$$
p-19
$$

ОБЪЕДИНЕННЫЙ ИНСТИТУТ яДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна

NOTE ON THE GARTENHAUS-SCHWARTZ TRANSF ORMATION

1971

F. Palumbo*

NOTE ON THE GARTENHAUS-SCHWARTZ TRANSFORMATION

Submitted to Physics Letters

Permanent address: Laboratorio di Fisica Nucleare Applicata, Centro di Studi Nucleari della Casaccia del C.N.E.N., Roma, Italy.

Палумбо ф.
Замөчание о преобразовании Картеигауза-Швариа
В работе показано, что преобразование Картенгауза-Шваруа не устраняет шпурионные эффекты в оболочечной модели.
 ДyGa, 1971

Palumbo F.
E4-5992
Note on the Gartenhaus-Schwartz Transformation
It is shown that the Gartenhaus-Schwartz transformation cannot eliminate spurious effects in shell model calculations.

> Preprint. Joint Inatitnte for Naclear Recearch. Duban, 1971

The description of electromagnetic interactions of nuslei requires the evaluation of matrix elements with the nuslear wave functions ${ }^{(1)}$
$\Psi_{n \underline{K}}=\Psi_{I n} \frac{1}{\sqrt{V}} e^{i \underline{K} \cdot \underline{R}}$
where $\Psi_{I n}$ are intrinsic wave functions, K is the momentum of the nucleus, R the com. position vector and V the normalization volume. Matrix elements of the electromagnetic interaction Hamiltonian $H_{i n t}$ with wave functions (1) reduce trivially to intrinsic matrix elements

$$
\begin{align*}
& \left\langle\bar{\Psi}_{m \underline{\underline{K}}^{\prime}}\right| H_{\text {int }}\left|\bar{\Psi}_{m \underline{\underline{K}}}\right\rangle=\delta\left(-\underline{\underline{K}^{\prime}}+\underline{\underline{K}}+q\right) \int^{f} d \underline{r}_{1} \cdots d r_{A} \delta(\underline{R}) . \\
& \Psi_{I M}^{*} \int \sum_{i=1}^{A}\left[\varepsilon_{i} e_{i} e^{i q\left(\eta_{i}-R\right)}-\varepsilon=\frac{\varepsilon_{i}}{2 m}\left[\left(p_{j}-\frac{1}{A} \underline{P}\right) e^{i q_{i}\left(\eta_{i}-R\right)}+\right.\right. \\
& \left.+e^{i q^{-\left(\tau_{i}-R\right)}}\left(p_{j} \cdot \frac{1}{A} \underline{P}\right)\right]-i \underline{\varepsilon} \cdot \mu_{i} \underline{\sigma}_{i} \Lambda\left[\left(p_{i}-\frac{1}{A} \underline{P} c^{i q^{i} \cdot\left(\underline{q}_{i}-R\right)}+\right.\right. \\
& \left.\left.-e^{i q_{i}\left(\underline{Z}_{i}-R\right)}\left(p_{i}-\frac{1}{A} \underline{P}\right)\right]\right]-\underline{\varepsilon} \cdot \frac{1}{2 m A}(\underline{K}+\underline{K}) \sum_{j=1}^{A} e_{j} e^{i q_{i}\left(\eta_{i}-R\right)} \\
& \left.-i E \cdot \sum_{i=1}^{A} \mu_{i=1} e^{i q \cdot\left(\underline{I}_{j} \cdot \underline{R}\right)} A \frac{1}{A} q\right\} \Psi_{I m}, \tag{2}
\end{align*}
$$

\#here $\mathcal{E}=, \underline{\varepsilon}$ is the polarization vector of the photon which carries the momentum q, e_{i} and μ_{i} are the charges and magnetic moments of protons and neutrons, $\hbar=c=1$.

