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nornoweaHe 3Byxa AHanexTpH'IeCKHM xpHcTannoM B o6nacTH 
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Ultrasonic Attenuation in Dielectric Crystals in Second· 
Sound Region 

A theory of the damping of ultrasonic waves due to the three­
phonon process is devaloped by means of the D.N. Zubarev method 
of non-equilibrium statistical operator. In temperature and frequency 
ranges where second sound can exist the possibility of resonance 
between the first and second sound occurs in agreement with results 

of Guyer. 
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1. Introduction 

An attenuation of a sound (first sound) is· usually considered 

in the framework of a linear response theory. (LR'I') / 1- 4 /, which 
... 

makes it possible to calculate the oscillation amplitude < u •> of 

ions ·caused by an external perturbation provided the wave length 

is much greater than lattice constant and }.'Vith frequency "' • The 

system response determines the imaginary part of wave-vector 

vvhich is equal to the attenuation coefficient. The lifetime of 

accoustic phonons r ("') can be expressed by the imaginary 

part of the mass-operator of the retarted Green function « ~(rt) ; ... 
u("/',0)-» which is connected with a response of a system. The 

relation between the attenuation coefficient of a sound a ("') and 

the .lifetime of phonons is as follows 

a(w) =---­
r("') v 

where v is the sound velocity. 

(1) 

In the hydrodynamic region, where. ~he \'\>ave frequency is 

mu~h. smaller than· the phonon collisions frequency,, th.e local 
. ' 

equilibrium can be established. For such a, ca~e the Boltzmann 
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equation for the phonon gas can be written /
5

/, The solution of 

this equation makes it possible to calculate the c:;ound attenuation 

coefficient, Results obtained in such a way are in agreement with 

those,from the LRT for the hydrodynamic region, With the help 

of the Boltzmann eq, for the phonon gas /
5

/ Guyer obtained the 

resonance attenuation of first sound in the second sound region/
6

/, 

However, another approach to this problem is possible. 
. /7/ . 

Consider the model proposed by Maris , Let us assume that 

the external sound wave changes the average number of occupa­

tion of the accoustic phonons (corresponding to the wave) in 

·comparison with the equilibrium state, whereas all other . phonons 

(thermal phrmons) are in equilibrium. Non-equilibrium accoustic phonons 

can reach an equilibrium state again by a weak interaction with thermal · 

phonons, Such a formulation is equivalent to a typical relaxation 

problem such as a system in a thermostate • .This problem can be · 

solved us in:?, the non-equUibrium statistical o~erator (NSO) method
8

• 
9

/, 

The probability of the accoustic phonon transition and, 

therefore, the lifetime have been calculated in /
7

/, In the present 

paper the lifetime is derived using the kinetic equation, and the 

obtained formula has the same form as in /
7

/. The attenuation 

coefficient can be hund from (1). Both,'- the NSO method and the 

LRT methcid give the same results for the· attenuation coefficient, 

In the second sound region the formula for the attenuation 

coefficient for the Maris model is derived by the NSO method and 

the form of this formula is the same as that obtained by Guye/
6

/, 

Note that our treatment of the Maris model. by the NSO 

method is equivalent to the replacement of the mechanical perlur­

batiori by the thermal one~ 

4 



2. The Model and ..AJ:tenuation Coefficient 

Let us assume that the :xternal incoming wave with the 

frequency w 1 wave vector q 1 polarization and mode index j 
t 

causes the non-equilibrium occupation <n 
0

•;. of a state Q "'(q',;) 

other phonon states are in equilibrium. Let us denote by v the 

interaction between phonons o! state Q and other states. 

(2) 

where 

H 0 = 3 2 . V ( Q 1 , Q 2 , Q ) A 
01 

A Q 
2 Ql ,Q2 ... Q 

+ A
0
=A;, A

0 
=a

0 
+a 0 , V(Q1 Q2 Q)=V*(Q

1
,Q

2
,QJ

1 

Q,.(-q,;J,V(Q1,Q 2,Q) is symmetric function of Q
1 1 Q

2 1 
Q

3 
• The 

Hamiltonian of a system has the form 

H= wn -'- v +H 
Q ' , 

ph (3) 

where h =l, 

H ph= Q ~ Q w Q I ( n Q I -~ ! J + 2 y ( Ql , Q 2, Q 3 J A ol A Q2 A Q 3 , 
1" 0 r 02• 0 3"" 0 

n = a a - is the occupation number onerator. Such a Hamilloniw, 
Q Q Q ' /10/ 

has been used by Opie to obtain the lifetime and the phonon 

level shift in an anharmonic crystal. 

