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A system of A particles has 3A degrees of freedom of
which 3(A;1) “assolciated with the intrinsic motion (the motion of the
partlcles w1th respect to their c.m.) and 3 associated with the c.m,
motion, The mtrm51c wave function depends only on the 3(A-1)
intrinsic coordmates.’F‘or:fermlons it must be antisymmetric, and
complete sets of Aantisyn"imetric wave functions“ can be easily obtained
only by keeping all the 3A coordinates, Wave functions depending
on all the 3A coof'dinates are acceptable as intrinsic wave
functions pi‘dvided their dependence oh' the c.m. coordinate is

/1]

factorized "

A

v =Y, X(R):»<X:!X>=’.R=1?—',‘21 ro, ¥ independent of R, (1)

1 n

with the same factor yx for every state n -, Indeed the factor
x is irrelevant to intrinsic‘motion, while it is possible to
describe effects mvolvmg the physical c. m. motlon by properly

[2l

funchons are the umque known shell model wave functlons useful

correctmg for the unphy51cal factor x . Since factorized wave



for the description of intrinsic states, a wave function is said
spurious unless it is factorized, ‘and the factor dependihg on R
is. the one assigned in the definition (1). »

] In the Bloch-Horowitz .theory 3 a complete basis is needed,
and complete factorized bases are not explicitly available. It is
the scope of this note to provide a simple tool for obtaining
factorized eigen-functions in the framework ef the Bloch-Horowitz

theory using a non factorized basis.

2, Let us consider the exact nuclear eigenvalue equation

A pz ’ Pz ‘ ‘ o A R
(Hi=E)¥,, =0, Hy= 21 f - g s 2y - P Faeye @

and see how eigenfunctions of the form (1) can be obtained by’
Qsing as a basis Slater determinants  of Vsyingle, pai'ticle wave-

functions. N
Let us t'eplace‘/4/ Hy by  H,+Hcy o+, with
LIPS EWILTRY
ZAm 2 2 . m :

cm‘B(

k, and B arbitrary parameters. Since H, and Hcy commute
with each other the ‘eigenfunctionis ¥, of V

(H, +Hcy-E, ) ¥, =0, , S T 3
Belenging 'to ‘eigenvalues E, 'eatisfyiné’, the inequality "= *

\E ., —Eo|<B'h' v—-"——,

are factomzed and have as a factor the ground state harmomc .

oscillator wave functlon whlch ‘we denote by X, ( R)



Y,=¥, x,(R). ' (@

——

By choosing conveniently the constantﬁ'ﬁ\/—k-o-we can obtainv

factorized eigenfunctions in the reglon of the energy spectrum we
are interested in.

In terms of the relative and c,m. coordinates and momenta

- - 1
’l—_—.i——( N fl ), Rll--_(l’ +rl.),v
=L_(p =
Py = \/2_ pl), P” ﬂ_(p +Pl ),
H.y has the following expression

HCM=—isz (L+ ko R, -_w_n___. z (_u..+ o2 -inE>z.(5)
A-T1 , 2m 2 A i< n 2 m .

- To impose the form (4) to the eigenfunctions ¥, ) means to impose: :

that their expansnon in harmomc oscillator wave functions contains”

about the same number of excxtahons of the c.m. as of the relative

motion of the pairs, . ‘ . '
We can now apoly / 5/ the Bloch-Horowitz ,theory / 3/ to eq. (3),

which gives .

(Ho+Vg,-E,)P¥, -0, | . (ea)
th=v(1+ A_HVE"")’H » ‘ : ' (6b)
where ' ' ' .
. .’ B . .
A PZ ’ Pz A A L
Ho= = (21 Lu), va3, S I U e Sy, (D)
i

1 2m i<r YT 2A,,. 1 S,



u ,' ~ is a single particle potentlal and P and Q are

projection operators defined with the eigenfunctions of H,
(‘Ho—cv_)tb-v -0, P- z,z|<1>',,»>.<<p,;\, Q=1-P. (8)
. i [ .

The: space P is called the model space. Egs. (6) with. (7). and (8)
" are equivalent to eq. (3) in the sense that the eigenvalues - of eq.(6a)
are eigen{raiues of eq. (3) and the correspondmg ‘eigenfunctions- are
_ projections .of' the eigenfunctions of eq. (3) on P. ., We see that in
order to ‘evaluate the effective interactionv Vg, we need the
complete basis o, .

Eqgs. (6) are generally further transformed / 6/, but the forms
they can be given do not affect the problem at hand.

Let us observe that m prmc1ple lack - of factorlzation in the
exact elgenfunctlons ¥ can introduce errors only in transition
. amphtudes. In practice, due to the approx1matlons introduced in the
evaluation of VEn ' errors of order T will appear also in energy.
- The errors in transition amplltudes can be much greater than order
—L if elther coherent spurlous effects are present [7 7/ (1 exc1ted
states) or: hlgh momentum transfers are mvolved So takmg into
account the c.m, coordmate is lmportant in order to prevent these
effects in transition amplitudes and prevent errors of order -%—
in the energy of light nuclei. ‘

Some spurious components can be eliminated from P if it is
possible to construct in it exact excited states of HCM (thls happens
in practice only with harmonic oscillator single partlcle wave
functions). Lét us call @, all these excited states and construct,/ -
the operator P’= &‘: 16,~> <8 i< P . Since Y, is orthogonal to ‘P‘
~ we can expand it into an arbitrary. basis in Pp=P-P’ and solve

eq.(6a) in Po . This does not eliminate completely spurious



components in ‘P because in general Py has components both
on the ground state and on the excited states of Hcu: . If the -
singleiparticle wave functions are harmonic oscillator wave
functions and P - encloses all and only the configurations with
a2xcitation energy-less or’ equal to vhe: ( v integer, o the
oscillator frequency),'t_hen P, is orthogonal to the excited states: -
of H., , and spurious ‘components can be exactly prevented in .
P  solving eq. (6a) in the factorized basis of P, . In'any case.
spurious components are left in Q unless Hcy is taken into
account, ) o '

