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Introduction 

Low energy collective modes of nuclear motion, which 

influence the structure of nuclear ground states, have as a rule 

simple geometrical interpretation, The corresponding effective fields 

may be considered as symmetry distortions of the single particle 

potential, The strength of the fields may be connected with the 

parameters of the potential with the help of the self-consistency 

c'onditions of geometrical type, e.g, volume conservation conditi.on. 

Till now pairing has been considered as an exception from 

this rule. In vie":V of the evident two-particle, short range character 

of ·pairing_ correlations any simple connection of the effective 

pairing force G ~ a; a _t a -v , a v, or the pairing field 11 ~ (a; a _+v + 

· + a a ) with the parameters of the single particle potential 
-v v 

. seemed unprobable, However, it has been established /l, 2
/ that 

every field-producing component of the residual interaction can be 

recovered from the self-consistent single particle potential when 

the appropriate self-consistency condition is known. Thus, the 
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question vvhich should be answered in the case of pairing is 

rather that of the existence of a geometrical condition which 

pairing field should obey. The simplest candidate for such a 

condition, which has been suggested in / 3 / and which should be 

carefully tried, is the volume conservation, assuring conservation 

of the average particle density in the nucleus. As has been 

shown in /J/, minimalization of the total energy under this com!i

tion gives reasonable values for static pairing parameters in the 

case of symmetric configurations and harmonic o'scillator potential, 

Physical significance of the volume conservation applied 

to the case of pairing correlations needs some discussion. First 

of all there is a question of how much pairing may be associated 

with the- volume conserving component::; of the residual interaction, 

The pairing mode is a low energy mode and should not mix 

strongly with a rather high energy breathing mode, which covers 

the effect of fluctuations of average nucleetr density and volume. 

On the other hand, pairing correlations are known to be due to 

the combined effect of many high multipolarity components of the 

residual interaction, Very little is known till now about these 

components and their influence on nuclear radius. Their coherent 

low energy effect may very well be analogous in many respects 

to those of low energy, low multipolarity components, From this 

point of view it is instructive to see how large is the pairing 

components of an affective force calculated under the condition 

of constant volume, Applying the technique of / 2•3 •5 / to the volume 

conserving symmetry distortions of the .harmonic oscillator potential 

' and taking .harmonic radial dependence for distortions of all 

multi polarities, one gets: 
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where m -the mass of a nucleon, w - the oscillator frequency, 

A- atomic number of the nucleus considered, R -the nuclear 

radius, p -density of particles, ;' and fj' are the radial and 

angular co-ordinates in the co-ordinate system in which single 

p<:lrticle potential U is spherically symmetric, Their structure 

·reflects the deformation dependence of the force (1). They become 

usual space co-ordinates for spherical nucleus. 

Volume conservation eliminates from the expansion (1) the 

monopole term, which would otherwise cause a change in the 

nuclear radius, making the estimate of the force strength impossible, 

It also changes single potential U enlarging strength w by the 

amount proportional to the mean value of the square ·of the defor

mation change for each excitation mode. The single particle 

contribution to the nuclear radius gets thereby smaller by the 

amount · by which the radius is enlarged due to the zero point 

vibrations in eacl;l mode, 

The delta function character of the interaction (1) suggests 

that it contains strong pairing component. The corresponding 

average pairing force strength may be estimated by taking 1/4TT 

for the average value of the angular matrix element of (1) and 

bv its mean value at the Fermi surface: < r 2 •> 
F replacing r 2 

;,_1i_· (NF+ ,2._)"' _1i_. 1,1 A 113 • One gets: 
mw 2 mw 
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This value should be compared with G ,. 13-14 MeV/A, which 

is needed to explain ,.2 MeV energy gap in spherical nuclei, for 

pairing force acting in the single particle space of 7-8 oscillator 

shells. 

