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Introduction

Low energy collective modes of nuclear motion, which
- ‘influence the structure of nuclear ground states, have as a .rule
" simple geometrical interpretation, The corresponding effective. fields
2 mayk,be considered as symmetry distortions of the single particle

pkotential. The strength of the fields may be connected with the

parameters of the potential with the help of the self-consistency
~conditions of geometrical type, e.g., volume conservation condition.
Till now pairing has been considered as an exception from
; - this rule. In view of the evident two-particle, short range character
of 'pairing_ correlations any simple connection of the effective
~pairing force 6 Sa} a_J; a_,-a,. or the pairing field AX (a:a_+y +
P q_VaV) with the parameters of the single particle potential
,,.‘s‘een{ed unprobable, HoWever, it has been established [1.2] that
every field-producing component of the residual interaction can be
srecovered from the self-consistent single particle potential when

iy ‘the appropriate self-consistency condition is known. Thus, the



question which should be answered in the case of pairing is
rather that of the existence of a geometrical condition which
pairing field should obey. The simplest candidate for such a

13/

carefully tried, is the volume conservation, assuring conservation

condition, which has been suggested in and which should be

of the average particle density in the nucleus. As has been

13/

tion gives reasonable values for static pairing parameters in the-

shown in » minimalization of the total energy under this condi-
case of symmetric configurations and harmonic oscillator potential,
Physical significance of the volume.conservation applied
to the case of pairing correlations needs some discussion. First
of all there is a question of how much pairing may be associated
with the' volume conserving components of the residual interaction,
The pairing mode is a low energy mode and should not mix
strongly with a rather high energy breathing mode, which covers
' the effect of fluctuations of average nuclear density and” volume,
On the other hand, pairing correlations are known to be due to
the combined effect of many high multipolarity components of the
residual interaction, \/ery little is known till now about these
components and their influence on nt;lclear radius, Their coherent
low energy effect may very well be analogous in many respects
to those of low energy, low multipolarity components, From this
point of view it is instructive to see how large is the pairing
components of an affective force calculated under the condition

/2,3,5/ to the volume

of constant volume, Applying the technique of
conserving symmetry distortions of the harmonic oscillator potential
and taking harmonic radial dependence for distortions of all

multipolarities, one gets:
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' “where- ”';, -the mass of a nucleon, o - the oscillator frequency,

‘VA- atomic number of the nucleus considered, R -the nuclear
‘fradxus, -density of particles. ;\ and 6 are the radial and
. :angular co-ordinates in the co-ordinate system in which single .
,;kb'partlcle potential U is spherically symmetric, Their structure
‘”ir‘eﬂects the deformation dependence of the force (1). They become
| usual - space co-ordinates for spherical nucleus.

,Voiume conservation eliminates from the expansion (1) the
: mohopole term, which would otherwise cause a change in the
nuclear radius, making the estimate of the force strength impossible,
f,kIt also changes single potential U enlarging strength o by the

~amount proportional to the mean value of the square ‘of the defor-
'»y“‘,mation change for each excitation mode. The single pér‘ticle

- contribution to the nuclear radvius gets thereby smaller by the
'}'amount “ by which the radius is enlarge/d due to the zero point
v1br'at10ns in each mode, =
The delta function character of the interaction (1) suggests
that it: contains strong pairing component. The cor‘respondmg
;average pairing force strength may be estimated by takmg 1/4x

: for the average value of ‘the angular. matrix element of. (1) and
: replacing r? by its mean value at the Fermi surface: <r? > o=

Pl M (N_+ By, 1,143, One gets:

mo 2 mw
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This value should be compared with. 6 = 13-14 MeV/A, which

is' needed to explain‘ =2 MeV energy gap in spherical nuclei, - for
pairing force acting in the single particle space of 7-8 oseillator
shells,

From the estimate of the volume conserving force (1) one
learns first of :all that it contains p‘airing component strong enough
to explain most, possibly all pairing ebserved in’ nuclei, Further-
more, the pairing is determined here by/the same quantities which
determine the Single particle potential, namely by the size of the
nucleus, It should, however, be kept in mind that the force (1)
is the one aopfopriate for RPA calculation and it is an open
question to what extent it can be used in the BCS.like approxima-
tions. Static pairing should r:ather be obtained in the way‘analogous‘
to the one used in the case of static deformations, namely by '
minimalization of the total energy under the conditions which gave
the force (1). As in the case of static deformation, the adjustments
of the single particle field (introduced by the volume conservation
requirement) should be important in the equilibrium pairing cel cula-
tion, As a matfer‘of fact, they determine the position of the '
energy minimum in the pairing case,

