000

E4-6055

V.G. Soloviev, S.I.Fedotov

NON- ROTATIONAL STATES OF ODD-Z DEFORMED NUCLEI IN THE REGION $153 \le A \le 177$

1971

AABODATOPMS TEOPETSUUE(K

E4-6055

V.G. Soloviev, S.I.Fedotov

NON- ROTATIONAL STATES OF ODD-Z DEFORMED NUCLEI IN THE REGION $153 \le A \le 177$

Submitted to "Известия АН СССР" (сер.физ.)

Научно-техническая библиотека ОИЯИ Соловьев В.Г., Федотов С.И.

E4-6055

Неротационные состояния деформированных ядер с нечётным числом протонов в области 153 ≤ A < 177

В рамках сверхтекучей модели с учётом взаимодействия квазичасти с фононами рассчитаны энергия и структура неротационных возбужденных состояний в ряде деформированных ядер с нечётным числом протонов в области 153 ≤ A ≤ 177. В расчётах использованы волновые функции и одночастичные энергии потенциала Саксона-Вудса. Получено удовлетворительное согласие с экспериментальными данными. Предсказано положение и структура большого числа новых уровней в исследуемых ядрах.

Препринт Объединенного института ядерных исследований. Дубна, 1971

Soloviev V.G., Fedotov S.I.

E4-6055

Non-Rotational States of Odd-Z Deformed Nuclei in the Region $153 < 4 \le 177$

The energy and structure of the non-rotational excited states for a number of odd-N deformed nuclei in the region $153 \le t \le 177$ were calculated in the framework of the superfluid nuclear model. The calculations were performed with the Saxon-Woods singleparticle energies and wave functions. A satisfactory agreement of the experimental and theoretical data was obtained. The position and the structure of a large number of new levels in the nuclei in question is predicted.

> Preprint. Joint Institute for Nuclear Research. Dubna, 1971

The excited non-rotational states of odd-Z nuclei are not pure quasiparticle states, they contain admixtures of many-quasiparticle components. Thus, in studying their structure it is necessary to take into account the connection between the quasiparticle and collective states and, first of all the interaction of quasiparticles with vibrational phonons.

The mathematical formalism for description of the interaction of quasiparticles with phonons in the frame-work of the superfluid nuclear model is presented in the monograph /1/. In refs. /2-8/ this formalism was used to calculate the non-rotational states of a large number of odd-A deformed nuclei. It was shown that the excited states of odd-A nuclei have a complex structure and only the lowest and a small number of higher excited states.

The present work is devoted to the study of the structure of nuclei with an odd number of protons in the region $153 \le A \le 177$. The main attention was paid to the nuclei the spectra of which were not calculated earlier.

In the present calculations the Saxon-Woods singleparticle energies and wave functions calculated by the method suggested in ref. $^{/9/}$ were used. In the expansion of the nuclear radius in the multipoles the quadrupole and hexadecapole deformations have been taken into account. Taking into consideration the fact that the energy and wave functions of the Saxon-Woods potential are A-dependent the deformed nucklei of the region 150 < A < 190 were divided into four zones. The nuclei of this region are computed with their parameters which slightly alter in the transition from zone to zone. Table 1 gives the Saxon-Woods parameters for the four zones. In the present paper the nuclei of three zones with A = 155, 165 and 173 were studied. The calculations of the non-rotational states of odd-A nuclei in zone A = 181 were carried out in refs.^{7,10/}.

The atomic nuclei of zone $A = 155 (15^{3} Eu$, $155 - 16^{1} Tb$, $159 - 16^{1} H_{0}$) were studies with the quadrupole deformation $\beta_{20}=0.28$ and hexadecapole deformation $\beta_{40}=0.06$, the nuclei of zone A = 165 ($163 H_{0}$, 165,167,171 Tm) with $\beta_{20} = 0.28$ and $\beta_{40} = 0.02$; the nuclei of zone A = 173 (169,173,175 Lu, 177 Ta) with $\beta_{20} = 0.27$ and $\beta_{40} = -0.02$.

The wave function for an odd-Z nuclei is written in the form:

 $\Psi_{i}(\boldsymbol{K}^{\pi}) = \frac{1}{\sqrt{2}} N_{i} (\rho_{1} \dots \rho_{n}) \{\sum_{\rho_{n}\sigma} C_{\rho_{n}\sigma}^{i} a_{\rho_{n}\sigma}^{+} + \sum_{\lambda \mu i \nu \sigma} D_{\nu \sigma}^{\lambda \mu i j} (\rho_{1} \dots \rho_{n}) a_{\nu \sigma}^{+} Q_{1}^{+} (\lambda \mu) \} \Psi_{0} (1)$

Here $Q_{1}^{+}(\lambda \mu)$ is the phonon operator of multipolarity $(\lambda \mu)$, $a^+_{\nu\sigma}$ is the quasi-particle production operator, $\sigma = +1$, Ψ_0 is the wave function of the ground state of an even-even nucleus. The quantity $N_i^2 (\rho_1 \dots \rho_n) (C_{\rho_n}^i)^2$ characterizes the contribution to the state with a given ${f K}^\pi$ of the one-quasiparticle component ${f
ho}_n$, the quantity $\frac{1}{2} N_i^2(\rho_1 \dots \rho_n) \sum_{\sigma} (D_{\nu\sigma}^{\lambda \mu i j})^2$ is the contribution of the component quasiparticle in the ν - state and the phonon $\lambda \mu i$. The summation over ρ_n means that in the Saxon-Woods singleparticle scheme one takes into account simultaneously several states with identical K^{π} . Using the variational principle, e.g. ref.^{/1/}, one obtains a secular equation the roots of which define the energy of the ground (K_0^{π}) and excited states of an odd-Z nucleus. A number of excited states has a considerable admixture of the component quasiparticle plus y -vibrational phonon. Such states are characterized by large E2 transition probabili ties. A part of them in given in Table 2. All the reduced B(E2) probabilities (in single-particle units

 $B_{s,p}(E2) = 3A^{4/3} e^2 10^{-53} cm^4$ are calculated with the effective charge $e_{eff.} = 0.2$. The experimental values of the reduced transition probabilities for even-even nuclei were taken from ref.^{/11/}.

