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Mamxkepry T. E4-5888

[MornommeHne 3BYKa nn:—mex’rpnqecxum KpHCTaNIOM B o6nacTH
CymeCTBOBBHﬂﬂ BTOpOI'0 3BYKA ’

PiLiBoAMTCS BrLipaXeHne Lad koabduumenTa NOIVIOUEHHS 3BYKA AHSNeKTPH-
2ecKMM KPHCTaiIoM C NOMOUILIO MeTola CTATHCTHYECKOr'O HepaBHOBECHOT'O
onepatopa H.H. 3y6apesa. B ofnacty CymecTBOBAHHS BTOpOro 3BYKA ONY4eHC
peaoHaHCHO® noryomeHHe SHEPruH nanapomell BOJHE, YTO HAXOAKTCH B corna-
cHM € peaynsTaraMi, MoJIy4eHHEIME C INOMOWBI ypaBrenus BompuMmana.

Mpenpuur OObeaNHEHHOrO MHOTNTYTA AePHBIX uccaepopanuit.
Jlyéaa, 1971

Paszkiewicz T. £4-5886
Ultrasonic Attenuation in Dielectric Crystals in Second”
Sound Region

A theory of the damping of ultrasonic waves due to thethree-
phonon process is devaloped by means of the D.N,Zubarev method
of non-equilibrium statistical operator. In temperature and frequency
ranges where second sound can exist the possibility of resonance-
between the first and second sound occurs in agreement with results
of Guyer,
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1. Introduction

Anattenuation of a sound (firsf sound) is usually considered

in the framework of a linear response theory. (LRT) /1'-4/, which

‘makes it possible to calculate the oscillation amplitude <u> of

ions ‘caused. by an external perturbation provided. the wave length

is ‘much greater than lattice constant and with frequency o , The
‘system- response determines the imaginary part of wave-vector
which is equal to the attenuation coefficient. The lifetime of.
accoustlc phonons  r(w) can be expressed by the 1mag1nary
part of .the mdss—operator of the retarted Green functlon <« u(?t) ;s
U(r °,0)>> Wthh is connected with a: response of a system. The
relation between  the: altenuation coeffncxent of a sourd al(w) and.

the . leet:me of phonons is as follows

al w) = ————, ‘ ' .

: rlw) v P, ) ' (1)
where v is the sound ‘Velocity »
. In-the hydrodynamic’ region, where. the. wave frequency is
much smaller than-the phonon collisions frequency, lhe local -

equilibrium can ‘be established, For such a case. lhe Boltzmann



equation for the phondn gas can be written /5/. The solution of
this eciuation makes it possible to calculate the sound attenuation
coefficient, Results obtained in sueh a way are in agreement with
i tho‘se’;fro‘r‘n the LRT for the hydrodynamic region., With the help
of the Boltzmann eq. for the phonon gas 5 Guyer obtained the
, resonance attenuation of first sound in the second sound region/G/. -
However, another .approach to this problem is possxble.
Consxder the model proposed by Maris ? . Let us assume that
the external sound wave changes the average number of occupa-
tion of the accoustic phonons (cor‘r‘espondmd to the wave) in
‘comparison with . the equilibrium- state, whereas all other phonons
(thermal phonons) are in equmbmum. Non-equilibrium accoustic phonons
can reach an equilibrium state again by a weak interaction thh thermal
phonons, Such a formulation is equlvalent to a typlcal relaxation
problem such as a system in a thermostate, [This problem ‘can:be '
solved using the non—equlhbrlum statistical .operator (NSO) methocJ 9/.
The pr‘obabﬂlty of the accoustic phonon transition and, -

lied)

ther'efore, the lifetime have been calculated in . Inthe present
paper ' the lifetime is' derived using-the kmetlcequation, and the
obtained ‘formula has the same form’as in 7/. The attenuation |
coefficient can be frund from-(1). Both, the NSO method and the
LRT method give the same results for the' attenuation coefficient,
In the second sound reglon the formula for the attenuatlon
coefficient for the Maris model is. derived by the NSO method and
the form of thlS formula is the -same as that obtamed by Guyer'/6/.
Note that our tr'eatment of the Mar'ls model by the NSO

method is equlvalent to the replacement of the mechanlcal pertur‘-

.

batlon, by the ther'mal one.