From the estimate of the volume conserving force {1) one 

learns first of all that' it contains pairing component strong enough 

to explain most, possibly all pairing observed in nuclei, Further

more, the pairing is determined here by the same quantities which 

determine the single particle potential, namely by the size of the 

nucleus, It should, however, be kept in mind that the force {1) 

is the one aopropriate for RPA calculation and it is an open 

question to what extent it can be used in the BCS-like approxima

tions. Static pairing should rather be obtained in the way analogous · 

to the one used in the case of static deformations, namely by 

minimalization of the total energy under the conditions which gave 

the force (1). As in the case of static deformation, the adjustments 

of the single particle field (introduced by the volume conservation 

requirement) should be important in the equil~brium pairing cal cula

tion. As a matter of fact, they determine the position of the 

energy minimum in the pairing case, 

The mechanism by which pairing adjusts single particle 

field is the rearrangement mechanism and for the generalized -

Hartee field is given by the following expression for the self

consistent single-particle potential {see e.g. / 6/ and references 

given there): 
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where vv are pairing amplitudes for the single particle states v 

Y
12 

is ·the nucleon-nucleon two -body interaction. In order to 

illustrate the effect of the rearrangement (3) let us assume that the 

harmonic oscillator potential is generated by a volume conserving 

monopole force V 12 ·= k w 2 r ~ r ~ where k is a cons tan\ and w 

is chosen in such a way, that the value of .< r 2 '> , calculated 

for pairing parameters corresponding to the pairing given 

by the real force V 12 , is equal to its experimental value. 'I'he 

single particle field (3) can now be written as; 

U 1 = k w _..:!!__ [ .!. CN v + _1_
2 

) 2 ~ ~ ] r ? and thus the 
·m v 

self-consistent value of w is given by 

where we stressed the dependence of w on the pairing energy 

gap 11 which determines, the amplitudes vv • When we force 

pairing to change, the '?Xpression (4) gives the corresponding 

rearrangement of the harmonic oscillator single particle potential. 

'I'he oscillator frequency w changes in such a way, that for 

any value of the patrmg parameters the mean square radius 

2 1i ' 
<r '>= mwU\) !. (N v+ _;_) 2 v: remains constant. 'I'his is the 

v> o " 
. condition which was used in /

3
/ to get the equilibrium pairing. 

In the present paper the calculations of the equilibrium pairing 

energy gap, performed under .the condition (4) for a more realistic, 

Nilsson potential, are presented. Inclusion of the spin-orbit and 

e2 terms in the single particle potential allows the calculation 

for the ground states of real nuclei. We present here the results 

for neutron pairing in spherical single closed shell nuclei with Z = 28, 
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50 and 82 (N; , Sn and Pb isotopes). They show how the 

proposed method works in three different mass regions: . A , 60, 

A "' 116 and A, 200. 

Energy Expression 

The most important problem· in the calculation, in which 

energy is minimized with respect to the pairing parameters, is of 

course, the expression for the total energy of the '1ucleus·, which 

should give a sufficiently accurate energy change due to the change of 

pairing. As we include rearrangement (4) explicitly, the harmonic 

oscillator contribution to the single particle energy term must be 

written with the factor 3/4, in order that the potential energy 

change is counted once. In the Nilsson potential the e. s · and e 
terms ar2 present in addition to the oscillator term. They do not 

contribute to the single particle radius, and so the rearrangement(3) 

iri them could be included in a standard way, by taking their 

contribution to the energy change with the factor 1 instead of 

1/2. Hr.wever, the self-consistency conditions under which the 

force ( 1 ) '''as obtained include the assumption, that the shape 

of the potential follows the shape of the density distribution. In our 

case this would mean that a suitably defined square radius of the 

potentail should also be conserved. One can define a quantity 

which measures effective size of the- Nilsson potential as 

_ _1_2 I ( v 2 v v
2 

, where ( v are the single particle energies. In 
mw· v>O . 

the limit of a pure harmonic oscillator it is equal to the mean 

square radius of the. density distribution •. When the e.s and e2 

terms are included, it measure& the average square radius of the 

surfaces of equal potential at energies corresponding to the occupied 
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single particle states. In the BCS approximation with one value 

of !l for all the states it is' impossible to keep constant both 

the density radius and the above defined radius of the potential. 

However, the main change which is introduced in the energy 

expression by the conservation of the potential radius in comparison 

with the density radius conservation is that it defines also the 

rearrangement in the e. s and e2 terms, replacing the factor 1/2 

by 5/4. As the rearrangement in these terms should really be 

connected with the change of parameters specific to them and not 

with. the change of w , one keeps the density radius constant and 

try to include the effect of the more complete self-consistency 

condition by using the factor 5/4 instead of the standard factor 

1 in the e. s and e2 contribution to the energy change, The single 

particle contribution to the energy takes, therefore, the form: 

where Nv is the harmonic oscillator quantum number of the state 

v , K and JL are the Nilsson model parameter's. 