The experimental data on B(E2) values in the odd-Z nuclei question are very poor. The experimental value

4

B(E2) s.p.u.=1.5 for the excited $1/2^+$ state of energy 531 keV in ¹⁵⁹Tb essentially differs from the calculated value. However, the value B(E2) s.p.u. =1.5 is surprising if the experimental value B(E2) s.p.u. =2.7 in ¹⁵⁸Gd is true.

The Coriolis forces have been neglected. According to ref.^{/12/} and other papers these forces are important for levels from spherical subshells with large *i* and especially for rotational states with large spins. In the region under consideration the Coriolis forces may most strongly affect the $h_{11/2}$ subshell states. Therefore the energies of states 550°, 541°, 532 \uparrow , 523 \uparrow , 514 \uparrow and 505 \uparrow may little change due to Coriolis interaction. The latter effect can be estimated for the simple case of mixing of two bands using the matrix elements of the operator i_+ given in the review $^{/13/}$.

We should bear in mind that the Coriolis forces little affect the energy and the structure of the ground state rotational bands. In the framework of the superfluid nuclear model the Coriolis forces can easily be taken into account in just the same way as it has been done in refs.^{/14/}.

The energy and structure of a state close to the one-quasiparticle state can essentially be affected by the deflection of the equilibrium deformation of a nucleus in the excited state from that for the nucleus in the ground state. A preliminary analysis shown that this effect is especially important for the behaviour of

the levels 404., 541, and 402^{+} . For example, the investigations $^{/15/}$ showed that for the 541, state this deflection $\Delta\beta$ can reach 0.04. For such a change of the quadrupole deformation the single-particle 541, state energy decreases by 0.5 MeV. Thus, the qualitative analysis of this effect makes it possible to improve the description of the energies of states 404 + 541, 541, and 402^{+} .

The results of calculations of the energies and wave functions for a number of nuclei with an odd number of protons are given in Tables 3-17. The energies and the structure of the ground and excited non-rotational states of nuclei up to 1.5 MeV and some states higher than 1.5 MeV are given there. The forth column of the tables gives the contribution (in percents) of a few largest components obtained from the wave function normalization condition to the state in question. The second singleparticle state with the same K^{π} as that under investigation was included in the table in the case when the value of this component exceeded 1%. For example, in¹⁵⁹ Ho the contribution to the $K^{\pi} = 5/2^+$ state comes from: onequasiparticle 413: state - 69%, one-quasiparticle 402† state - 23% and component quasiparticle 532[†] plus phonon

Q₁ (30) - 5%.

The experimental data are taken from two reviews^{13,16/}. They include the data published in literature before May 1, 1970. The experimental data obtained after this data are taken from refs.^{/17-25/}.Some tables give the energies of three-quasiparticle states of the type (p,2n) with

large spins. The analysis of three-quasiparticle states in odd-A deformed nuclei is performed in ref.^{/26/}.

The calculations of the non-rotational states in $^{155}E_{u}$, $^{165}H_{o}$, $^{169}T_{m}$ and $^{171}L_{v}$ with the Saxon-Woods wave functions and single-particle energies showed that the improvement of the description of these states is insignificant compared to the description based on the Nilsson potential in ref. $^{/6/}$. Therefore the present work does not contain the results of calculation for these nuclei. The nuclei at the boundary of the two zones, like $^{161}H_{\circ}$, ^{169}Lu . ^{171}Tm were calculated with the schemes of both

zones. The comparison of the results showed that there are some insignificant differences in the energy and structure of the states under investigation. The present paper gives the results for these nuclei obtained with the schemes which were used for the calculation of the majority of isotopes.

It should be noted that the Saxon-Woods potential calculations are essentially more unambiguous as compared with the Nilsson potential calculations. The Saxon-Woods single-particle energies and wave functions are calculated with the same parameters for all the subshell without additional shifts of some levels and subshells. The calculations given showed that the Saxon-Woods single-particle energies and wave functions makes it possible to describe

satisfactorily a large amount of experimental data on the levels of nuclei with an odd number of protons in the range $153 \leq A \leq 177^{\circ}$. Besides, the position of a large number of levels in the nuclei in question is predicted.

In conclusion we express our gratitude to L.A. Molov U. Fainer and H. Strusny for fruitful discussions.

References

1. В.Г. Соловьев. Теория сложных ядер, Наука, 1971. 2. В.Г. Соловьев, П. Фогель. Докл. АН СССР, 171, 69 (1966). 3. М.К. Колпажиу, П. Фогель. Изв. АН СССР, сер.физ. <u>30</u>,2025 (1966). 4. V.G. Soloviev, P. Vogel. Nucl. Phys., <u>A92</u>, 449 (1967). 5. Л.А. Малов, В.Г. Соловьев. Ядерная физика, 5, 566 (1967). 6. В.Г. Соловьев, П.Фогель, Г.Юнгклауссен. Изв.АН СССР, сер.физ., <u>31</u>, 518 (1967). 7. Л.А. Малов, В.Г. Соловьев, У.М. Файнер. Изв. АН СССР, сер.физ. <u>38</u>, 1244 (1969). 8. Л.А. Малов, В.Г. Соловьев, С.И. Федотов. Изв. АН СССР, сер.физ., <u>35</u>, 747 (1971). 9. Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин. Изв. АН СССР, сер.физ., <u>32</u>, 1690 (1968).