2., The Model and Attenuation Coefficient

Let us assume that the -2xternal incoming wave with the
frequency o , wave vector g , polarlzatnon and mode index i
causes the non-equilibrium occupation <ng> y of a state Q (q i) .
Other phonon states are in equilibrium. Let us denote by v the

interaction between phonons of state Q and other states.

ofla el . ‘ _ (2

4.
v =a

where
H, =3 b3 Y (Q,,Q, ,Q)A A
'q Q,,OZ*;O ! 2. @ Q;

Ag=Al . A =ay +at . V(Q,0,0)-v%a,.q,,0),

’

Q Q
6:(-71,,'),V(Q,,02,0) is symmetric function of Q,.Q, ,Q, . The
Hamiltonian of a system has the form

H=mno +v +th, » - (3)

where h =1, o
1 B .
(n +—)s+ % v(q, .q,, Q3)A°1A°2 Aos,»

o2 a

P

, a,;{a 1 1 @,0,0,£0 '

na =aaaa —\‘is the occupation number onerator., Such a Hamiltonian
has been used by Opie: /10/ to obtainkthe lifetime and the phdnon

level shift in an-anharmonic crystal.

‘Ne shall obtain now the kinetic equation for a. system ‘with

Hamiltonian (3) using the NSO method /11/. Introduce a quasi-

equailibrium statistical operator
P (f)=e)fp’-$(f,o)}, | ‘ - V (1)
\\(here

S(f,o)eﬂ(f);f(f)na(0)+BHP,' (0) ‘ : ()




is the entropy operator,f is 'therrﬁodynamic parameter correspon-

ding to LIPS

tors are in

operator is.

and B is inverse temperature of a medium, All opera-

the Heisenberg picture. The non-equilibrium statistical

taken in the form /11/

A NAA .
p(f):exp{—S(f,OH, ‘ (6)
where | ) |

S0 oedr T (Qse ) e Hrst dn (0 )sBH (1 D), >0
16 1 1Mot ph 1

-0

is a quasi-invariant part of the entropy operator, After taking the

thermodynamic. limit, the next step is to take - 0. . The parameter .

f(t). is det

t t
<n,.»> =<n >
e L '

Q
where

' t
<o

Tl p (1), <

ermined from the condition

)= m...,i% (1),

Since the fOllOWll’l‘—" relations take place

[th , n

it follows fr

, p(f) Q-'

+ t
=0 <a >=.<aQ> =0

Q
om /8/ that
expl=f(t)hn —/SHPh -

—nfdf N (Haet, Mn (1)), Vi )1 +BTH (1, ),V (2, )1

The expansion of p(f) into a series in a weak mteractlon glves

in a linear

approximation

0 Kt
p(1)=p,(H)=i [ dt, VG, e Y @)

The averag

p(t) inaf

kinetic equation

ing of the equation of motion for an operator n, with |

orm as given by (7), enables us to obtain the requlred




, , v
&Knp> 0 €t

Q- ) 1 . t t
-—;——::O{ dt e .<[[no,‘v],v(f’ )]'>IZ E’C (.<no'> ). (8)

The calculating of the double commutator gives the collision integ-

1al

0
o 1 ety oty o + . Ny + ;
le(<ng> )'"'"TRe_ fdhe ' e (<na> -<HQ('1)HQ>7('+-<"Q> ).<HQHQ (r1 )>),

“ﬂth

“where <..>= Tr(...Z7 " ¢

—ﬂH ph

), Z =Tr(e ).

[
i

This collision integral determines the lifetime of accoustic phonons

. ) ' . . .
1 Sld<ng> ). 0 (et 1)1, ' ‘ ‘ ,
- . A + o~ AR 9
_ ,Q——)-(m RN 5 Re_'idf,e (<HQ(11)HQ > _.<HQHQ (t)>). (9)

It is seen from (9) that to obtain the lifetime o (0) it is necessary
to calculate the equilibrium correlation functions

<Hg (1h)H >, <HyH o (1 )>. "
We shall show now that ‘the attenuation coefficient a is connééted
with the lifetime ro'(m) . A decrase of a number of phonoﬁs in
the state Q causes the energy of an accoustic wave .to be
transferred to a thermostate .

