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Introduction 

As is well-known the conception of the so-called muffin-tin 

potential ( mt-potential) led to an essential progress in the qua

litative understanding of the electron structure of metals: 

1. Owing tb the constant potential between the mLspheres the 

crystal structure and the potential within the mt-spheres only via 

its phase shifts enter into the equation determining the band struc

ture by separated quantities (KKR...method/1,2/). 

2. For the simple and transition metals the phase shifts have 

a characteristic behaviour allowing the introduction of model poten

tials (for simple metals), respectively model Hamiltonians (for 
~. /3/ 

transition metals) 

In the mentioned cases the use of the scattering properties of 

single atoms (only) has been proved useful for understanding the 

electronic properties. But the discussion of Fletscher, McGill and 

Klima/4/ using general considerations of Ziman, Lloyd and Ber

r/5/ shows, that in the case of amorphous semiconductors the in-

fluence of the short range order on the electron structure (more 

precisely on the density of states)is most conveniently described 
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r by means of the scattering properties of appropriate (for example 

tetrahedral) clusters of atoms. Therefore a proper description of 

the scattering properties of such clusters should be of interest. 

Our hope is, that the scattering point of view may be really deepen-

ed by introducing generalized phase shifts for appropriate clusters 

of mt-potentials and that such generalized phase shifts play a similar 

characteristic role for the calculation of the electron structure of 

amorphous states as the ordinary phase shifts do it for the calcu

lation of the electron structure ofthe crystalline state. We further

more hope, that such generalized phase shifts are also of interest 

for the electron structure of lattices with characteristic coordina

tion properties (for example intermetallic compounds). 

The main question in this connection is, how to describe the 

scattering of a non-spherically symmetric potential (in our case of 

a cluster of mt-potentials). Now Demkov and Rudakov have recently 

generalized the well-known method of partial waves, so this method 

·~.is now applicable also to non-spherically symmetric potentials/6/. 

In section 1 the Demkov/Rudakov- formalism is shortly summarized. 

In section 2 the calculation of the generalized phase shifts of the 

cluster is analogous to the KKR-method reduced to a purely algeb-

raic problem namely to the solution of a system of homogeneous li

near equations. In section 3 general properties of these equations 

are discussed: the number of non-vanishing cluster phase shifts, 

the qualitative behaviour of the cluster phase shifts, the evaluation 

of bound state and limits for the possible number of bound states. 
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r 
1. Generalized Method of Partial Waves for Non-Spherically 

Symmetric Potentials 

As Demkov and Rudakov have shown/6/the solution of the 

Schrodinger equation describing scattering states E •> 0 of a local, 

but non-spherically symmetric potential vrn 
[~ + K 2 _ v(tJ J¢ en =o, K = .. .,~ E 

A 
(l.l)x/ 

can be characterized by the following asymptotic behaviour 

(
--> J +I(Kr+71A) -I(Kr+71A) _, 

cf>A r-+oc)-+-~[AA(n)e -AA(t;)e ],;;=-;- {1.2) 

with generalized phase shifts 11 A ( K) and partial wave amplitudes 

A A ( li; K ) • These functions AA (;t) form a complete and orthogonal 

set on the unit sphere. The quantities 71 ..\ and A/i:Jdescribe all 

scattering phenomena of the potential V(;) in a completely similar 

manner as 11 and Y (n) do it for spherically symmetric potentials 
L L 

VJ...r ) . For a symmetric scatterer the amplitudes ~(n) transform 

themselves according to the irreducible representation of the cor

responding point group. 

As an example Demkov and Rudakov calculated the phase 

shifts for a cluster of zero range potentials. In the following the 

scattering problem for an arbitrary cluster of non-overlapping 

mt-potentials is reduced to a ourely algebraic problem. 

2. Derivation of the Algebraic Equation Determining 

77A and A..\ (;) 

By means of an appropriate Green's function(GF)the Schrodin

ger equation {1.1) including the asymptotic behaviour (1.2) may be 
---x1A.ii-en-e-rgles-are"ilieasured in units _112;2 ... 
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replaced by an integral equation (dropping the index ..\ ) 

cf> (? ) = f J?' G ( , ... -; ') V ( r ... ') cf> ( r ... , ) • 

In our case 

1... ... 'I 
G ( ... ... ') K [ cos K r -r t r -r =--- +CgTJ 

4" K
1
,_-; 'I 

sinK lr"-;' I 
Kli"-?'1 

(2.1) 

(2.2) 

is such an appropriate GF , because it fulfills the equation 

(Ll+K2 )G(r ... -1')=8 (t-1') (2.3) 

and has the desired asymptotic behaviour 

G ( , .... -r ... , ) ... _ ~ ___ J __ [ e I(K t+TJI -IK -:-:' 

4" 2i K r sin TJ e 

-I(K t+TJ} I K i:;+' ) 