Ф.А. Гареев, С.П. Иванова, Н.Ю. Ширикова. Сообщение ОИЯИ

Р4-4259, Дубна (1969).

10. В.Г. Соловьев, У.М. Файнер. Препринт ОИЯИ, Е4-6030, Дубна, 1971.

- 11. B. Elbek, T. Grotdal, K. Nybø, P.O. Tjøm, E. Veje. Int. Conf. on Nucl. Structure, Tokyo, 1967, Paper 490.
- 12. М.И. Черней, М.И.Базнат, Н.И. Пятов. Сообщение ОИЯИ Е4-5550 (1970).
- 13. M.E. Bunker, C.W. Reich. Preprint LA-DC-12255 (1971). Los Alamos.
- 14. W. Michaelis, F. Weller, H. Schmidt, G. Markus, U. Fanger, Nucl. Phys., <u>A119</u>, 609 (1968).
 F. Weller, G. Markus. Preprint KFK 1248 (1970), Karlsruhe.
- Д.А. Арсеньев, Л.А. Малов, В.В. Пашкевич, В.Г. Соловьев. Изв. АН СССР, сер.физ., <u>32</u>, 866 (1968).
- W. Ogle, S.Wahlborn, R. Piepenbring, S. Fredriksson. LA-DC-11253, (1970). Los Alamos.
- 17. T. Lewis, R. Graezer. Nucl. Phys., <u>A162</u>, 145 (1971).
- 18. G. Winter, L. Funke, K.H. Kaun, P. Kemnitz, H. Sodan. JINR, D6-5783, 128, Dubna (1971).
- 19. Ц.Вылов, К.Я.Громов, Я.Зубер и др. ОИЯИ, Д6-5783, 137, Дубна (1971).
- 20. L. Kunke, K.H. Kaun, P. Kemnitz et al., JINR, D6-5783, 139, Dubna (1971).
- 21. K.H. Kann, L. Funke, P. Kemnitz et al., JINR, D6-5783, 141, Dubna (1971).
- 22. A.A. Abdurazakov, R. Arlt, L. Funke et al. JINR, E6-4782, Dubna, 1971.
- 23. G.Winter, L.Funke, K.Hohmutz et al. Nucl. Phys., A151, 337 (1970).
- 24. R.A. O'Neil, D.G. Burke, W.P. Alford. Nucl. Phys., A167, 481 (1971).
- 25. M.M. Minor, R.K. Sheline, E.T. Jurney. Phys.Rev., C, <u>2</u>, 766 (1970).
- 26. К.Я. Громов, З.А. Усманова, С.И. Федотов, Х. Штрусный. ЭЧАЯ <u>1</u>, 524 (1971).

Received by Publishing Department on September 28, 1971.

10

Saxon-Woods Potential Parameters

	Ne	eutron S	System	-	Proton System			
A	Vo Mev	r₀ fm	æ fm	d fm	V, Mev	r. fm	æ fm	ل fm ¹
155	47.2	I.26	0.40	I.67	59.2	I.24	0.36	I.63
165	44.8	1.26	0.43	I.67	59.2	I.25	0.355	I.63
173	44.8	I.26	0.42	I.67	59.2	I.25	0.32	I.59
181	43.4	1.26	0.40	I.67	59.8	I.24	0.33	I.67

11

Table

·* 6

Reduced B(E2,Ko - Ko + 2) Transition Probabilities

		Energy	(keV)	B(E2),	
ucleus	КЛ	Experi- ment	Theory	Theory	Structure, %
153 _{Eu}	1/2 ⁺ 9/2 ⁺ 1/2 ⁺	111	670 1300 1380	0.4 I.7 I.I	$4I3_{1}+Q_{1}(22) - 23; 4II_{1}-48$ $4I3_{1}+Q_{1}(22) - I00$ $4I3_{1}+Q_{1}(22) - 67$
155 _{Tb}	1/2 ⁺ 7/2 ⁺ 1/2 ⁺		610 1280 1310	0.5 2.I ·I.8	$4II_{1}+Q_{1}(22) - 20, 4II_{1}-60$ $4II_{1}+Q_{1}(22) - 98$ $4II_{1}+Q_{1}(22) - 80; 420_{1}-6$
157 _{Ть}	I/2 ⁺ 7/2 ⁺ I/2 ⁺	598 	640 ⁻ 1400 1425	0.6 I.8 I.3	$4II_{1}+Q_{1}(22) - 26;$ $4II_{1}-64$ $4II_{1}+Q_{1}(22) - 97$ $4II_{1}+Q_{1}(22) - 72;$ $420_{1}-14$
159 _{Tb}	1/2 ⁺ 7/2 ⁺ 1/2 ⁺	58I 	650 1420 1650	0.4 I.2 0.7	$\begin{array}{l} 411! + Q_1(22) - 27; & 411! - 64 \\ 411! + Q_1(22) - 97; & 413! - 2 \\ 411! + Q_1(22) - 52; & 411! - 30 \end{array}$
161 _{Tb}	I/2 ⁺ 7/2 ⁺ I/2 ⁺	-	590 1180 1220	0.5 I.3 0.6	$4II^{+}+Q_{1}(22) - 35;$ $4II^{+}-54$ $4II^{+}+Q_{1}(22) - 99;$ $4II^{+}+Q_{1}(22) - 4I$
159 _{Ho}	3/2 ⁻ 11/2 ⁻	-	II00 II30	2.8 3.I	$5231 + Q_1(22) - 93; 5411 - 5$ $5231 + Q_1(22) - 100$
161 _{Ho}	3/2 ⁻ II/2 ⁻		1140 1160	2.7 2.8	$5231 + Q_{1}(22) - 96; 5411 - 3$ $5231 + Q_{1}(22) - 100$
163 _{Ho}	3/2 ⁻ II/2 ⁻		1015 1040	2.2 2.4	5231+91(22) - 95; 5411- 4 5231+91(22) -100
165 _{Tm}	5/2 ⁺ 3/2 ⁺ 5/2 ⁺	-	990 110D 1110	I.7 3.2 I.6	$411+ 9_{(22)} - 49; 402+ 42$ $411+ 9_{(22)} - 94; 411+ - 4$ $411+ 9_{(22)} - 46; 402+ -44$

