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I ntr o'd u c‘t i"o n""

, - The exper1mental conf1rmat1on for the collect1ve nature of
: the nuclear exc1tat1on (glant resonance) in muon capture gave the’f"{' 'j
- general basis for descr1pt10n of the varlous aSpects of m.lon nuc-“

"v‘leus processes// However, the contr1but1on of such a mechan1sm

i j:to the hlgh energy reglon of the neutron Spectrum 1s un1mportant

while this reg1on cla1ms the part1cu1ar attentlon/ / The h1gh

'“energy neutrons in muon. capture. (E »15 ZOMeV) appear to. re- .

‘L 1ate to a d1rect em1ssmn mechamsm The success1ve calculat-

".ions of muon capture 1n the framework of the d1rect mechan1sm

| ~are comp11cated because of the complex nature of both the muon- R

‘i""l»"nucleon Ham11ton1an and the final state nuclear wave functlon In'

" _':Apart1cular recently 1t was shown that the re1at1v1st1c terms of .
v’muon nucleon Ham11ton1an are very 1mportant 1n cons1der1ng the
‘ ',‘h1gh energy neutrons/ ' / Therefore 1t is. 1mportant to analyse 4

‘ the effects of the var1ous factors on muon capture process w1th .

’ nnutron em1ss1on




o ear11er

- In' the present paper we contmue such mvestlgatlons started

/4,5/

teraction together with the re1at1v1st1c terms of Ham11ton1an on the

We sha11 discuss some effects of the f1na1 state in-- '

-

characteristics of the process. w1th neutron em1ss1on
KT (AZ) S (A=, Z=1) 4 n sy , W

We will concentrate our. attentlon again on the 1nvest1gat1ons of
~ the general features of the process (1) All ca1cu1at10ns are perfor-

\ med for the reaction
I.y-+‘ He > *H 4+n + v. S “ (2) .

It ‘shduﬂ_ld bé noted that in the case of the reaction (2) one can hope
that the optical model will describe roughly,the region of giant
: resonance, too, because all the single-particle 1eve1s excited in
“‘H'g are uhbound. As to the neutron characteristics of heavier nuc-
lei, one can expect that in the. case of the nuclei with closed shells

- the factors considered will éffect similarly.

" The General Statement

, We use the muon- nucleon Ham11ton1an as given by Prlma-
; koff/ v
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“where v is the umt vector of neutrmo,

(l+—2——) G —9A (9v+9) ,GP=,[(9P‘;9'A)"'(:9'V.+9~)‘14-2{—-

N : N
'and E, is its energy. The last two terms,_in (3) are called relati-
vistic or velocity terms. | B _
The express1on for muon capture rate can be wr1tten as
follows
v ‘ 47 d9d4P, o S
- ~E B b . oyt Tv , . ‘ ] o
gw_ 5 (E, E‘,)lz,‘+,2+2311'(2 3 , @
where E, and E, aferthe energy of initial and final stvatesi of the
‘nuclear system respectlvely, p and § “are relative ‘an'd c.m. ‘mo-
menta of neutron and the res1dua1 nucleus respect1ve1y, and P =

neutrino momentum The quantities X, are equal to
s - GV|M,”|‘ .+GA[M2] +6,(6,-26 H%le 26’ (;TzT){M,{+G (7&) M

' - (5a) |
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where ¢ is the un1t vector in the direction of muon sp1n, M (i= 1,..
...4) are the matr1x elements, defined as

»—9—»

—-ip

M =<¥ 13 -k
i f_‘k=1 k

vk

0,6, (r)I¥, > . , (6)
Here ¥ . and “P,‘ are. the huelear wave functions of the initial and
'. final states respectively, o
0,-1,-0 (0,000,0,0);

oz=ak; or(o,0)o;(:»,_m),-A,., oy

(7)

0, = P, =Or(1,m)00 (0,0);‘m =tl,0';

4

x

0,-3F, =32(-0)"0 (1,m) 0 (I,=m); m =+1,0;

The 'matr1x elements (6) are defined in the same way as in

/3/ /3/

However, unlike to’ % we have kept in (4) the term
3, . It should be noted that »; is proportional to M',f’. To take

the paper’

--‘aceurately into -account in (4) all terms of the order M3? itis ne-. |

' cessary to keep them also in Hamiltonian (3). Otherwise we neglect
Call the terms of the pl/My  type and partly of the order E/M
It is clear that the contr1but1on of the terms, proport1ona1 to E M N
_1s:. not greater than 10% compared with that of terms, proportional
"Ito. E,/M, . When the energy of neutrohs increases their c’ontribut-
" ion decreases. Consequently, it is not necessary‘to talge into ac-.