- ;fw—:: wQ’C(<nQ'>') .

For the attenuation coefficient we have

_dw
a= &t _ 1 ,
vw ' v roiw’
where w=<n > @gq is a density of the accoustic wave energy.

3. The ‘RA’eilaxation Time-

As it follows from (9) the obtaining of the relaxation time

is related to a calculation of equilibrium correlation fi;nctioné.

P

7



Let us c‘onsider the Bravais lattice for

relation ‘holds:

which the following

V(Q]razro)‘_"o' (1D
The neglectibn of U -processes gives
- [ T = = '_‘ 12
\AQ,,AQZ .A01 AQI , 501'02. (12
Let us factorize the correlation functions defining rqf{wl . From
(11) and (12) it follows now - .
. : - , ) i B v
<H (4 H, o= lsoﬁoé!v(a,a,,a,) \AQ,(t, JA, ,.\Aoz(s,)AQz »  (13a)
' - . ) : o
CHH () =18 S V(00,00 Aq A (1)~ Ay Ag 1)+ (13
1192 :

Correlation: functions «:Ab'AQI (f,).»,\ AQ'
! in

. 1 _L_w )
AQ,('I)AQ,' —Znidw Jol(m)n(m)e

1

i _Zd(u 101 (v)n(w)e e

<Agq Ag, (t;) <~
-1
where n(w )= (expBw=-1)

and D Q,(w) :—-:IAQ,;A Q', v

function,

‘(J)"

Bw @o,

Yoy

(f,)A;>cax1 be expressed .-
1 N

teimz of the spectral densities in the following way:

(i4a)

e

| P (14b)

,101 (m):i(DQ,(m +i¢)—D°,(cu-’ic”,!

is . Fourier transformate of the Green ..

Taking into account (11), (12), (13) and (14) leads to



i r T owa0,,007 F ErE (15).
rQ(cu) Q.Q, o 27 27 Q 1 e 20 AT

x(1+h(ru )+n(cu )) b"(a) . ~:-a)'>2.—cu‘).i

This expression corresponds to the formula obtained by Kwok/ /

The calculation of the Green function /2 12, 13/

makes it ’
possible to find the spectral density Jo (w) . In the collisionless
redinn (wrg (w)>1)  the interactions among thermal ‘phonons can
be nheaglected and the lifetime can be obtained using the harmonic
spectral density Jq(cu) [2:4 7/. This leads to the famous Landau—
Rumer formula [14f '
a-wT4,
In the hydrodynamic region (a)ro(a))« 1) it is necessary to take
into account the interactions of quasiparticles and the. harmonic
approximation is not valid. For this region the.well knoun result.
of Akhiezer /15, 5/ is obtained " |
~0lT -1 |
The dependence of a on the temperature and /fr/equoncy is
2

very sensntlve to both a dispersion of phonons, and an aniso -

‘tropy of 1nteractlon /4 / The following diagram

corresponds to correlation functions (13). In the collisionless region

all lines of a diagram are free, and in the hydrodynatnic region it

is necessary to take inte account corréctions to the phonon lines,
However, corrections to the vertex ‘of a diagrarn are’ neql'ecte'd.

The second sound is completely missing in this approximation,

To take into account the influence of the second sound on'the ) /

first one the summation of the whole class of diagrams must be



performed, If v and w-;-c; are of the order of a small quantity

1 'Vlz then all ladder diagrams

<D WD -

are of the order' of 1 / 6/. In order to ‘find a sum of these ladder
/16, 17/

diagrams the results of are used.