'Ne shall obtain now· the kinetic equation for a system •with 

Hamiltonian (3) using the NSO method /
11

/. Introduce a quasi­

equailibrium statistical operator 

Pr (tJ=exp 1-i(t,O) I, (·1) 

where 

S( t, 0) ., n ( t) "'"f ( t) n (0) + {3 H (0) 
Q ph (:>) 



is the entropy o'perator, f is thermodynamic parameter correspon­

ding to n Q and {3 is inve;rse temperature of a medium, All opera­

tors are in the Heisenberg picture. The non-equilibrium statistical 

operator is taken in the form /
11

/ 
........ 

(6) 
p ( t) = exp 1- S ( t 1 0) l, 

where 
~ 

$(t
1
0)=:1 rlt

1
e01 (O.(t+t

1
)+ f(t+t

1 
)nQ(t 1 )+f3Hph (t 1 )), c> 0 

is a quasi-invariant part of the entropy operator, After taking the 

thermodynamic limit, the next step is to take E _. 0 , The parameter 

f( t), is -determined .from the condition 

<n Q ,-J = < n Q >'e 
where 

t t ., 

< ... > = Tr( ••• p ( t)), < ... > e = Tr( ••• Pe ( t)). 

Since the following relations take place 
' • t + t 

[ H ph 1 n Q ]= 0 < a Q ·> = .< a Q ·> = 0 

it follows from /B/ that 

p(t)=Q- 1 expl-f(t)nQ -{3Hph-

0 (t - il rlt
1 

e l (f(t+t 
1 

HnQ(t
1

)1 V(t
1
)] +f3 [H ph (t 1 ), 'l(t 1 )])1. 

The expansion of p(t) into a series in a weak interaction gives 

in a linear approximation 
0 

p(t)=p (t)-i f rlt e
0

' 
£ -"" l 

(7) 

The averaging of the equation of motion for an operator n Q with 

p (t) in a form as given by (7), enables us t,o obtain the required 

kinetic equation 
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il<.n ,.j 0 o 
1 

t 
__ Q_. =-fdt, e <[[n ,v],v(t n>' =' (<n 1> ). (a) a t -.oo Q J e c Q 

The calculating of the double commutator gives the collision integ­

lal 

where< ... ·>= Tr( ... z-l e-{3Hph), Z =Tr(e -{3Hph ). 

This collision integral determines the lifetime of accoustic phonons 

t 
l Blf5<nQ'>). l o (£+1w}tl 

.r~(w)""-:' B<nQ>t =yRe_£dt1e (<H;(t1)HQ'>-:-<HQHQ+(t/'>). (9) 

It is seen from (9) that to obtain the lifetime rQ (w) it is necessary 

to calculate the equilibrium correlation functions .. 
We shall show now that the attenuation coefficient a is conneCted 

with the lifetime r · ( w) • A decrase of a number of phonons in 
Q 

the state Q causes the energy of an accoustic wave . to be 

transferred to a thermostate 

dw 1 ( t.) -~ = w Q c < n Q'> . • 

For the attenuation coefficient we have 
dw 

a= ::I.. = l 
vw , v rQ(w} ' 

where w =<n Q·> w Q is a density of the accoustic wave energy. 

''. 

3. The Relaxation Time 

As it follows from (9) the obtaining of the relaxation time 

is related to a calculation of equilibrium correlation functions. 

7 



Let us crmsider the Bravais lattice for wl'1ich the follmYin~ 

relation· holds: 

(11) 

The neglection of U -processes c:sives 

(12) 

Let us factorize the correlation functions defininq • 0 ( w) 

( 11) and ( 12) it follows now 

• From 

Correlation functions <A~ A Q (t/•,~ Aa.(t 1 )A;' can be expre~sed 
I I -, I 

in tE:i'tns of the spectral densities in the followi.n~ way: 

· ~ _J_ j J W i ( W )n ( W ) e IW t I 

2rr--"'" 0 1 

(1-1a) 

(14b) 

-I 
where n(w)'"'(exp{:Jc,-1) ,Jo

1
(w)=i(Do (w+id-Do (w-id), I I · 

and D ( w) ~-:-:A ; A ; .,.. is Fourier transform.:tte of the Green 
0 1 Ql Q 1 W 

function. 

Taking into account (11), (12), (13) .and (14) leads to 

8 



( ;1-5). 
I 

x(l"-n(cu
1

)+n(w
2 

))8(w
1 

-rw
2 

-w). 