12

Table 2 (continuation)

	J	T Energy		B(E2)	(threature %		
ucteus	Λ	Expe- riment	Theory	Theory	structure, %		
167 _{Tm}	3/2+ 5/2+ 3/2+	47I 	670 820 990	0.3 2.4 2.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
171 _{Tm}	5/2 ⁺ 5/2 ⁺ 3/2 ⁺	913 	930 1090 17.00	0.3 I.5 I.8	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
¹⁶⁹ Lu	3/2 ⁺ II/2 ⁺		1050 1130	2.0 2.2	$404\frac{1}{4}$ + $Q_1(22) - 89;$ $402\frac{1}{4} - 10$ $404\frac{1}{4}$ + $Q_1(22) - 100$		
173. Lu	3/2 ⁺ 11/2 ⁺		I450 I460	0,6 0.6	404† +& ₁ (22) −I00 404† +& ₁ (22) −I00		
177 _{Ta}	3/2+	- :	I I30	I.0	4041+Q1(22) - 83; 4021 - 15		

*				Table	3		Table	4
•	*		153 _{Eu}		•		155 _{Tb}	
κ ^π Energ Expe- riment	y,keV Theo- ry	· · · · ·	Structur	е %		κ ^π Energy, keV Expe- Theo- riment ry	Structure %	
5/2+ 0	0	413†96%,	411#+Q ₁ (22) 2%	-		3/2 ⁺ 0 0 411 ¹ 92%	, 411∳+Q ₁ (22) 4%	
3/2+ 103	-20	411\$89%,	411\$+Q ₁ (22) 5%,	523++Q1(32) 3%		7/2 545 341 523 94%	$411 \frac{1}{4} + 2_1(32) 2\%$	
5/2 97	20	532 94%,	420\$+Q ₁ (32) 1%			5/2 ⁺ 271 390 413196%	411¢+Q1(22) 2%	
.7/2	550	523486%,	411\$+Q ₁ (32) 10%			5/2 227 530 532 93%	550 ↓ +Q ₁ (22) 2%	
1/2+	670	411\$48%,	4114+0 ₁ (22) 26%,	413++Q ₁ (22)23%		1/2 ⁺ 610 411 † 60%	411 \neq +Q ₁ (22) 20%, 413 \neq +Q ₁ (22) 8%	
3/2-	820	541486%	5504+Q ₁ (22) 5%,	420Å+Q ₁ (31) 2%		3/2 ⁺ 1000	411 ⁴ +0 ₁ (20)100%	÷ •
5/2	860	÷	532\$+Q ₁ (20)100%			5/2 ⁺ 1100	$413 + Q_1(20) 100\%$	
5/2+	900	•	413†+Q ₁ (20)100%			7/2 ⁺ 1280 413 1%,	411∮+Q ₁ (22) 98%	
1/2+	920	420475%,	532 +Q1(32) 8%,	550 ⁴ +Q ₁ (30) 5%,	422++Q1(22)4%	1/2 1300 550 18%	$532 + Q_1(22) 76\%, 541 + Q_1(22) 3\%$	
1/2	1000	550442%,	5324+Q ₁ (22) 39%,	541∔+Q ₁ (22) 8%,	420 + +Q ₁ (30)6%	1/2 ⁺ 1310 420 6%	411∮+Q ₁ (22) 80%	
3/2+	1150		411++Q ₁ (20)100%			1/2 ⁺ 1330	413++Q1(22)100%	
9/2-	1230	514 3%,	532++Q1(22) 97%			9/2 ⁺ 1330	413 ∛ +Q ₁ (22)100%	
9/2+	1300	•	413†+Q ₁ (22)100%			3/2 1350 541 52%,	$411_{+Q_1}(30) 35\%, 550_{+Q_1}(22) 3\%$	
1/2+	1380		413†+Q ₁ (22) 67%,	1114+Q1(22) 31%		5/2 ⁺ 1420 402 ⁴ 73%,	$5234+Q_1(31)$ 9%, $6604+Q_1(22)$ 6%,	5324+Q1(30) 5%
1/2	1400	550\$19%,	532↓+Q ₁ (22) 59%,	5414+Q1(22)11%,	420++Q1(30)9%	9/2 1460 514 7%,	532∮+Q ₁ (22) 92%	
3/2	1400		411+9 ₁ (30)100%			3/2 1650 541 6%,	$5234+Q_1(22)$ 56%, $4114+Q_1(30)34\%$	•
3/2+	1510	422 50%,	420\$+Q1(22) 26%,	541\$+Q1(30)16%,	$5324+Q_1(31)5\%$	7/2 ⁺ 1680 404¥68%,	$5234+Q_1(30) 28\%, 6514+Q_1(22) 3\%$	
7/2+	1520	•	411 4 +Q ₁ (22) 94%,	5324+Q ₁ (31) 5%		•		