The pairing energy contribution is taken in the form correct

' 'ed for the zero-point pairing vibrations in the BCS+RPA 

approximation /?/ 

, f pairing (6) 

where u v and E are the BCS pairing amplitudes and 

quasiparticle energies, w a are the roots of the BCS + RPA equation 

· for the frequencies of the pairing vibration mode: 
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'I'he last two term in (6) represent the difference between BCS+-RPA' 

and BCS ground state energies and include, in particular, the 

G v 4 term of BCS theory, 

'I'he complete expression which should give a right energy 

change with the change of the volume conserving pairing is: 

E (~) =, 
w(~) 
----[E + E ] 
w(~= 0) s.p. pairing ' (8) 

where E and E . . are measured in I! w ( ~) units, while s.p. pa1rmg 

E ( ~) is meas~red in 1; w ( ~ = 0) , 

The energy (8) was minimized with respect to the gap 

parameter ~ , 'I'he equilibrium value of this parameter should 

describe. physical pairing in the nucleus. 

It should be stressed here, that the energy expression ( 8) 

should be used with care when energy difference between 

di'fereni nuclear states or different nuclei are c'onsidered (e.g, 

odd-?ven mass differences). These are not restricted by the volume 

conservation condition and thus very accurate knowledge of the 

Nilsson. model parameters change would be required to use the 

expression (8). It is more practical to calculate those energy 

changes in a standard way, namely by compairing the sums of 

the single particle energies and pairing contributions at a fixed 

value of the Nilsson model parameters. 
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Details of the Calculation 

The parameters of the Nilsson potential are the only para

meters in our calculation. They are known quite well for the 

regions of large deformation. This fixes their values for neutrons 

in N., 5 and N ., 6 oscillator shells - the Fermi surface region for 

Pb isotopes. For neutrons in N ., 3 and N., 4 'shells, the 

Fermi surface regions for Ni and 'Sn , the Nilsson model 

parameters were obtained by extrapolation from the deformed 

regions, 

The results turn out to be practically independent of the 

subshell structure far away from the Fermi surface, Therefore, 

we can work with one single-particle level scheme for all the 

nuclei, provided the appropriate Nilsson model parameters are 

taken for each oscillator shell. The parameters for the relevant 

shells, also the values used for proton states, are listed below. 

The chaise of. the proton parameters is of minor importance for 

calculation of the neutron energy gaps. The values used in the 

calculation were taken from the deformed regions. 

Neutrons 

0,0637, fl = 
0,48 for N., 3 

0,46 for N., 4 

0,42 for N .. 5 

0,325 for N., 6 

Protons 

K ., 0,0637, f1 ., 0, 60 for 

N., 3,4,5 

K., 0,0577, fl == 0,65 for 

N= 6 

As the aim of the calculation was to check the proposed method 

of determining pairing, no attempt has been made at this stage 

to choose the best parameters for each region considered, In order 

to get some feeling about the sensitivity of the results to the 
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relative position of the single-particle states the calculation was 

performed also with p. = 0,38 for N = 3 ( Ni isotopes) and with 

p. = 0,48 and 0,42 for N = 4 ( 'Sn isotopes), The results are 

compared in Fig. 1, 

The pairing problem for f).= 0.01, 0,02, 0,03, , . ,0,30 1i w 

was solved in BCS approximation with the equation for the 

chemical potential: 

2 
2 2 vv =number of neutrons, 

v·>O 
(9) 

Equation (9) was solved in the single particle space of 7 oscillator 

shells in the case of Ni and 'Sn isotopes and 8 oscillator 

shells in the case of Pb , The pairing amplitudes and qausiparticle 

energies obtained in this way were used in eq, (7) to get the 

frequencies w a , and in expressions (4,8) to get the ratio 

w(f).)/w(/).=0) and energy E (f). ) for each value of f). , The 

equilibrium value_ f). eq was then obtained b>: finding the minimum 

of the function E (f). ) , An example of the E ( /),. ) curve is given 

in Fig, 2, 

Results and Discussion 

The calculated values of f). eq are listed in column 2 of 

Table 1. Column 3 of the Table gives the effective strength G ell 

of the pairing force which would lead to f). .. f). eq according to the 

BCS gap equation 

2 
'Gell 

2-----. 
v'> 0 • I ( -A) r-;:::z 

V (lJ + eq 

12 
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In column 4 the values of Geff , averaged over all isotopes, 