This expression corresponds to the formula obtained by Kwok/2/, 

The calculation of the Green function /
2•12•13/ makes it 

possible to find the spectral density J0 ( w) • ·In th~ collisionless 

re<1irm ( w r 0 ( w ) >> J) the interactions among thermal phonons can 

be neqlected and the lifetitTie can be obtained usin!5 the harmonic 
(OJ /247/ 

spectral density Jo(w) ' ' • This leads to the famous Landau-

Rumer formula 
/141 

a-wT4, 

In the hydrodynamic region ( CJJ r Q (w) « J) it is necessary to take 

into account the interactions of quasiparticles and the harmonic 

approximation is not valid. For this region the well knm\1i result. 

of Akhiezer /
15• 5 / is obtained ., 

a-w 2 r-! 

The dependence of a on the temperature and frequency is 

very sensitive to both a dispersion of phonons. /
2

/ and an aniso­

tropy of interaction /
4

/. The following diagram 

corresponds to correlation functions .(13). In the collisionles·;; t·egion 

all lines of a diagram are free, and in the hydrodynamic t•eght 1 it 

is necessary to take into account corrections to the pho:1on lines. 

However, corrections to the vertex of a diagram are ne~iectect. 

The second sound is completely missing in this appro~imatinn. 

To take into account the influenc2 of the second soun.ct on' the 

first one the summation of the whole· class of diagrams must be 

9 



........ 
performed, If w · and v q are of the order of a small quantity 

I Vl 2 then all ladder diagrams 

0 ,CD · <JD. <IID ) ... 
are of the order of 1 /16/. In order to ·find a sum of these ladder 

. .· /16 17/ 
dtagrams the results of ' are used, 

Define the Green function of the imaginary time: 

where 

B(U}=eiJ'Hph Be -UHph 

and ·r - is. the imaginary time orderning operator, 

Because of 

G(U+f3}=G(U} -{3 < u .< 0 

G(U} can be expanded into the Fourier series 

G(U} = !. G
0 

e 1wfu w = lrrif f =.9, ±.J, +_2, ... , 
~ L f {3 

where 

(16) 

f3 
2rr lfu flE {3CE -E I 

G =L[ JUe-----,r-- G(UJ=L!. _e_"'_ml<miH+ jn>l2 e m n -l (17) 
{3 {3 m,n Z Q (E -E )-iw0 m n L 

:1 m ·>, I n ·> are eigenfunctions of H ph and Em , En ·:~.re correspond-

ing to them eigenvalues. Define the function § ( z ) of a complex 

variable z with the help of a condition 

when z =cur . 

It is possible to obtain ·§ ( z} by the following substitution 

; w f .... z 

in (17). 

10 

I 



-{3Em 

ez l<mi.H
0
+in·>l 2(e{3w -l)8(E -E -w)= 

, m n 

(18) 

by a 

spectral density J H+ H ( w) 
Q Q 

+ J 00 
IWfJ 

<H 0 (t 1)H 0 >=r;- ..£ Jw e. (19a) 

+ J oo IWtl 
< H 

0 
H 

0 
( t 1 ) ·> = - f J w e 

2 11' -oo 

Use of (19) and (9) gives the following formula for the lifetime 

l l -~ -- =- J + (-w )(l.-e ), 
r (w) 2 H 0 H 0 

The fu~ction G e can be written in the form ./
17 I 

(20) 

Ge=9 I. V(Q,Q 1 ,Q 2 )F0 0 0 (iwe ,iwe -iwe ). 
0

1
,0

2
,£

1 
I 2 I I 

This expression corresponds to a diagram 

In the hydrodynamic region F
01020

(iwe 
1 

, iwe -iw£
1
) is a solution of the 

following integral equation 

F
0 0 0

(;we ,iwe-iw )=F0 co~ 
0

Uwe ,iwe-iwe )+36(3
2 

I.. V{Q2,Q 4 ,Q 5)x 
I 2 1 £ 1 . 2 I I 0 3 ,04 ,o5,-f3 (22) 

X \(Q2 ,Q4 ,Qs) X Do, (;we, )DQ2 (iw e -iwe, )DQS (;we, -iwe3) X 

xF
000

(iw
0 

,iw
0 

-iw ), 
J 4 LJ L f 3 

11 



This equation ·can be also presented on the picture 

-- + 
where 

FcoJ (iwe ,iwe -i~ )=2V(Q,Q
1 

,Q
2

)D
0 

(iwe )D
0 

(iwe-iwe ). 
Q 7 Q 2Q 7 7 7 7 2 7 

here and elsewhere below Q 7 =TQ +Q',Q 2 =~Q-Q', i7 =i 2 =i: 