‘count in (4) all the terms of the order E2/M2 because their con-

tr1but1on in high energy region of the Spectrum is unimportant. We

consider now the terms of the p? /M3, type in detail. Firstly let us

6



expand the plane wave. of neutr1n0 (aS in beta decay)

. —» —» . . ¥ N
c=Ipy I Lk ) Lo 8)"
e viisai P bt o R ‘ (8)

The’various terms'in (8) correspond to the allowed, first forloidQ

: den ;and S0 on, trans1t1ons Let us confme ourselves to the case

:_when the main contr1but1on to muon capture comes from the f1rst
forb1dden trans1t1ons (when neglect1ng the relativistic terms) Such
a s1tuat1on ar1ses in a. double mag1c ‘nuclei and, in part1cular, in’
B the case of muon capture by. He As to the relat1v1st1c terms they
correspond in this case effect1ve1y to the allowed transitions. Th1'=
:‘means that their contr1but1on could be of the same- order of magn1- ;
‘tude as that of the nonrelat1v1st1c terms Atthe same time the con-
' tr1but1on of the. terms, proport1onal to p2 / M2 corresponds at
“-least to the second forb1dden trans1t1ons Therefore these can be
- 'neglected On the other hand it is 1ncons1stent to neglect in (4) all',""
the terms of theorder M;? .Thelatter wouldmean that the contri- .-
fbut1on of the relat1v1st1c terms to the capture rate is small compar-"‘:
g .ed with ‘that of the nonrelat1v1st1c terms (it should be noted that'_;;‘»'
L p / M2 " and <|p /MN|><|p /M |'> have the dlfferent mean1ng) ‘
o One can 1ntroduce now the matr1x elements ’ 311,, related toi’.ﬁ‘

by the: express1on _
(217) B(P 3’ “Rm, '(95-‘.
) .f‘jwher"e'v P ' 1s ‘the: momentum of the target nucleus In the c.m, sys- &

. tem’ F =0 Tak1ng mto account (9) one can 1ntegrate the expres-

' s1on (4) over the c.m. coordmate and neutr1no energy As a result -



o “we get the following expression:

/2, % 2 2,0 ,-z.'z' s o
: dW .M 2 M F(E) {2 + 2+ 2,1 ;
dE dQdQ 64n5 [1+f(E)T 1 "2 B (10)

where m is the reduced mass of neutron and the residual nucleus,
E - their'relative energy, }M =M(n)+M(A-1,Z ~1) is the total mass of
o ‘neutron and the recoil nucleus, @ and Q are the directions of

the vectors 7 p and pv respectively,
: b“}f»('E) - ‘(.1+2>_‘_’hi Yo
~and
Cem MCKT )+ M(A, Z) = M(A=1,Z~1)=M(n).

_‘,

Replacing M, by I, in X, one gets ; at the energy E, =M, (E).

The nuclear final state ‘wave funct1on will ‘be chosen 1n the

. followmg form

”~

lp,(: A)=dn A z. b (()E< Umyl/2m :iM>< L7, NLLEIUER

(’l....A—I)x%m . )

z...g(’ )Yz,;z(ﬂ)'*’JoMo oo

Where b, ¢ () is the radial wave kfunction of the neutron and residual :

nucleus relat1ve motion. It is spec1f1ed by the angular momentum

4 of the relative mot1on and by the total momentum ji: # is a unit

_>

vector TE_[» ‘Po W Tyt (1..A-1)is the wave function of the res1dual nuc-
‘leus with total momentum Jo . its prolect1on M,, , isospin T, }and_

" its pro_]ect10n o i Xy (A) is the spin-isospin function of the ne-
~utron w1th m _ being the. projection of the spin; A s the antisym-

£ metr1zat1on .operator.

’



R In calculating: the. nuc1ear>. matr‘ix elements (6) the‘.\‘e‘xchange o
-terms’ are" taken into a'ccount, too. The muon wave functionl in
. -orb1t is taken at -r= | | ’ C

i ‘When the final state 1nteract1on is neglected bip (r) reduces
to the spherical Bessel function i, (r) . But if the final state 1nter- |
_action is involved b (r) can be found by solv1ng the Shroedmger .
| equat1on ‘with the appropr1ate potent1a1

Integratmg (10) over the d1rect1on of neutrino emission one .