are given for each element. They show that the 1/A overall 

dependence of G is confirmed in our calculation. Apart from 

this dependence there is an additional dependence on the subshell 

structure near the Fermi surface. It forces the effective interaction 

vary from one isotope to another and it has its counterpart in the 

variation of the effective force when it is obtained by solving the 

inverse gap ef'{uation of ref. /
8

/. If the distance to the next subshell 

is larger than the average distance between the subshell in the 

shell considered 1 G eff gets smaller at the subshell closure, In 

some cases, e.g. at g 
7

; 2 subshell closure in 114 Sn , one gets 

d eq=O as in the case of a closed shell nucleus. The approxima

tions vvhich are used here get worse for small d 1 but it seems 

that the only way to eliminate d eq = 0 point in the Sn isotopes 

would be to shift s 1; 2 or cl 
3

/ 2 level, or both down, close to 

the g 7 / 2 for A< 118 and let them go much higher in the A·,> 118 

isotopes, Such changes in the relative position of the single 

particle levels would be in agrPement with the analysis of ref. /8/, 

However, d = 0 for one of the eq Sn isotopes is also p:Oss~ble. n: . 
would be clearly manifested only in such experiments as, e.g. two 

. t' ''4·s nucleon transfer reac 1ons, and n behaves very much like a 

closed shell nucleus in these experiments. 

In Fig. 1 the calculated energy gaps are compared with the 

'results of /
8

/, where the inverse gap equation method was used to obtain 

pairing parameters, The input data in this method are the 

experimental odd-even mass differences and experimen.tal energies 

of the single quasiparticle levels. The energy gaps obtained in 

this way, therefore, represent experimental pairing. 
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Iri view of, the fact, that the Nilsson single particle potential 

with fixed parameters is too simple a model for spherical nuclei; 

the agreement of our results with the experimental pairing may 

be considered as satisfactory in all the three, completely different 

mass regions. As is seen from Fig. 1, not only average 

pairing but also main tendencies are reproduced "correctly. 

Further improvement of the results can be achieved by improving 

the single particle potential. 

In 'the present form the method should be useful in the 

case of deformed nuclei where the details of the subshell 

structure are averaged out by the deformation. One may hope 

to be able to parametrize all the low energy structure of these 

nuclei exclusively by the parameters of the spherical part of the 

single particle potential and get such effects as,· e.g. deformation 

dependence of the effective pairing force strength. 

The authors take this opportunity to thank Professor 

V.G. Soloviev for his interest in this work and Dr. I.N. Mikhailov 

and Dr. F.A. Gareev for many fruitfull discussions. 
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N1 58 1.48 0.0204 

.60 '·57 0.0194 11.8 

62 1.35 Oo0179 

64 1.02 0.0167 

Sn 1o6 1.1) 0.0140 

108 0.90 Oo0124 

110 o.68 0.0112 

112 0.51 Oo0106 

114 o.oo 
116 Oo59 0.0107 12.3 

118 0.84 o.o115 

120 1.00 o.o12o 
122 '·'' 0.0128 

124 1.23 0.0133 

126 1.19 0.01.)2 

128 1.02 0.0134 

130 0.85 0.01)5 

Pb 198 0.98 0.0100 

200 0.84 0.0097 

202 0.10 0.0095 

204 0.49 0.0090 12.9 

206 o.oo 
r 210 0.41 0.0086 

212 o. 41 0.0018 
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Fig. 1. Equilibrium energy gaps calculated in this paper are 
compared with the values obtained by the inverse gap equation 
method in /8/. Dashed lines show the values of ~ obtained in/8/ 
for the level neares/: ;a the Fermi surface •. The dotted-dashed line 
shows the gaps of 

8 
averaged over rl512, g 712 , ·s 112, rl312 d 

. an 
h 1112 levels for each isotope of Sn • Full lines show our results 

obtained with fixed Nilsson model parameters, as listed in the text 
(line marked 2), J.L = 0.48 and 0.42 for N= 4 (1 and 3 respectively), 

J.L = 0.38 for N = 3 (4) and with s. It rJ I levc:>ls shifted 
down, as described in the text (line 5)} 3 2 
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