		Table	5		· ·		Table 6
		157 _{ТЪ}		•		159 _{Tb}	
K ^{ff} Energy, keV Expe- Theo riment ry	-	Structure %		K J Energy Experiment	r, keV	Stru	cture %
$3/2^+$ 0 0 $7/2^-$ 572 36 $5/2^+$ 328 38 $5/2^-$ 326 53 $1/2^+$ 598 64 $3/2^+$ 993 13 $3/2^-$ 13 $5/2^+$ 13 $7/2^+$ 14 $1/2^-$ 14 $1/2^-$ 14 $1/2^+$ 14 $5/2^+$	411 ↓ 93%, 0 523 ↓ 95%, 0 413 ↓ 96%, 0 532 ↓ 94%, 0 411 ↓ 64%, 0 541 ↓ 48%, 0 402 ↓ 49%, 0 550 ↓ 21%, 25 420 ↓ 14%, 50 402 ↓ 21%, 50	$4II_{1}^{\dagger}+\varrho_{1}(22) 4\%$ $4II_{1}^{\dagger}+\varrho_{1}(32) 2\%$ $4II_{1}^{\dagger}+\varrho_{1}(22) 2\%$ $550^{\dagger}+\varrho_{1}(22) 2\%$ $4II_{1}^{\dagger}+\varrho_{1}(22) 26\%, 4I3_{1}^{\dagger}+\varrho_{1}(22)7\%$ $4II_{1}^{\dagger}+\varrho_{1}(20)I00\%$ $4II_{1}^{\dagger}+\varrho_{1}(20) 32\%, 523_{1}^{\dagger}+\varrho_{1}(3I)I0\%, 6$ $4II_{1}^{\dagger}+\varrho_{1}(22) 97\%$ $532_{1}^{\dagger}+\varrho_{1}(22) 72\%, 54I_{1}^{\dagger}+\varrho_{1}(22) 3\%$ $4II_{1}^{\dagger}+\varrho_{1}(22) 72\%, 532_{1}^{\dagger}+\varrho_{1}(32) 2\%$ $4I3_{1}^{\dagger}+\varrho_{1}(20) 68\%, 523_{1}^{\dagger}+\varrho_{1}(3I) 5\%$ $4I3_{1}^{\dagger}+\varrho_{1}(22)I00\%$	60∔+ Q ₁ (22)4%	ment 3/2 ⁺ 0 5/2 ⁺ 348 7/2 ⁻ 5/2 ⁻ 364 1/2 ⁺ 581 3/2 ⁻ 1/2 ⁺ 5/2 ⁺ 1/2 ⁺ 5/2 ⁺ 1/2 ⁺ 5/2 ⁺ 1/2 ⁺ 3/2 ⁻ 3/2 ⁺ 3/2 ⁺ 3/2 ⁺	ry 0 4II 193%, 370 4I3 196%, 380 523 196%, 570 532 193%, 650 4II 164%, II70 54I 17%, I350 420 12%, I360 402 12%, I390 550 426%, I420 1440 I480 1580 54I 135%, I560 41I 130%	411 $\frac{1}{4}+2_1(22)$ 4% 411 $\frac{1}{4}+2_1(32)$ 2% 413 $\frac{1}{4}+2_1(30)$ 2%, 411 $\frac{1}{4}+2_1(22)$ 27%, 411 $\frac{1}{4}+2_1(22)$ 27%, 411 $\frac{1}{4}+2_1(30)$ 80% 413 $\frac{1}{4}+2_1(30)$ 64%, 532 $\frac{1}{4}+2_1(22)$ 65%, 411 $\frac{1}{4}+2_1(22)$ 100% 413 $\frac{1}{4}+2_1(22)$ 100% 413 $\frac{1}{4}+2_1(31)$ 44%, 411 $\frac{1}{4}+2_1(32)$ 52%	$550 + \varrho_{1}(22) 2\%$ $413 + \varrho_{1}(22) 7\%$ $411 + \varrho_{1}(22) 19\%$ $660 + \varrho_{1}(22) 2\%$ $541 + \varrho_{1}(22) 4\%$ $411 + \varrho_{1}(30) 12\%$ $413 + \varrho_{1}(30) 12\%$
				1/2 15/2 ⁺	1860	p523 1 521 46421	·

16

17

Table 8

•	х. 	dT ^{ron}	
κ [¶] Ene Exp men	rgy, keV epi- t Theo- ty	* Structure %	
3/2+	0 0 411493	3%, 411†+Q ₁ (22) 5%	
5/2+ 31	L5 360 413 1 97	7%, 411++Q ₁ (22) 2%	
7/2 43	17 390 523497	7%, 411∮+Q ₁ (32) 1%	
1/2+	590 411 + 54	4% , $411\downarrow + Q_1(22)$ 35%, $413\downarrow + Q_1(22)10\%$	
5/2 48	BO 600 532 4 96	6%, 550++Q ₁ (22) 2%	
7/2+	1180	411↓+Q ₁ (22) 99%	
1/2+	1220	$413 + Q_1(22) 58\%, 411 + Q_1(22) 41\%$	
9/2+	1230	413++Q1(22)100%	
1/2	1250 550 12	2% , $5324+Q_1(22)$ 85%, $5414+Q_1(22)$ 2%	
9/2-	1370 514 4	4%, 532++Q ₁ (22) 96%	
3/2-	1420 541 16	5%, 411 ¹ +Q ₁ (30) 78%, 523 ¹ +Q ₁ (22) 4%	
5/2+	1530 402 465	5%, $413 \neq Q_1(20)$ 12%, $532 \neq Q_1(30)$ 11%	
3/2+	1550	411+91(50) IOO%	
5/2+	1560	413++Q1(20) I00%	
15/2	1680	p412+n642+n523+	
17/2+	1730	p5231n642tn523t	