The difficulty with the intrinsic matrix element (2) 1: twofold. First we do not know any general method for the determination of intrinsic wave functions in terms of Intrinsic coordinates; second the matrix element (2) is very complicated in terms of intrinsic coordinates. So, it is desirable to avoid the explicit use of intrinsic coordinates and keep the single particle coordinates. This cen be done using factorized wave functions of the form
$\Psi_{m}=\Psi_{I m} \chi(R)$,
where χ is the same factor for every n. If χ is coosen to be the ground state harmonic oscillator wave functron, which we shall all χ_{0}, wave functions (3) can be easily obtained (2) as expansions in Slater determinants Φ_{γ} of (arbitrary) single particle wave functions
$\Phi_{n}=\sum_{\gamma} a_{\nu}^{(n)} \Phi_{\nu}$.
Then the evaluation of (2) can be done in terms of single particle coordinates, as it has been shown by Cassie and Barker ${ }^{(3)}$.

However in the literature are commonly used wave fundtions $\tilde{\Psi}_{n}$ which are not factorized, and then involve unphysical admixtures of intrinsic and com. states. This is explicitly shown by their expansion into intrinsic wave fundions and (for example) harmonic oscillator wave functions for the com.

$$
\begin{equation*}
\tilde{\Psi}_{n}=\sum_{\gamma, \mu} c_{\nu \mu}^{(n)} \Psi_{I \nu} \chi_{\mu}(\underline{R}) \tag{5}
\end{equation*}
$$

The terms with $C_{\nu \mu} \neq 0$ for $\mu \neq 0$ give rise to spurious effects. Such effects are not necessarily of order $\frac{1}{A}$, as it is often assumed. They can be quite large on transition amplitudes (4). In an attempt to prevent spuriosity effects and to relate matrix elements with wave functions (5) to the matrix elements with wave functions (1) Gartenhaus and

Schwartz ${ }^{(5)}$ (G.S.) devised a transformation, defined by the operator $U_{A}=e^{-i \frac{\Lambda}{2}(\underline{P} \cdot \underline{R}+\underline{R} \cdot \underline{P})}$, which has the properties
$\tilde{\Psi}_{n}^{\wedge}=U_{A} \tilde{\Psi}_{n}=e^{-\frac{3}{2} \Lambda} \tilde{\Psi}_{n}\left[\left(\underline{\tau}_{1}-\underline{R}\right)+e^{-\Lambda} R, \cdots\left(\underline{Z}_{A}-\underline{R}\right)+e^{-\Lambda} \underline{R}\right]$,
$\tilde{\bar{\Psi}}_{n}^{\wedge}\left[\underline{\tau}_{1}+\underline{Q}, \ldots, \underline{\tau}_{A}+\underline{a}\right]=U_{A} \tilde{\Psi}_{n}\left[\underline{\tau}_{1}+\underline{a} e^{-\Lambda}, \ldots \underline{\pi}_{A}+\underline{Q}^{-\Lambda}\right]$,
where a is an arbitrary sector.
From (7) G.S. deduce that for $\Lambda \rightarrow \infty$ one obtains intrinsic wave functions. In order to simplify the oaloulations they suggest to use the wave functions $\tilde{\Psi}_{n}$ with transfermed operators,
$\left\langle\tilde{\Psi}_{m}^{\wedge}\right| M\left|\tilde{\Psi}_{m}^{\wedge}\right\rangle=\left\langle\tilde{\Psi}_{m}\right| U_{n}^{+} M U_{A}\left|\tilde{\Psi}_{m}\right\rangle$.
We want to show that their conclusion is unjustified ${ }^{(6)}$, and the above transformation cannot prevent spurious effects. Indeed eq. (6) which defines $\tilde{\Psi}_{n}^{\wedge}$ is meaningless for $\Lambda \rightarrow \infty$, and (as G.S. advise), in the caloulations $\tilde{\Psi}_{n}^{\wedge}$ must be used with finite Λ, and the limit $\Lambda \rightarrow \infty$ must be taken in the final results. But if this is done, one obtains for the mat$r i x$ element of any intrinsic operator M_{I} exactely the same result as if one uses simply the wave functions $\tilde{\Psi}_{n}$, 1.e.
$\left\langle\tilde{\Psi}_{n}\right| M_{I}\left|\tilde{\Psi}_{m}\right\rangle=\sum_{\gamma \gamma^{\prime} \mu}\left(C_{\gamma^{\prime} \mu}^{(n)}\right)^{*} C_{\gamma \mu}^{(m)}\left\langle\bar{\Psi}_{I \gamma^{\prime}}\right| M_{I}\left|\Psi_{I \nu}\right\rangle$,
both with the direct and inverse G.S. transformation. In the case of the inverse transformation the result is trivial, because U_{A} commutes with \dot{M}_{I} for each value of Λ, so that

