$$
J-74
$$

ОБЪЕДННЕННЫЙ ИНСТИТУТ яДЕРНЫХ НССДЕДОВАНИЙ

Дубна

$2948 / 2=79$

W. John, P.Ziesche

GENERALIZED FRIEDEL SUM RULE AND DENSITY OF STATES IN DISORDERED SYSTEMS

W. John*, P.Ziesche*

GENERALIZED FRIEDEL SUM RULE AND DENSITY OF STATES IN DISORDERED SYSTEMS

Submitted
to physica status solidi

* On leave of absence from Techniscihe Universität Dresden, Dresden, DDR.

Cux-4
 SHEGHOTEKA

For non-interacting electrons, moving in an extended system of non-overlapping muffin-tin (mt)-potentials, Lloyd $/ 1 /$ using separable pseudo-potentials has shown, that the integrated density of states $N(E)$ may be expressed in a form, which involves only the phase shifts η_{L}^{n} and the positions \vec{R}_{L}^{n} of the scatterers. In the following a simple derivation of the Lloyd formula is given using a generalization of the Friedel sum rule.

Let us consider a non-spherically symmetric potential. Using the generalized partial wave method, discussed by Demkov and Rudakov $^{/ 2 /}$ the asymptotic behaviour of scattering states $\phi_{\lambda}(\vec{r})$ with generalized phase shifts η_{λ} is given by

$$
\begin{equation*}
\phi_{\lambda}(\vec{r} \rightarrow \infty) \rightarrow A_{\lambda}(\vec{n}) \frac{1}{r} e^{l\left(k r+\eta_{\lambda}\right)}+\text { c.c., } \vec{n}=\frac{\vec{r}}{r}, \kappa=\sqrt{E} . \tag{1}
\end{equation*}
$$ symmetric case (the number of electrons localized by the potential (Friedel sum rule)

$$
\begin{equation*}
z=\frac{2}{\pi} \sum_{\lambda}^{\sum} \eta_{\lambda}\left(\kappa_{F}\right) \tag{2}
\end{equation*}
$$

and the asymptotic behaviour of the radial density of these electrons (Friedel oscillations)

$$
\begin{equation*}
n(r \rightarrow \infty) \rightarrow \frac{1}{2 \pi^{2} r^{3}} \sum_{\lambda} I_{\lambda}\left(\kappa_{F}\right) \sin \eta_{\lambda}\left(\kappa_{F}\right) \cos \left[2 \kappa_{r}+\eta_{\lambda}\left(\kappa_{F}\right)\right] \tag{3}
\end{equation*}
$$

with $\quad I_{\lambda}(\kappa)=\int d \Omega A_{\lambda}(\vec{n}) A_{\lambda}(-\vec{n})$ as the expectation value of the inversion operator. From equation (2) follows immediately the change of the integrated density of states

$$
\begin{equation*}
N(E)-N^{0}(E)=\frac{2}{\pi V} \sum_{\lambda} \eta_{\lambda}(\kappa) \tag{4}
\end{equation*}
$$

due to an extended potential with phase shifts $\boldsymbol{\eta}_{\boldsymbol{\lambda}}$, the number of which is in this case proportional to the volume V of the system. Owing to the connection of the phase shifts with the eigenvalues $-\kappa^{-1} \lg \eta_{\lambda}$ of the K-matrix, equation (4) can be written as

$$
\begin{equation*}
N(E)-N^{0}(E)=\frac{2}{\pi v} \operatorname{Tr} \operatorname{arctg} \kappa K=-\frac{2}{\pi v} \operatorname{lm} \operatorname{Tr} \ln (1+i \kappa K) . \tag{5}
\end{equation*}
$$

For a system of non-overlapping mt-potentials, the K-matrix of the whole system can be obtained from a scheme, given by us /4/ how to calculate the phase shifts η_{λ} of such a system:

$$
\begin{equation*}
K_{L L^{\prime}}^{n n^{\prime}}=\sum_{n^{\prime \prime}, L}\left(M^{-1}\right)_{L L^{\prime \prime}}^{n n^{\prime \prime}}\left(-\frac{1}{K} \operatorname{tg} \eta_{L \prime \prime}^{n^{\prime \prime}}\right) J_{L}^{n^{\prime \prime \prime} n^{\prime}},, M_{L L}^{n n^{\prime}}=\delta_{n n^{\prime}} \delta_{L L^{\prime}} \operatorname{tg} \eta_{L}^{n} N_{L L^{\prime \prime}}^{n n^{\prime}} \tag{6}
\end{equation*}
$$