			159 ₁	Ho
Energy, X Experi- ment	kev Theory.	-		Structure ½
7/2 0	0	523 97%		
3/2+	2 50	411494%		
1/2 ⁺ 206	380	411 88%,		$411 + Q_1(22) 9\%$
5/2+	700	402 56%,	413 28%,	$660^{\dagger}+Q_1(22)$ 8%, $411^{\dagger}+Q_1(22)$ 3%
5/2+ 650	730	413†69%,	402 2 3%,	532++Q1(30) 5%
5/2 624	900	532490%,		$550^{1}+Q_{1}(22)$ 3%, $413^{1}+Q_{1}(30)$ 3%
7/2+	1000	404190%,		$6514+Q_1(22)$ 5%, $5234+Q_1(30)$ 3%
7/2+	1050	4131 2%,		411++Q1(22)97%
3/2-	1100	5414 5%,		523↓+Q1(22)93%
11/2-	1130			523++9 ₁ (22)100%
1/2+	1140	42011%,		411 [↓] +Q ₁ (22)91%
9/2-	1145	514 92%,		402 [↓] +Q ₁ (32) 4%
$3/2^{+}$	1190		,	411 ^{\$} +0 ₁ (20)100%
1/2-	1330	541 86%,		411\$+Q1(30) 10%
9/2+	1390			413†+Q1(22)100%
3/2-	1420	541 8%,		411 ^{\$} +Q ₁ (30) 87%
1/2-	1470	550414%,		$5321+Q_1(22) 81\%, 5411+Q_1(22)2\%$

19

161_H

S t

 κ^{π} Energy, keV

7/2

 $3/2^{+}$

 $1/2^{+}$

5/2+

5/2+

5/2-

7/2+

7/2+

9/2-

3/2-

 $1/2^{+}$

11/2

 $1/2^{+}$

9/2⁺

3/2+

1/2-

3/2+

Experi- Theo-ment ry

0 0

700

253 1040 404 93%,

1070 413+2%,

1110 514489%,

1140 541+3%,

1150 420 2%,

1400 660 32%,

1420 402 3%

1460 55042%,

1160

1/2 424 1370 541 72%,

1415

1465

299 260

211 380

760 740

827 950

523 97%

411 94%,

411 88%,

532 89%,

402 179%, 413 2%,

413+96%, 402+2%

	T'a	1
--	-----	---

¹⁶¹ Ho				-		163 _{II0}	
Structure	%	κ ^π	Energ Expe ment	gy, keV ri- Theo ry	-	Structure	67 70
		7/2	0	0	5234 98%		
		3/2+		240	4II 95%,	4II *+ Q ₁ (22) 2%	
411#+Q ₁ (22) 3%		I/2 ⁺	298	390	4II†9I%,	4II ↓ +Q ₁ (22) 8%	
411+9 ₁ (22) 9%		5/2	•	950	532 \ 9I%,	5501+Q ₁ (22) 3%	
6604+Q ₁ (22) 8%		5/2*	-	1000	413+97%		
		7/2*	-	1010	4I3i I%,	4II+Q ₁ (22) 99%	
411++Q1(31) 5%,	550 +Q1 (22) 3%	3/2	-	1015	54II 4%,	523∮+Q ₁ (22) 95%	
$651^{1}+Q_{1}(22)$ 6%		II/2		I040		523++Q1(55)100%	
4114+0.(22) 08%		I/2 ⁴	F	1120	4II¥8%,	4II+q ₁ (22) 92%	
(102) + 0 (32) 7%		9/2	-	II80	514 95%,	4024+Q1(32) 2%	
4021121(32) 7%		7/2	+ 440	1200	404) 91%,	523++Q ₁ (30) 6%	
5231+01(22) 90%		3/2	t	1300		4II\$+Q ₁ (20)I00%	
$411 + Q_1(22) 98\%$		I/2	-	1320	550 I %,	4II ↓ +Q ₁ (32) 95%	•
5234+0(22)100%	5	I/2	-	1400	550 16%,	5324+Q ₁ (22) 75%,	4II +Q ₁ (32) 4%
411∳+Q ₁ (32) 20%,	$411 + Q_1(31) 5\%$	3/2	- '	I4I0	54I 47% ,	4II+Q ₁ (30) 90%	
402 +Q1(22) 58%,	651∮+Q ₁ (22)5%	5/2	+	1415	402 34%,	4II+Q,(22) 58%,	523 +Q ₁ (3I) 2%
$413 + 0_1 (22) 100\%$		17/	2+	1570		p523in 642in 523i	
5234+Q1(32) 96%							