An Ansatz for the solution of (22) is 

F01020 (w'+i7l;w-w'+i'T[)=X
00

,(w,w') ~772 (o(w'-w0 ,)-o(w'+W 0 ,)), (23a) 

For even and odd combination of solutions of (23) under. transfor­

mation q'·•- q' 

(24) 

12 



{ 

(+) } l (-) 1 u
0

, (Q,w) u , (Q,w) 

iw .
1 

. n ;u+n ,)-;; ,q 0 
n ,O+n )+ 

(- ( Q ) Q . Q . Q (+) ( Q ) Q Q u , ,ru u ,ru 
Q Q' . 

{ 

- . - } . . { (+) } .. -V(Q~Q 1 ,Q 2 ) ·· .u
0

,(Q,w) 

... n ,(1 +n , ) = ~ p , , ( 
1 0 Q Q Q" QQ u-,(Q,w) 

Q 

where 

Q~"PQ'Q" 1
0
,= 720 ,~, [: V(Q:Q':Q';'I

2
(1+n 

0
,)(l+n

0
,)n

0
,o(w

0
, + 

+w Q" -w
0
,)(1

0
, -1

0
,-10, )+J IV(Q;Q':Q'")J

2
(1 -+n

0
, )n

0
, n

0
,x 

Substituting (23) into (21) after performing the summation over 

the discrete frequencies and analytic contin:.xation we obtain the 

following relations 

(26) 

. . (+) 
G(w-iw) .. 36iw ~V(Q,Q 1 ,Q2 jn, O+n

0
, )u

0
,(Q,w). 

Q' Q . (27) 

·The solution of (24a) and (2tlb) according to /6 , 16• 18/ and taking ·· 

·into account (ia) gives ·an expression for the spectral .density 

. 36ci !l 2 {33 ID~ 12 
.. . -I 

J.+·· (w)=---.-.--- r ·---
H H ( . . , ~w l) . ·. R. 2 2 2 

Q Q e~" - ('" 2 c ). w 
w- +"-2 

3 T 

(2~ 

where .. 

(29) 

13 



k 
p. 2 = ~ , k is the Boltzmann constant, C,. the specific heat · 

1 1 3 2 
-r- = r + -r(!.) r n 

z 
are the imp~s 

at constci~t volume, Jr is the second sound velocity, 

is the inverse· of the relaxation time, r z and r" 

non-conserving and impuls conserving processes relaxation time 

respectively /6 , 18/, n is volume of the system. Eq. (28) is valid 

provided that 

C!.lT >> J •>> C!.lT 
z n 

(30) 

. /18/ 
This is a region where the second sound appears • 

. We. shall calculate now 1 D 
0 

12 for the Ziman model /
19

/ for 

which the ·matrix elements for cubic-anharmonic interaction are 

of the fnrm 

where q=l q\ , p 
is the crystal density. and AQQ Q depends I 2 

on the angles only. We obtain 

(31) 

" where A is angular average and 
(!.) 

v =-q 
is the first sound 

velocity. 
The final result is obtained after substituting (28) and (31) 

into (20) 

J._ y2 q (!)3 C T ]_ 3 y 2 (!.)2 p2 tl 2 

a= Bp v2 v :____=_Br2p ~------- (32) 

c 
where P=~"" J_ R 

is a ratio of . the Fecond sound velocity 
v - ,;r 

"2 
to the first sound velocity, y 2 = __!_ 

p y4 

14 



· From (32) it follows that the resonance attenuation of the 

first ·sound appears when velocities of the first and second sound 

are equal, 

Introduction of 

2 9 -2 
y =--2 y 

Br . /6/ . 
leads to the Guyer formula for the resonance attenuation of 

the first sound, This difference betwe2n our and Guyer formulas 

is not surprising if one remembers only that Guyer's approach 

was phenomenological one whereas our considerations are 

microscopic, 

3. Conclusions 

It has been shown in the paper that the NSO method enables 

us to obtain the attenuation coefficient of first sound in a simple, 

direct manner. Performing of exact calculations of the equilibrium 

correlation functions leads to the resonance attenuation of a first 

sound ·by a second one in the hydrodynamic region ,,·here the 

second sound can propagate. Our results are in a good agreement· 

with those obtained by other authors, 

The attenuation coefficient can be changed by k9.king into 

account the higher orcler anharmonic interactions. This pt·obh:-m 

will be considered in the forthcoming paper. 
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