec

tively at smaller values of V depending on n -a 

Especially it is worth noting the appearance of peaks in the 

density of states. These peaks become more significant with increas

ing c. their position depends also on V. At V = .oo the peaks have 

the form of a -functibns; whereas their strength depends on n-a their. 
" . 

position is independent of n_a . The largest peak exists in the middle 

of the band r w = o J and reaches its maximal value at n -a . - 0.6. 

The physical meaning of these peaks can be related to the existence 

of localized modes. It is even possible that they exist in such an 

extreme form only in the one-dimensional system. However, the . . 
absence of such peaks in all known approximations applied to the 

one-dimensional system seems to indicate, that these approxima

tions do not contain the case V ... oo • 

Finally it is possible to study· the magnetic nature of the 

ground state by means of different occupation of the up and down 

spin band. The · ~esult is, . that for all values n = n + n only the 
t • . 

state n;. =· n• 'is stable, in agreement with general properties of 

one-dimensional ~ystems/7 I. 
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5. Concluding Remarks 

From the exacLsolvable one-dimensional Hubbard-model we 

have optained some interesting re~ults. Of course, for.generaliza

tiori. onto the three-dimensional case some restrictions are neces

sary. In any case the obtained complete band splitting, changing of 
• • ' l 

form and effective band narrowing of the subbands have real mean

~ng. Moreover, the sharp peaks in the d_ensity of states at large· 

values of u indicate directions of further examinations, especial:.. 
• 

ly with respect to the basis of approximations. 

The author wishes to thank W .. Joh11, P. Ziesche, W. Weller 

and J. Monecke for valuable discussions. 
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