-dEd.Q ' L1 +f(E)Y =

dw
L ets the final e ress1on for e
g Xp TEd0 |
_dv CEVI _LLE_)_.{ EA (E)+ EB (E)cosfi, S (12). ‘

where C isa constant 0 is the angle between muon polarization o
vector a.nd vector TR - ' ‘

_d¥

The energyspectrum T ,asymmetry a(E) of_angulardis;

- tribution and capture rate are deﬁhed as follows:

» : »' . E . ‘T "
AW o dW mex  dW <
¥ raa— —,a(E) 38 (E)/EA(E) - fEE st )
TR A ge . 13

It should be noted that —— ‘depends on the relative energy E and B

_descr1bes sufflc1ently well the neutron spectrum when the res1dua1

: nucleus mass is large. One canget the neutron spectrum and asym- ?l,

-metry, knowmg ———‘ﬂ-— and carrymg out some calculat1ons, -

‘ "dE dQdQ, Ty
el for example, by the Monte Carlo method ' T e




" Muon 'Captur'e by. 'A“H‘e .
To calculate the capture rate for the process (2) one needs
to know the wave funct1ons of He and H. In the present paper we
- confme ourselves to the pr1nc1pal s state. '

/8/

As was 1nd1cated in the paper the muon capture rate de-

pends weakly on the expl1c1t form of the rad1al wave funct1on, but

s1gn1f1cantly on the nuclear r.m. S. radn We have used the Gaus-_‘ '

sian form for the radial function

o 4H N 4>H g - 5 2 v ! .

‘( e) = N( e)éXpii—a’ﬂ(r’ —rl) }f _ \ o , (14)
 OCH)=NC H)exp 1= 3(7 -7, Yy, . (15)

,Where « andp are defined from r.m.s. radii of “He and *H respec-
- tively,N( “Heland N( *H) are the normalization constants,

To get M, one needs to calculate the rad1al mtegrals of four
types Their number reduces to two. when neglectmg the exchange
terms: L
' The final state interaction was taken into" account by using .

//Its

.parameters ‘were chosen to describe the angular d1str1but1on of

i the. 0pt1cal potent1al with surface and volume absorpt1on

f'protons_on He (The nuclear systemp + He has the same ISOSpln o

~asthen + ’H  one). The potentialisfitted at the energy E, =23.5MeV
~sof relative motion. As the potential has been fitted at sufﬁciently
- high energies of the incident proton and does not depend on energy,

it could be expected that we have overestimated the absorption ef-

-10



' fect: in low‘-energy region* As to the high. energy region E>E,, the -
: underest1mat1on of the absorption will be 1ns1gn1f1cant because the ,
new inelastic cha.nnels will not be open. So, this optical potent1a1
 describes better the high energy part of the spectrum than the low-
energy one. )

The radial wave function was found numer1ca11y by solv1ng the

' Shroedinger equation.

D1scus sion

The expressmns (12) and (13) were used for calculat1on of the
energy Spectrum and asymmetry coefficient. The energy Spectrum
is given on Fig. 1 The final state 1nteract1on 1ncreases the low ener- ‘ _"
gy part and decreases the h1gher one. Indeed in the p1ane wave -
approx1mat1on the neutron and *H y1e1d at the re1at1ve energy
h1gher than ZOMeV is about 30%,whereas when the f1na1 state 1nterac-
tion was, taken 1nto account this magn1tude becomes smaller(about 12%)
The 1ntegra1 capture rate 1n the react1on (2) appears to be the same
both in the plane wave approx1mat1on and in 1nclud1ng f1na1 state |

_1nteract1on This means, that the accurate cons1derat1on of the final

R “»

state 1nteract1on (when the energy dependence of the potent1a1 1s o
taken into account) W111 increase the capture ‘rate compared w1th
the plane wave case. ' ‘

As one would expect the contr1but1on of the re1at1v1st1c terms |

- of Ham11ton1an (3) is 1mportant (compare the curves 1 and 3) and . )

u



(R N
.

is about 1/ 3 of the total capture rate w1th one neutron em1ss1on The»"‘
contr1but1on of the relat1v1st1c terms s1gn1f1cant1y 1ncreases when
the re1at1ve energy E becomes 1arger (Table 1) F1g. 2 shows the‘__"
| iasymmetry coeff1c1ent versus energy E ,Ascan be seen the asym-" -\"t .

. ,,;metry essent1a11y is due to the relativistic terms of- (3) This means -

| 3 part1cu1ar1y that all conclus1ons, based on the assumptmn that the e

I asymmetry coeff1c1ent can be represented in factor1zab1e form

- a(E)-a (E)ﬁ (E) , ' _ ' (16)

| »Where a,(E) is the asymmetry on hydrogen, and /3 (E) is the nuc- St

' 1ear factor, with [/3 (E)[ <1, are wrong Indeed one can get the‘

’.;". express1on (16) when neglectmg both the re1at1v1st1c terms in (3) -

;irv"f..and spin-orbit part of the f1na1 state interaction. The fact that the . .