$$
\lim _{n \rightarrow \infty}\left\langle\tilde{\Psi}_{n}^{\wedge}\right| M_{I}\left|\tilde{\Psi}_{m}^{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle\tilde{\Psi}_{n}\right| U_{n}^{+} M_{I} U_{n}\left|\tilde{\Psi}_{m}\right\rangle=\left\langle\tilde{\Psi}_{m}\right| M_{I}\left|\tilde{\Psi}_{m}\right\rangle
$$

For the direct transformation let us use the expansion (5) for the $\tilde{\Psi}_{n}$

$$
U_{\Lambda} \tilde{\Psi}_{m}=\sum_{\nu \mu} C_{\nu \mu}^{(n)} \Psi_{I \gamma} U_{\Lambda} \chi_{\mu}=\sum_{\nu \mu} C_{\gamma \mu}^{(n)} \Psi_{\Psi_{I \gamma}} \chi_{\mu}^{\wedge}
$$

where χ_{μ}^{Λ} are the harmonic oscillator wave functions with parameter $e^{\wedge} R_{0}$, if the X_{μ} have parameter Ko. So

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty}\left\langle\tilde{\Psi}_{m}^{\wedge}\right| M_{I}\left|\tilde{\Psi}_{m n}^{\wedge}\right\rangle=\lim _{\lambda \rightarrow \infty} \sum_{\nu \gamma^{\prime} \mu \mu^{\prime}}\left(C_{\nu \mu}^{(n)}\right)^{*}\left(\gamma_{\gamma^{\prime} \mu^{\prime}}^{(m)}\right. \\
& \bullet\left\langle\bar{\Psi}_{I \nu}\right| M_{I}\left|\Psi_{I \gamma^{\prime}}\right\rangle\left\langle\chi_{\mu}^{A} \mid \chi_{\mu^{\prime}}^{A}\right\rangle=\sum_{\nu \gamma^{\prime} \mu}\left(C_{\nu \mu}^{(m)}\right)^{*} C_{\nu^{\prime} \mu}^{(m)}\left\langle\bar{\Psi}_{I \nu}\right| M_{I}\left|\bar{\Psi}_{I \gamma^{\prime}}\right\rangle
\end{aligned}
$$

Which completes the proof of our statement.
The G.S. transformation on be used and has been used (7) in order to obtain the definition of intrinsic operators, a task which is not trivial if relativistic effects are taken into account. However, as we have shown, it cannot eliminate spurious components in the wave functions, while a correct calculation must be done using both intrinsic operators and intrinsic wave functions.

I wish to thank the Joint Institute for Nuclear Research in Dubna for the kind hospitality and financial support extended to me while this work has been done.

References and footnotes

(1) There are only trivial changes in what follows if the plane wave is replaced by any superposition of plane waves.
(2) J.P.Elliott and T.H.Skyrme, Proc.Roy.Soc., A232, 561(1955). F.Palumbo, Nucl.Phys., A99, 100 (I967) F.Palumbo, JINR Preprint E4-5890, Dubna (I971)
(3) L.J.Tassie and F.C.Barker, Phys.Rev., 1Il, 940 (I958)
(4) F.Palumbo and D.Prosperi, Nucl.Phys., Al15, 296 (I968)
(5) S.Gartenhaus and C.Schwartz, Phys.Rev., 108, 482 (I957)
(6) This fact has been already noted in the second of refs.(2)
(7) F.E.Close and L.A.Copley, Oxford preprint 9/70.

Received by Publishing Department on August 10, 1971.