 $411^{4}+Q_{1}(32)$ 82%, $532^{4}+Q_{1}(22)10\%$

 $4114+Q_1(20)100\%$

20

21

ble 10

			נסר דיי
κ Exper ment	sy, keV ri-Theo- ry		Structure %
1/2 ⁺ 0	0 411	\$96%	
7/2 14	300 523	\$ 94%,	411↓+Q ₁ (32) 3%
9/2-	550 514	\$ 94%,	402++Q ₁ (32) 3%
7/2+ 6	630 404	196%	
3/2+	660 411	\$84%,	$523 + Q_1(32) 7\%, 411 + Q_1(22)6\%$
5/2+	990 402	42%, 413+2%,	411++Q ₁ (22)49%, 514++Q ₁ (32)3%,
3/2-	1010 541	+ 3%,	523++Q1(22)96%
11/2-	1060		523↓+Q ₁ (22)100%
3/2+	1100 411	4%,	411 + Q1 (22) 94%
5/2 ⁺	1100 402	44%, 413†3%,	$411 + Q_1(22) 46\%, 514 + Q_1(32)3\%$
7/2+	1250 413	1%,	411 + Q ₁ (22) 98%
1/2+	1320		411 + Q ₁ (22) 100%
1/2	1340 541	L † 89%,	411 ≠+Q ₁ (30) 8%
5/2-	1400 532	2475%,	411\$+Q1(31) 14%, 411\$+Q1(32) 3%
3/2+	1470 651	1411%,	$404 + Q_1(22) 86\%, 523 + Q_1(32) 2\%$
17/2+	1960		p5234n6424n523¥

				16	⁵⁷ Tm	
π En Exp men	ergy eri- it	, keV Theo- ry		S t	ructure	<i>5</i> 3
L/2 ⁺	0	0	411197%			
7/2-	293	360	523496%,		4114+Q ₁ (32) 2%	
9/2		560	514 96%		402++Q1(32) 2%	
7/2+	179	600	404 †97%		651∳+Q1(22) 2%	
3/2 ⁺	471	670	411 82%		411++Q1(22) 113	s, 523∔+Q ₁ (32)4%
5/2+		820	402412%,	413 3%,	411#+Q1(22) 849	4
3/2-		90 0	541 \$ 3%,		523++Q1(22) 979	% ,
11/2		940			523++Q1(22)100	*
3/2+		990	411 10%		411†+Q1(22) 89	%
5/2 ⁺		1000	402 174%		$411_{4}+Q_{1}(22)$ 13	%, 660 4 +Q ₁ (22)4%
7/2 ⁺	•	1140	413 11%,		411+9 ₁ (22) 98	%
1/2 ⁺		1200			411+9 ₁ (22)100	R
1/2	172	1 2 90	541 \$90%,		411++Q ₁ (30) 8%	
5/2-	1527	1510	532 481%,		514 4 +Q ₁ (22) 6%	$411 + Q_1(32) 5\%$
5/2+	1581	1620	413 ∳94%		411++Q ₁ (22) 3%	\$
19/2	+ '	2110			p523 n523 n633	3 🛉 -
						•

22

23

Table 12

Table

 171_{Tm}

	The entern Iroll			······································	
л К	Experi- The	-0-	Stru	cture 🔅	
	ment ry				
I/2+	0 0	4II + 97%		· · · · · ·	
7/2-	425 360	523197%	• 		
9/2	550	514 97%		•	· · · · · · · · · · · · · · · · · · ·
7/2+	635 560	404+96%,		65I++Q ₁ (22) 3%	
3/2+	676 680	4II+88%,		4II++Q ₁ (22) 7%	
5/2+	913 930	402170%,		4II+9,(22) 18%,	660 + Q ₁ (22)4%
3/2-	1015	54II 4%,		523++Q1(22) 95%	
I/2+	I040			4II;+Q1(50)100%	:
II/2 ⁻	1070			523↓+Q1(22)I00%	
5/2+	1090	402 1 16%,	413: 6%,	4II†+Q ₁ (22) 75%	· .
3/2+	IIOO			4II #+Q ₁ (22) 93%	
7/2+	I250	413 2%		4II+Q ₁ (22) 98%	(
I/2 ⁻	1260	54I † 86%,		4II+Q ₁ (30) II%	
I/2	I460			4II+q ₁ (3I)100%	
9/2+	I440			5231+ ^Q 1(3I)100%	
5/2+	I445			5231+Q ₁ (3I)I00%	
5/2-	1500	532 84%,		4II+Q ₁ (3I) 8%,	550 1 +Q ₁ (22)4%
5 /2†	1530	4I3 † 26%		4II+Q2(22) 70%	
5 /2 +	1640	4I3 63%		4II+92(22) 29%	

		•	1	69 _{Lu}	
κ ^π	Energ Exper ment	y, keV 1- Theo ry	-	Structure	Fo
7/2 ⁺ 9/2 ⁻ 1/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁻	0	0 60 220 540 730 740	404 197%, 514 196%, 411 190%, 402 187%, 411 139%, 523 193%,	$402i + Q_{1}(22) 2\%$ $402i + Q_{1}(32) 1\%$ $4IIi + Q_{1}(32) 6\%$ $5I4i + Q_{1}(32) 4\%,$ $4IIi + Q_{1}(32) 56\%$ $4IIi + Q_{1}(32) 3\%$	660 1+ 91(22) 4%
1/2 ⁻ 5/2 ⁺ 3/2 ⁺ 11/2 ⁻ 1/2 ⁺	30 +	980 1000 1050 1130 1270	541†94%, 413†6%, 402†10%,	532 $i+Q_1(22)$ 2% 411 $i+Q_1(22)$ 93% 404 $i+Q_1(22)$ 89% 404 $i+Q_1(22)$ 100% 411 $i+Q_1(22)$ 100%	
5/2 ⁻ 7/2 ⁺ 13/2 3/2 ⁻ 9/2 ⁻	-	1300 1305 1310 1340 1430	532≬2%, 54I∮I2%,	$514i+Q_{1}(22) 97\%$ $404i+Q_{1}(20)I00\%$ $514i+Q_{1}(22)I00\%$ $523i+Q_{1}(22) 85\%$ $514i+Q_{1}(20)I00\%$ $523i+Q_{1}(20)I00\%$	
11/2 1/2 ⁴ 3/2 1/2 19/2	- - - 2 ⁻	1450 1510 1530 1550 1720	660130%, 532159%, 5301 7%,	$402 + Q_{1}(22) 63\%,$ $411 + Q_{1}(31) 22\%,$ $411 + Q_{1}(30) 85\%,$ p404 = 523 + 633 +	4021+Q ₁ (22) 2% 54I1+Q ₁ (22) 9% 4II1+Q ₁ (3I) 7%