. relat1v1st1c terms can change the asymmetry coeff1c1ent ‘was men- -

/10/

tloned a1ready in the paper

’ where all est1mat1ons of the nuclear '

' .matr1x elements were made in the framework of M1gda1 mode1 An. L

: 1mportance of the: contribution of the relat1v1st1c terms in a d1rect S

/2-6/

The present result' is inan agreement with the prev1ous ones.

~ process of neutron emission was pomted out in papers

. The f1na1 state - 1nteract1on changes s1gn1f1cant1y the: asymmetry

| coeff1c1ent The change is very essent1a1 at h1gh energ1es (curves '

8 :1‘1 and 3) At some energ1es

la(E) > el ] =

1z



-At the present time on1y the total capture rate in 4 He 1s mea-
’sured and its value is equal to 364 + 46 sec F1/1 / We get for the =
‘channel 1 A— 220 sec -1 when relat1v1st1c terms and the f1na1_' '
state interaction are taken into account 'As was ment1oned above '
. the calculated value is somewhat underest1mated

To investigate the dependence of -the asymmetry coeff1c1ent-‘ o
on the 1mag1nary part of the potential' we have calcula.ed the above
, character1st1cs of the process (2) neglecting the absorpt1on. The T

- results are given in Figs 3 and 4. Comparing th_1s result with that

| where absorption is taken into account one concludes that qualitati--
~ vely the asymmetry coefficient remains unchanged. Consequently,i _
‘the accurate cons1derat1on of the final state interaction will increa- -
se the total capture raté compared with the value obtained. Asto .
the asymmetry coefficient it will change only slightly. ' '
' From an analysis of the experimental data it follows that in
the neutron-tritium scattering the spin-orbitalinteractionis extre-

mely small. This does not hold, in general, _forheavier'nuclei. For.

this reason we ‘have calculated the spectrum and asymmetry forour.. -
,,,,,, proceSs by using the potential with an arbitrary strong spih-‘orbital A
t_erm. One must ’remember, of course, the purely qualitative charac- '
ter of such a study sincethe spin-orbital interaction introduced does
not depend on energy The results of the above calculations are pre~ -
sented on Figs -3 and 4. , |
All our resultsare given for the pseudoscalar constant g, -89 .

N2/

However this constant has.the energy dependence of the form

13
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’-'v'r'vwhere m# and m,. are muon and pion. masses - respect1ve1y, S

- ,transferred four-momentum. Sucha’ dependence means that g, in'-_-‘li,\ ; .

L vcreases from 79, as E, = E,,,;,, to ~30g, _ at E, ~0 The stra1ght-

forward ca1cu1at1ons show, however, that both the energy spectrum L

. and asymmetry coeff1c1ent change on1y shghtly when 95 -8g 4 18

s replaced by (17). The asymmetry depends shghtly, in general, on :

- pseudoscalar constant
Conclusion

. The present results show that the‘energy’speCtrum and asym- -

- metry coefflclent at h1gh energies are very sens1t1ve poth to the

- deta1ls of muon-nucleon Hamiltonian (the relat1v1st1c terms of”‘”if :

Ham11ton1an) and to the nuc1ear problem (f1na1 state 1nteract10n)

Therefore in 1nterpret1ng the experimental data one needs to be

. .-~carefu1 -Of course some add1t10na1 ‘calculations: are requlred of

. \f some 1nterest are the mvest1gat1ons of the short range correlations ,

" in nuc1e1 and the other components of the ground state wave funct1on

.At the same time accurate exper1menta1 data are necessary The'

o .present data . do not provide the unamb1guous picture

/13-15/ .
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Table 1

Energyof the-relati\}é. —

motion, MeV. . . - 20 40 60 - 70
Contribution of the non- S
relativistic terms to the -7l : 54 26 18-
' energy spectrum, ' : o
: (1n %) -
=
N
N
T X -
) A/ T
0 - ‘ 1
Sl 2 _
0 10 20 30 40 E, Mev

Fig. 1. The energy spectrum versus relative energy E. . l. The
relativistic terms and final state 1nteract1on are 1nc1uded.2 Plane
. wave approx1mat1on with relativistic terms. 3. The relativistic
terms are neglected, the final state interaction is included.

16



1/ 15

Fig. 2. Asymmetry of angular distribution versus relative energy .
1. Plane wave approximation with relativistic terms. 2. Plane wave
‘approximation without relativistic terms. 3. The relativistic terms
and final state interaction -are included. 4, The relativistic terms
are neglected, final state interaction is included.

17
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