The matrices N and J in (4) contain only the structure \vec{R}_{n}; each mt-potential has non-vanishing phase shifts η_{L}^{n} only for a finite set of angular momenta $L \quad$. From equations (5) and (6) immediately follows the Lloyd-formula

$$
\begin{equation*}
N(E)-N^{0}(E)=-\frac{2}{\pi v} \operatorname{lm} \ln \operatorname{det}\left\|\delta_{n n} \cdot \delta_{L L^{\prime}}+\operatorname{tg} \eta_{L}^{n}\left(N_{L L}^{m n^{\prime}}-i J_{L L}^{n n^{\prime}}\right)\right\| . \tag{7}
\end{equation*}
$$

Instead of the position representation the usual L-representation of the. K-matrix is obtained by a suitable transformation of the eigenvalue equation as in ${ }^{/ 5 /}$. Namely, with the splitting

$$
\begin{equation*}
J_{L L}^{n n^{\prime}}=\sum_{\mathscr{L}} J_{L \mathscr{L}}^{n 0} J_{\mathscr{L}_{L}}^{0 n^{\prime}}, \tag{8}
\end{equation*}
$$

which uses only the completeness of the spherical harmonics (that is, $\mathfrak{\rho}$ is in contradistinction to L unlimited), it turns out:

$$
\begin{equation*}
K_{\mathscr{L},}=\sum_{\substack{n,,^{\prime}}} J_{\mathcal{L}_{L}}^{0_{n}}\left(M^{-1}\right)_{L L}^{n n^{\prime}}\left(-\frac{1}{\kappa} \operatorname{tg} \eta_{L^{\prime}}^{n^{\prime}}\right) J_{L^{\prime} \varrho^{\prime},} \tag{9}
\end{equation*}
$$

K £』. contains in difference to $K_{L L}^{n n^{\prime}}$ also the scattering states with vanishing phase shifts η_{λ}.

According to Klima, McGill and Ziman $/ 6 /$ and $/ 7 / x /$ the large influence of the short range order in amorphous covalent semiconductors on their density of states can be described in a good approximation, assuming the system to consist of randomly arranged, rigid clusters of atoms and neglecting the multiple scattering between these clusters. In this approximation the K-matrix (6) of the whole system involves only the cluster- κ-matrices K^{\prime}, from which via (5) follows

$$
\begin{equation*}
N(E)-N^{0}(E)=-\frac{2}{\pi v} \sum_{1} \operatorname{Im} \operatorname{Tr} \ln \left(1+i \kappa K^{\prime}\right)=-\frac{2}{\pi V} \sum_{i, \lambda} \eta_{\lambda}^{\prime} . \tag{10}
\end{equation*}
$$

The equivalence with $/ 6,7 /$ is seen, if one changes as in equation (9) from the position-representation of K^{\prime} to its L-representat.ion; the denotations Δ and G, used in $/ 6 /$, correspond to J and N.

> References

1. P. Lloyd. Proc.Phys.Soc., 90, 207 and 217 (1967).
2. Yu.N. Demkov and V.S. Rudakov. Zh.exp.teor.Fiz', 59, 2035 (1970).
${ }^{\mathrm{x}}$ /We thank Prof. J.M. Ziman for giving us a preprint.
3. J. Friedel. Phil.Mag., 43,, 153 (1952).
4. W. John and P. Ziesche. phys.stat.sol., to be published.
5. J.M. Ziman. Proc.Phys.Soc., 86, 337 (1965).
6. T.C. McGill and J. Klima. J.Phys., C3, L163 (1970).
7. J. Klima, T.C. McGill and J.M. Ziman. Trans. Faraday Soc., to be published.

> Received by Publishing Department on July $14,1971$.