The mechanism by which pairing adjusts single particle
field is the rearrangement mechanism and for the generalized -
Hartee field is given by the following expression for the self-
consistent single-particle  potential (see e.g. /6l and references

given there):
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~ where v - are pairing amplitudes for the single particle states v ,

: ‘V,z is 'the nucleon-nucleon two -body interaction. In order to

‘illustrate the effect of the rearrangement (3) let us assume that the

hafmonic oscillator potential is generated by a volume conserving
‘monopole force V, =k 2r? r§ » where k is a constant and o
is chosen in such a way, that the value of < r2> , calculated
for pairing parameters corresponding to the pan'mg, given

by the real force V2 , is equal to its. expemmental value. The
Cvsmgle particle field " (3) can now be written as:

v, ,,ka,__[z (N, +__.)2v,,] ' ~ and thus the
. m

self-consistent value of o is given by

w(A) =2k P 3 (N, +-—)2v , (8

m >0

where we stressed‘ the dependence of © on the pairing'energy
gap ‘A which determines the amplitudes v, . When we force
pairing to’ change, the expression (4) gives the cof‘responding
: rearrangement of the harmonic oscillator single‘particle potential.
The oscﬂlator frequency o changes in such a way, that for
. any value of the palrmg parameters the mean square radlus

ﬁ 1

- <r > s . 2 (N +T) 2"v remains constant Thls is the
m o v> O . .

"-condltlon whlch was used in / / to get the equilibrium pairing.

- In the present paper. the calculatlons of the equilibrium. pairing
nerg,y gap, performed under the condition (4) for a more realistic,
Nilsson potentlal ‘are presented, Inclusion of the spin-orbit and ‘

L2
" terms in the single particle potential allows the calculation

" for the ground states of real nuclei, We present here the results

" for neutron pairing in spherical single closed shell nuclei with Z = 28,




50 and 82(Ni , Sn  and Pb isotopes). They show how the
.proposed method works in three different mass regions: A =60,

Energy Expression

The most important problem:in the calculation; in which
energy is minimized with respect to the pairing parameters, is of
course, the expression for the total energy of the nucleus, which
should give a suffiCiently accurate energy change due to the change of / 
pairing. As we include rearrangement (4) explicitly, the harmonic
oscillator contribution to the single particle energy term must be
written with the factor 3/4, in order that the potential'energy
change is counted once. In the Nilsson potential the f.s -and ¢
terms ar= present in addition to the oscillator term., They do not
contribute to the single particle radius, and so the rearrangement(3)
inthem could be included in a standard‘,way, by taking their
contribution to the energy change with the factor 1 inéteaci of
1/2, Hewever, the self-consistency conditions under which the
force (1) was obtained include the assumption, that the shape
of the potential follows the shape of the denSity distribution. In our
case this would mean that a'suitably defined square radius of the
potentail should also be conserved. One can define a quantity
which measures effective size of the. Nilsson potential as

. .
_;1_&_)7 VEO VZVV ». where €, vare the single particle energies. In

the limit of a pure harmonic oscillator it is equal to the mean
square radius of the density distribution, When the f.s and ZZ

terms are included, it measures: the average square radius of the

surfaces of equal potential at energies corresponding to the occupied



smgle partlclestates. In the BCS approxnmatlon with one value

o of A for all ‘the states it is’impossible to keep ‘constant both

v ‘the density radius and the above defined radius of the potential,

“‘,/‘Howev‘er, the main change which is introduced in the energy

expressien by the conservation of the pofential radius in comparison

o with the density radius conservation is that it defines also the
earrangement in the f.s and ¢? terms, replacing the, factor 1/2

n«:!by 5/4. As the rearrangement in these terms should really be

connected with the change of parameters specific to them and not

o with the change of v ,ONne keeps the density radius constant and

Ltr'y to include the effect of the more complete self-consistency
~ condition by usmg the factor 5[4 instead of the standard factor
~1'in the f.s and 22 contribution to the energy change. The single

particle contribution to the energy takes, therefore, the form:

- . ; s s o ,
E L =he@E SN+ )2y + =gk 3 [-20-s=p( —<t?1 2v]i, (5)

'f'_v’vh'ere N, is the harmonic oscillator quantum number of the state

v, k and p are the Nilsson model parameters.