Let us see which is the effect of Hey on energies. In order
to do this let us conside'r»eqs. (6) with V’=V=H, instead of V . :
Let us define the wave operétors Qg, and ,Q'E; ' .
Ve.=VQ, > "

. (9)
VeV, - )

These operators satisfy the equations

a, =-1+—9 —va_,
n 0 ¢ o ) o ' (10)
a 0 : ,
n =, 4 — V'ﬂ ‘.
En E"—Ho _V,En
' ; . /8l
From egs. (6), (9) and (10) it follows:

.l I+ N 4
Ve, =Ve, 0t Moo, (11)

which in first approximation becomes'
(12 ~

) . 4y PR
VE,,,"‘VE,, +Qg, Hey QF, -



Since the second term in eq. (12) is pbsitive semi-definite, . it will
decrease in general the binding energy.

_ Let us consider now the case in which P’#0 .and P, is
orthogonal to the excited states of H¢y , so that spurious .
components can be exactly preVénted in P using the factorized
basis of Po . However if we use the effective interaction V;_"
spurious components will remain in Q . In order to see their

effect let us write eq. (11) more explicitly

+
Ve=Ve, +Q¢, Hey Qg, =V, +Hey +

szt v Q _H,—L—va, 4+ - (13)

Sy, Q0 e Q.
+Q V—= _ H_ .+ H —_VQ .
En En-ﬂ CMT ""CM E,.,- Ho En

Since the basis wave functions in the model space P, contain .

X, as a factor, and H¢, x'o'=' 0 , the matrix elements of Vg _ are

-- . » 4 Q Q ) |
< »VEn'>..=.<,VEn > +< Ve, E-H, HCME" “H VEf' >, : (19

which in first approximation become

Q 4y Q_y. »n. 15
En -HD CM E,,-'Ho En ( ):

<Y ga> =< Ve, >=+< Vé"

This shows what corrections still can arise from the space Q .
These corrections still will decrease in geneéral the binding energy -
since the second term of eq. (15) is positive semi~definite.
. . P2 s
v’ t 1y
In standard calculations using | the érm TAn is usua y‘
neglected, ard the constant-zl--g-'ﬁ v ko which should represent the
. ) . .m



kmetlc energy of the c.m. is substracted from the elgenvalues.
This is exactly equivalent to replace in the present scheme Hcy by‘
3

1
—2—:—"'— -—T 2—7!\/-1._ Due to the fact that in ‘these calculatxons the

c.m. state is not quahtatwely different from xo ‘and
2

<xo 2; -X > = <xo 2’ Ak, R2 ' y we:must expect effects
similar to those ‘described by eqs. (12) and (15), If fact- these
effects show up in the ‘calculation on He*by Kuo and McGror;J /
They use harmomc oscillator single part1c1e potentials and' the
'effective ihteraction derived from' the HamadaJohnston potential, The
model space “encloses all and only the conflguratlons with exc1ta-
tion energy less or "equal to 2fie = ie. (05)4 (OS)Z(OP)Z,(OS) (Hand
( 0s)°(0d) |, so that spurious components in the model space .
can be exactly prevented usivng the factorized basis in it, The
calculation with the factorized basis (i.e. taking into acoount a
‘part of the correction of e.q. (12)) gives a bmdmg energy of’
21.3 MeV, whlle with the non factorized basls glves a bmdmg
energy of 27.4 MeV, The difference is.of order 1/A The result must
still be corrected for the second term of eq. (15) Wthh would
presumably reduce the binding energy still further,

3. Calculatlons in the framework of the Bloch—I—Iorow1tz theory

l6l

are expansions mvolvmg the two-body reaction matrix G . The

equation defining -6 can be put into the form

G(w) v’+v‘ —G(w) o o . (16)

w—,"o .
where q is-the two—body pro;ectlon operator out of the model

space, h, is the two-particle Hamiltonian TL —2—L+U,+U2, v’ is
defined by eq, (7) and the energy parameter o depends on the
problem at hand. Eq. (16)is generally solved in terms of the Bethe-



-Goldstone wave function ¢ which satisfies the equations
Gomvi ¢ b + v (17
© - 0 : o ' . TR

" where ¢ is an eigenfunction of hy

Errors due to lack of factorization are connected w1th
the unaccurate treatment of the Pauli operator q W‘thh is not
dlagonal in relative and c.m. coordinates. The -most ‘accurate way
to treat q - in the Bethe—Groldstone equation; seems the method
recently preposed by Truelove and Nicholls . / 10;/., e

It remains to 1nvest1gate numerically the’ dependence of

/11/ (exact energies do not depend on

energies on B and k,
them). Increasing B -reduces the spurious admuctures /7‘/,_, but
increases the effects of the left spuriousity.

If we use harmonic . oscillator single-particle potentials

V=£ 'V'—}:v‘—ﬁ —1-k rla P? +H, ., =
'-<I' i '<I' 7] ,1 72 ; 0" ZAm CM

SO S S A R S|
_’<,I "'+'A-1 1= == %o Ty B-T 2

=2)+A =-2) 3 k
For . B=1 G ‘ '
i 2 ko 2 2 3 “ka
TR T T e T Y T
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11, As it has been discussed in ref, (4), in practice k; is not

a free parameter. In fact the sypace P contains only a few
linearly independent states of the c.m., so that 'k, must be
of order m e 2/ K s where € is the average diffe-

rence of single particle energy from shell to shell
:V
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