Define the Green function of the imaginary time:
G(U)=<T(H, (UIH )>, (16)

where

UH, ~UH
B(U)=e *" Be rh

and T - is the imaginary time orderning operator,

Because of

G(U+B)=6(U) -B<U<0
G(U)  can be expanded into the Fourier series
U)=x6, ¢“t" . 2xil =0, +1, £2,.,
G( ) &:—oocz e wg B (4 v 1 +£,
where
_amily -BE ' B(E_-E) \
1 B B 42 e =1
-—J 6(U)=- X —— |<mIH In>* Ze—e————,  (17)
B B m, Z (E, -E )-iq
1 m>,] n> are eigenfunctions of H , and E_ ,E are correspond-
P m n

ing to them eigenvalues. Define the function G(z) of a complex

variable z with the help of a condition
§(z)=6, when 2=wzk ;

It is possible to obtain G(z) by.the following substitution
iw Z -z ‘ ) v ’

in (27).

10



Note thafc ‘ , -BE,,
fim, Q“"*Z’i‘ Ho-id) =/13_ 3 —e?'.|<m'l!'l;ln‘>i|\2(e/-89 ~NS(E _-E ~w)=
! | (18)

B('l N
1 & =1y (w).
2z B . ”g"'o ¢

Express now correlation functions ,'<H;(f,)Hd>,<HQHQ+(g ') > by a

spectral density JH+HQ (w)
Q

+ 1 o0 iwty . »
<HQ (f,)HQ'>=27_{°dwe" JHS'HQ (w): : . ' (196.)
' + o why . Bo ‘
<HQHQ(11)->=E—"—_fmdwe JHQ+HQ (w)e . (190)

Use of (19)and (9) gives the following formula for the lifetime

] Ly (~o)l-e ~ho ). ’ (20) ‘
ro(w) 2 HQHQ 1 .
The function GZ can be written in the form '[ 7/
G,-9 3 v(Q,Q,,Q,)F (iw, ,iw, ~io, ) (2
. Q.08 e RAERY ¢ b o =

This expression corresponds to a diagram

In the hydrodynamic region FQ;Q;Q“»“’E; ‘,iwe—:we') is a solution of the

following integral equation

F (io io —iw )=F.© (i o, -io, )+368%3  Wa,q,.Q,)
7929 'wer ‘ ¢ :w€1 2,0, 4, 'wer)+ 53'04.0513 2 4,(2523<

><\(Q2 ,04,05 ) X D°1 (ia.)g, )DQZ (iwﬂ_iw& )Dos (l'w%—iwz.?) X

).

F , , L
X 03040(10.)“3 do, lcoe3

11



This équation ‘can be also presented on the picture

\ /

t

where

O o Q(lwz siwg -lme )=2V(Q, Q 02)001 (io t )Doz (imz-iw21 )

 here and elsewhere below Q,=12—Q +Qf,02=-E-Q-Q'. =i, =i

An Ansatz for the solution of (22) is

dr (500 0y J-5(us0 ), (220)

FQ,OZO((" ’+i1),'w-w’+i11)=xao Ao,07)

s a ’ . , 477 , , ' I o
F°1°z Q(w -in, o-w —H))=U°Q,(w,w )E-i(a(w o )-8(w +w»a,)) " (23b)

™5

For even and odd combination of solutlons of (23) under transfor-

mation q’A.. 4’

us-',,(Q,m)=-2L(UQQ,(w,w )

L2V (o, -w

‘Q Qe - X

(+) I - -
x g (Q,w)—z (XQQ,(w,wQ,)+XQQ.(w. wa’»

the Boltzmann-like equation is obtained,

w0,0)) . [<5a0
- iw _ n (len [ )+iv_,q (+). n_.(1 +no,)+
x‘,)(Q,w) N N x ,(Q,w)
Q . Q
o n (+) : 24 -
-¥(9,0, .0,)) %07 () | (24)
+ ' nQ[1+nQ,)=§,"pa a” .

x (0, a)

12



uof)' (Q,w )} . o u(-) (Q,w)