- e (2.4) 

for r->oo. For non-overlapping mt.potentials (with centres R1 and 

radii r 
10 

, i = J, .. ., N ) the integral equation (2.1) may be treated in 

a way completely analogous to the Kohn/Rostoker-method/2/. By 

means of the Schrodinger equation (1.1) each mt-potentialmaybe 

replaced by ( il '+K 2 
) • After twofold partial integration one obtains 

t- ... ... 
surface integrals over the m spheres ( I r ' - R 1 I = r 10 ) : 

H .... .... , ... .... , 0 within mt 
If JI'[G(t-;') acf>(r ~ aG(r-r ~(, .... ')]= for; (2.5) 

I 1 a ... , a ... • 
1"' r r cf>(11 outside mt 

The remaining integrals can be easily evaluated, if the wave and 

Green's functions are expanded in spherical harmonics. 

Using the abbreviations ( L stands for the quantum numbers of 

the angular momentum) 
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j 

(2.6) n (r):np(Kr)Y (i:), 
L · L 

j (-;) = j o ( K r )Y (;;), 
L L L 

n (;-•, TJ ) = sin TJ n ( , ... ) - cos TJ j (t) 
L L L 

the wave function in the immediate surrounding of the 

has the form 
.... 

I -> , I ( -> I ) -• -.. 
cf> (r )= s1n TJ I aL n L r1 , TfL , r1 = r -R 1 L 

owing to the constant potential outside the sphe 

mt.potential is (for a given energy EsK
2

) ch"ractel 

of certain angular momenta L 1, L 2,... with non-vanisl 

mt-phase shifts TJ 1 , TJ 1L , .... , the number of whic 
Ll 2 

the whole cluster has D=ID
1 

non-vanishing mt-ph< 
I 

in the special case of only s -scattering ( D 
1 

= J 

Demkov/Rudako/61, we have D=N . 

With respect to the expansion of G(t ...:.(')one has 

the cases: r lying within one of the mt-spheres and 

the mt-spheres. r 

For r lying within the ; -th mt -sphere and ; 

surface of the ; -th mt-sphere (see Fig. ) one obta 

.... ... .... 1/ 1/ .. 
G(r-r')=KI jL(r )I[NLL'-cfgTJ J ,]jL, (r.')+8. 8LL'nL 

L,L' I LL I II 

xl;f (Kr) and ne(Kr) are the spherical Bessel 
functions, respectively (see for example Messiah 
used here differs from Messiah's definition by 
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i ( 1) = j o ( K r )Y (;;) , 
L L L (2.6) n (1) =n n(K r)Y (ii'), 

L t L (2.6)x/ 
n (f, "f/) :sin71n (r-> )- COS"f/j ("?) 

L L L 
the wave function in the immediate surroundingofthe; -th sphere 

has the form 
-> 

I (-> ) • ~ I ( -> I · > -> ¢ r =Sin 71 ,... aL n L r1 , TIL ), r1 = r - R 1 
L 

(2.7) 

owing to the constant potential outside the spheres. The ; - th 

mt.potential is (for a given energy f,.K 
2 

) ch"racterized by a set f; 

of certain angular momenta L 1, L 2, ••• with non-vanishing 

mt-phase shifts 71 L , 71 ~ , •••• , the number of which is D1 • Thus 
I 2 

the whole cluster has D='7D 1 non-vanishing mt-phaseshifts 11 ~ ; 

in the special case of only s -scattering ( D 1 = l ), discussed by 

Demkov/Rudako/6/, we have D=N • 

With respect to the expansion of G(t _ _.r')one has to distinguish 

the cases: r lying within one of the mt-spheres and ; lying outside 

the mt-spheres. 

For r> lying within the ; -th mt -sphere and ;· lying on the 

surface of the ; -th mt-sphere (see Fig. ) one obtains 

·+ .. -> II II -> -> 

G(r-r')=1IL,iL(r
1
)1[NLL,-ctg"f/ JLL']jL, (r/)+o 11 oLL'"L'(riJ1(2.8) 

xf;r (Kr) and "e(Kr) are the spherical Bessel aqd Neumann 
functions, respectively (see for example Messiah/7/). The n y 
used here differs from Messiah's definition by a minus sign. 
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as shown in the Appendix 1. The structure, that means the set of 

the mt-centres R1 , ••• , RH, is contained in the quantities 
££'£" -+ 

H 1
1 ,=(1-8 11 )477 I CLL'L" i - + nL,(R 

LL L,. If (2.9) 
£-e" ·~ _, 

'J 11=47T I C , ,.;£-f'+l'j }R )=i--fJn Y (ii)e
1
K.nRify (.,;) 

LL' L" LLL ·- L If L L' 
... .... .... -+ 

with R 11 - R ,- R 1 • Using real orthonormal linear combinations Y L(n) 

of the spherical harmonics with the total angular momentum £ 

and with 

-+ ... "' CLL'L"'=fJOYL(n)YL, (n)YL, (nJ 
(2 .10) 

as generalized Clebsch-Gordon coefficients the structure constants 

H 11 and ·J 11 are real symmetric matrices. 
LL' LL' 