26

	ment	ry			·			Expe	ri-	Theo-		. Struc
7/2+	0	0	404 99%	· · · · · · · · · · · · · · · · · · ·	· ·			ment		ry		
9/2 ⁻		40	514 97%,	402 4 +Q ₁ (32) 2%		•	d.	7/2+	0	_0	4041 99%	
I/2 ⁺	425	310	4II # 98%		•			9/2	396	100	514 99%	
5/2+	357	600	402484%,	5I4 + +Q ₁ (32) I4%				I/2*	•	310	4II \ 97%	
7/2-		720	523 93%,	4II + Q ₁ (32) 6%	8			5/2	343	700	402 96%,	660 4 +Q ₁ (22) 2%
1/2-	I28	1030	54I †97%, •	4II + Q ₁ (3I) 1%	÷	•		7/2		850	523 199%	
I/2+		I0 7 0		4II↓+Q ₁ (20)I00%	•			1/2	358	1000	54I ¦ 97%	
3/2+		1080	4II 467% ,	523++Q ₁ (32) 27%,	4II *+ Q1(22) 2%		1	3/2*		II80	4II 4 69%,	411+Q ₁ (22) 29%
I/2		II60	530 4 1%,	4II∳+Q ₁ (3I) 98%	_	•		3/2		I280		4II\$+Q1(32)100%
3/2		II70	532#2%,	4II+Q1(3I) 98%				5/2		I280		4II+Q1(32)I00%
7/2+		II80		404 ≬ +Q₁(20)I00%	•			19/2 * 14	40I	1300	· · · · ·	p4041 n5121 n5141
3/2		1270		4II↓+Q ₁ (32)I00%		· .		I/2*	•	I340	the second second	4II + + Q 1(20)I00%
5/2 ⁻		1280	53243%,	4II+Q,(32) 92%,	404 ++ Q₁(3I) 4%		4	21/2		I360	e al Alto alto	p5I4125I2125I4
5/2		1290		404¥+Q ₁ (3I) 95%,	4II +Q1(32) 4%			7/2+		1380		404++Q1(50)100%
5/2 †		I330	64242%,	$4II_{4}+Q_{1}(22) 97\%$	- .			II/2 ⁻		1390		404++Q1(32)I00%
3/2*		I330		4II+0,(22)I00%				3/2		1400		404++Q1(32)I00%
7/2*		I390		5I41+Q_(3I)I00%			2	9/2		I4 7 0		5I4++Q1(50)100%
3/2-		1395	532 \$ 5%	404 * +0,(32)95%				5/2*		I490		5I4++Q ₁ (32)I00%
II/2 ⁻		I400		404↓+Q,(32)I00%				13/2+		I490		5I4++Q ₁ (32)I00%
, 3/2 +		I450		4041+Q_(22)I00%				I/2		1520		4II+Q ₁ (30)I00%
11/2 ⁺		I460		4044+Q (22)I00%				3/2		1600	532 9%	4II+Q ₁ (3I) 90%
9/2+		1500	404 ! I%	523↓+Q_(3I) 99%				3/2		1680	532 82%	4II+9 ₁ (3I) 10%
I/2 [—]		1620	•	4II+Q_(30)100%				•				
-				' ']								,

 173_{Lu}

Structure %

к К

Energy, keV

Experi-Theo-ment ry

Table 16

%

. Structure

 $175_{\rm Lu}$

. 27

 $_{
m K} {}^{
m Energy, keV}$

Тарје

1.										
к ^{ят}	Energy, keV			-	Structure %					
	Exper ment	i- Theory)							
7/2+	0	0	4041	99%						
9/2-	74	-60	514	99%						
5/2 †	71	I80	402	95%						
I/2	217	480	54I¥	98%	532 + Q ₁ (22) 1%					
I/2 +		610	4II∳	92%	4II + _{Q1} (22) 6%					
3/2-		I020	532↓	91%	$54I + Q_1(22) 6\%$ $530 + Q_1(22) 3\%$					
3/2+		II30	402	I5%	404 + Q1 (22) 83%					
II/2	-	·1200			404 +Q , (32)100%					
3/2-		1200			404 ; +Q1(32)100%					
7/2*		1210			404 + Q ₁ (20)100%					
5/2+		I220			5I4 + +Q_1(32)I00%					
I3/2 ⁴	ŀ	1220			5I4 + + Q ₁ (32) I00%					
I/2 †		I230	660 †	36%	$402 \mathbf{i} + \mathbf{Q}_{1}(22) 58\%, 402 \mathbf{i} + \mathbf{Q}_{1}(22) 3\%$					
3/2+		1250	4II†	43%	4II∮+Q ₁ (22) 56%					
9/2 -		I260			5I4 + +Q ₁ (20)I00%					
7/2-		1270	523 †	98%						
5 / 2		I300	532 🖡	I%, ⁻	5I4++Q ₁ (22) 99%					
·I/2		1390	530 †	90%,	532 f+Q1 (22) 7%					
23/2	F .	I460			p5I4 +n 5I2 +n 624 +					
21/2	-	I470		· .	p5I4 1n 5I2 1n 5I4					
I/2 †		I490	400	37%,	4021+Q1(22) 58%, 4021+Q1(22) 2%					
21/2	-	1510			p4041n5121n6241					

177_{Ta}