The pairing energy contribution is taken in the form correct-

Uted for the zero-point palmng vibrations in the B‘"S+RPA

. approx1mat10n
’Epolrlnq =-A VEO uyvy+h % Wg= EO E, (6)
,i'where' v , v and E are the BCS pairing amplitudes and

. quasiparticle energies, w, are the roots of the BCS4+RPA equation

“for the frequencies of the pairing vibration mode:
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The last two term in (6) represent the difference between BCS+RPA'"
and BCS ground state energies and include, in particular, the ‘
Gv* Vtérm. of BCS theory. )

The comf)leté expression which should give a. right energy

change with the change of the volume conserving pairing is:

: w(A) '
E(A) - 220 \ o1, ~
(4) (Ao o)[ E»rs.p. + E‘upalrmg ] (8
where E_ " and E ., are measured in hw(A) unifs, while
S.p. ~ pairing

E(A) is measured in hw(A=0),

The energy (8) was minimized with respect to the gap
parameter A , The equilibrium value of this parameter should
describe’ physical. pairing in the nucleus.

It should be stressed hére, that the energy éx‘pr;essi‘o‘n‘ (8)
should be used with care when energy difference between ,
different huclear states or different nuclei are c‘onsid‘ered' (e.s.
odd-=2ven mass differences), These are not restricted by the volume
‘conservavtion condition ‘and thus very accurate knowledge of the
Nilsson. model parameters change would be required to use thé
expression (8) It is more practical to calculate those energyr
changes in a standard way, namely by compairing the sums of
the single particle energies and pairing contributions at a fixed

value of the Nilsson model parameters.
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Details of the Calculation

' The parameters of the Nilsson potential are the only para-
~‘meters in our calculation.’ They are known quite well for the‘
regions of large deformation. This fixes their vélues( for neutfons
in N=5 and N-= 6 oscillator shells - the Fermi surface region for
Pb isotopes., For neutrons in N = 3 and N-4 ‘s‘hell‘s, ‘the |
Fermi surface regions for Ni  and $a , the Nilsson model
parameters were obtained by extrapolation from the deformed

' regions, _

The results turn out to be practically independent of the

subshell ' structure far away ffom the Fermi surface, Thérefore,
we can work with one single-particle level scheme for all the
nuclei, provided the appropriaté Nilsson model parameters are

- taken for each oscillafor‘ shell, The parameters for the relevant
shells, also the values used for proton states, are listed below,

" The choise of. the proton parameters is of minor importance for

\"calt:ulation of the neutron energy gaps. The values used in the

calculation were taken from the deformed regions,

Neutrons i Protons
( 0.48 for N=3 = « =0.0637, u=0, 60 for
Kk = 00637, p= 046 for N=4 - N-=345
S 0,42 for N=5 k= 0,0577, p=0,65 for

0,325 for N=6 ‘ . N-=6

As the aim of the calculation was to check the propbsed method
~of detérmining pairing, no attempt has been made at this stage
to choose the best parameters for each region considered. In order

- to get some feeling about the sensitivity of the results to the

11



relative poéition of the single-particle states the 'calculation was
performed also with p = 0,38 for N=3 ( Ni isotopes) and with
p = 0,48 and 0,42 for N-4 ( Snv isotopes). The resulte are
compared in Flg. 1, ' |
The palrmg problem for A= 001 002 0,03, . . .0, 30ﬁw

was solved in BCS approx1mat10n with the equatlon for the

chemical potent1a1

u*>20 2v5=number of neutrons. o (9).

Equatlon (9) was solved in the single partlcle space of 7 oscﬂlator
shells in the case of N: and Sn 1sotopes and 8 oscﬂlator

‘ shells in the case of Pb . The pairing amphtudes and qau51part1c1e
energies obta’ined in this way were used in eq. (7) to get the
frequencies «_ , and in expressmns (4,8) to get the ratio
w(A)/w(A=0) and energy E(A) for each value of A , The
equilibrium value | Aeq ‘was then obtained by~ finding the minimum

of the function E(A) . An example of the E(A) curve is given

in Fig., 2,

Results and Discussion

The calculated:values of A eq e listed in column 2 of
Table 1. Column 3 of the Table gives the effective strength G .4

of the pairing force which would lead to A =Agq according to the
BCS gap equation ‘

R !