. . - - Q’ .
f EERE n ,(1+n _,)=iv_ ,q - n (T+n )+
"G @t e e e (g, 0) °
Q : : Q
= - o e ‘
~ f-vta,a,.a,)] | u+,(o o) L
- -~ An ,(7+n )= 2 p ’
s (=)
0 @ N " a, w)
Q
awo’

where v ,=:
. aql

. Lo ' - ~-. 2 ‘ '
[ ) = 7 :, : ”p ”‘- ’ ryl 2zl
QE”pQ’Q»,” fo"‘ 20 ’%‘.W {i.vtQ:Q Q | (1+n 0 )(7+no 4)no S(wo, +

. ’ ~ ’ tory 2 N R
+w Qu —wou;)(fou; -IQ”—IQ’)+-2—‘V(Q'Q IQ )l (’ +no; )"Q;; nol’lx

x8(w , o =0 )+, =f )],
. Q Q Q - Q Q
Substituting (23) into (21) after performing the summation over

the discrete frequencies and analytic continuation we obtain the |
followmg relations

" . .:'. P 5 ) B () t v
G(w+:e)g36:wQZ,V(Q,Q, 'Qz)”o' (7+no,)xo+, (Q,w), (26}

L .= (+) o ‘
G(w.f.,w)=36:w E’V(Q,Q, ,Q, )no, .(1+no, )uo, (Q, ) | - (27) .
‘The solution of (24a) and (24b) according to /6,16,18/ and takmg
‘into account (18) glves an expressmn for the spectral denslty

B . !
S 3o 31D 2 =1 v : S
-’H+H (w)= Bw"l’B orl "TZ - = s ’ (2&
"o (Pel) rbz_§§,+% R
T

where . ' ’
b, -svia, a,,a2 Jngo (T4 ag. (29)

13



pt o= Q—'C_ , k is the Boltzmann constant, €, the specific heayt‘:
v : .

at constant volume, £ is the second sound velocity, 7’- = ..r.'. + -53-w2 T, i
: .

is the inverse of the: relaxation time, 7, and r, are the impuls =
non-conserving and impuls conserving processes relaxation time L
respectively 6, 18,' Q@ js volume of the system, Eq. (28) is validf
provided ‘that : | . [ |
wr_ > 1> or . , (30) .
. . .18/
This is a region where the second sound appears o
4o 119!

which the ‘matrix elements for cubic-anharmonic interaction are .

‘We'vshall calculate now ;|Do,|2 for the Ziman model for

of the form- : )
. Ago 0,99,9;

vQ.q, ., )= b == LA
: yﬂp \/BmeQI wq,

.where gq=| 3'| , p - is the crystal density. and Agq @2 depend_s__‘:;_"_f
on.the angles only. We obtain “ :
o2 1 T2q g 2p4c2 ‘ .
:where K is angular average and v -_-.%’. is the first sound
velocity. . S Lol e
The final result is obtained after substituting (28) and (31)
into (20) - C i

- " - 2 2
1 )'zlq‘wJC r Ll 3. y2w?2 PA S Vo
8P v2 . v T S 8r2p v2 ‘ . 2
= 2 2 T 22 2 ' (32)
© 3 i. p; R P e
where P=-\€—- = —%_—_R is a ratio of the second sound velocity
’ : v A . o :
to the first sound velocity, 72 =- - .
p v

14



“From (32) it follows that the resonance attenuation of the
first ‘sound appears when velocities of the first and second sound
are equal, '

‘Introduction of

9 -2
2
Yo =V
8r2

leads to the Guyer formula

/6]

the first sound. This difference betwezsn our and Guyer formulas

for the resonance attenuation of

is not surprising if one remembers only that Guyer's approach
was phenomenological one whereas our considerations are

microscopic,

3. Conclusions

It has been shown: in the paper that the NSO method enables.
. us -to  obtain the attenuation coefficient of first sound in a simple,' “
direct manner. Performing of exact calculations of the. equilibritum
correlation functions leads to the resonance attenuation of a first
‘ sound by a second one in the hydrodynamic recuon where the .
second sound can propag,ate. Our results ‘are in a . good agreement
with those obtained by other authors.

The'attenuation _coefﬁcieht can b= changed by taking: into
~account the: higher order anharmonic. interactions. This problem

will' be considered: in the forthcoming paper.
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