Gt V>0 UTe VLIV

(10)
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In column 4 the values of Ce“ , averaged over all 1sotopes,‘
are . given for each element. They show that the 1/A overall
dependence of 6 is confirmed in our calculation. Apart from

" this- dependence there is an additional dependence on the subshell |
structure near the Fermi surface, It forces the effective interaction
vary from one isotope to another and it has its couhterpart in the
“variation of the effective force when it is obtained by solving the

k inverse gap equation of ref, /8/ If the distance to the next subshell
is larger than the average distance between the subshell in the

. Shell considered, G o4 gets smaller at the subshell closure, In

some cases, e,g, at 7/2 subshell closure in ”4Sn , one gete
A, -O as in the case of a closed shell nucleus. The approxima-
-tions which are used here get worse for small A , but it seems

~ that the only way to eliminate A, = O point in the $Sn isotopes

would be to shift s
the g

or level, or both down, close to

1/2 d 3/2 _
2/2. for A<118 and let them go much higher in the A >118
. lsotopes. Such changes in the relative position of the smgle
N partlcle levels would be in agreement with the analysis of ref. /8/.k‘
: However, Aeq = O for one of the $n isotopes is also possible, It7 ,
would be clearly manifested only in such experiments as, e.g. two
'nucleon transfer reactions and ’7”'Sn behaves very much hke a
closed shell nucleus in these experlments.
‘ o In Fig, 1 the calculated energy gaps are compared with the
| ‘results of /8/, where the inverse gap equation method was used to obtain
" pairing parameters, The input data in this method are the
exp,eritnental odd-even mass differences and experimental energies
of the single quasiparticle levels. The energy gaps obtained in

' this way, therefore, represent experimental pairing,

13



In view of ‘the fact, that the Nilsson single particle potential
with fixed parameters is too simple a model for spherical nuclei,
the ag‘ree.‘air‘nent of our results with the experimental pairing may .
be cohsidered as satisfactory in all the ,thr;ee, completely different
mass régiohs. As is seen from Fig. 1, not only avéraée k
pairing _But also main tendencies are reproduced . correctly. o
Further, (improvement of the results ‘can be achievéd by irﬁproving .
the smgle particle potential, . ’ o

In the present form the method should be useful in the
case of deformed nuclei where the details of the subshell
str‘ucture are averaged out by the defor'matlon. One may hope
to be able to parametrize all the low energy structure iof these
nuclei éxclusively by the parameters of the spherical part of the -
sing,le particle potential and get such effects as, e,g. deformation’

dependénce of the effective pairing force strength,

The authors take this opportunity to thank Professor
V.G. Soloviev for his interest in this work and Dr, LN, Mikhailov

and Dr.F.A, Gareev for many fruitfull  discussions.
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Table

1

1 2 ‘ 3 4
A Bog 1OV Gogp et GoprA Pusv/
N 58 1.48 0.0204 ;
60 1.57 0.0194 1.8
62 1.35 0.0179
64 1.02 0.0167
sn 106 1.13 0,0140
108 0.90 0.,0124
110 0468 0.0112
12 0.51 0.0106
114 0,00
116 0.59 0.,0107 12.3
118 0.84 0.0115
120 1.00 0.0120
122 1.16 0.0128
12¢ 1.23 0.0133
126 1.19 0.0132
128 1.02 0.0134
130 0.85 0.0135
Pb 198 0.98 0.0100
200 0.84 0.0097
202 0.70 0.0095
204 0,49 0.0090 12.9
206 0.00
210 0. 41 0.0086
212 0.1 0.0078
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Fig. 1. Equilibrium energy gaps calculated in this paper are
compared with the values obtained by the inverse gap equation
method in /8/, Dashed lines show the values of A obtained i 8/
for the level neares}B}o the Fermi surface. The dotted-dashed line

~shows the gaps of averaged over dg.y, g,/, s 1/2 - d3/2 and

h 11/2  levels for each isotope of Sn ., Full lines show our results
obtained ‘with fixed Nilsson mode] parameters, as listed in the text
(line marked 2), pu = 0.48 and 0,42 for N- 4 (1 and 3 respectively),

# = 038 for N=3 (4) and with ':._,/2, d3/2 levels shifted
down, as described in the text (line 5),
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