Setting {2. 7) and (2.8) into {2.5) for t inside the ; -th mt-poten-

tial, performing the surface integration, using the orthogonality of 

the Y L and the Wronskian relation of the spherical Bessel functions 

for L~; ·£ a system of D homogeneous linear equations for the coef-
1 

fl,_cients a 1 is obtained, 
• L 

I [sin71,H 11 ,-cos71,J
11

,+8 8 ,sin71cfg71 1 ]sin71lal =0, 
;,L' " LL " LL If LL A L L' L 'A 

{2.11) 

the solutions of which we characterize by an index A • (2.11) is the 

condition for that an ansatz of the form (2. 7) being valid for each 

of the mt-spheres. (2.11) has, of course, only solutions if 

Jet 11 N :~, -ctn A J :~ ,+ 811 8 LL ,ctn ~II-= 0. (2.12) 

(2.12) determines D cluster phase shifts 77 A in dependence of 

· · l H -+ -+ the quanhtles 77 (K), ••• ,71 rKJ and KRJ , ••• ,KR , the latter con-
L L H · 
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' 

tained only in the structure constants N2,:and JL~, • 

symmetric matrices H If , and J If , and the mt -phase 1 
LL LL 

are real, also the coefficients a 1 , and the phase shifts 77 
L" ) 

The same procedure, which led for L c=- £
1 

to (2.11 

L ; £ 1 the coefficients 

• I I ~ ( J If • H If ) • i i 
Sln7JACOS1JL aLA= ..... ' COS77A LL'-Sin1JA LL' Sln1JL,aL'A, 

I,L 

which occur (only) in the expression (2. 7) for the \\ 

¢;A (r_,) in the immediate surrounding of the ; -th mt -s1 

The solutions of (2.11) determine the wave func 

in the immediate surrounding of each m~sphere, bu1 

whole space outside the mt-spheres. To show this, G(i 

lying outside the spheres and 1' lying on the surfa 

mt -sphere is needed (see Appendix 1): 

G( -• _,,) K ~ (-+ )' (-+') r-r =-- .._ n r ,71, 1 r . 
sin 77 A L L I " L I 

Setting (2. 7) and (2.14) into (2.5) for -+ 
r 

I 

outside the 

performing the surface integrations, using again the a 

of the Y L and the Wronskian relation, the following eXI 

the wave function outside the mt.spheres is received: 

¢ ( r ) = I sin 1J 
1 

a 1, n ( r , 1J, ). 
A 1, L L L" L I " 

{2.15) is valid in the whole space outside the mt -spheres 

also at large distances r _, "" • Owing to the asymptot: 

of the spherical Bessel functions/7/the wave functio1 

really the demanded asymptotic behaviour {1.2) with 
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tained only in the structure constants N ~1t:and JL~, • Because the 

symmetric matrices N 11 
, and J 11 

, and the mt -phase shifts TJ 
1 

LL LL L 

are real, also the coefficients a 1 and the phase shifts TJ are real. 
LA A 

The same procedure, which led for L r=- 5?. 1 to (2.11), yields for 

L :, f . the coefficients 
I 

. I I '<:' ( J lj . N ;; ) . i i 
Sln7JACOS1JL aLA=.~' COSTJA LL,-SinTJA LL' SlnTJL,aL'A, 

I,L 

(2 .13) 

which occur (only) in the expression (2. 7) for the wave function 

<j/A (n in the immediate surrounding of the i -th mt -sphere. 

The solutions of (2.11) determine the wave function not only 

in the immediate surrounding of each rut-sphere, but also in the 

whole space outside the rut-spheres. To show this, G(r-1') for r 
lying outside the spheres and 1' lying on the surface of the i -th 

mt -sphere is needed (see Appendix 1): 

G( -• _,,) K '<:' (--+ )' (--+') r-r =-- ~ n r ,TJ, 1 r . 
sin TJ A L L I 1\ L I 

Setting (2.7) and (2.14) into (2.5) for --+ 
r 

(2.14) 

outside the mt- spheres, 

performing the surface integrations, using again the orthogonality 

of the Y L and the Wronskian relation, the following expression for 

the wave function outside the mt..spheres is received: 

¢, ( r ) = I sin TJ 1 a 1
, n ( r , TJ, ). 

1\ 1, L L Ll\ L I 1\ 

(2.15) 

(2.15) is valid in the wholespaceoutsidethemt-spheres, especially 

also at large distances r .... "" • Owing to the asymptotic behaviour 

of the spherical Bessel functions/7/the wave function (2.14) has 

really the demanded asymptotic behaviour (1.2) with amplitudes 
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... ... 
_. I f -IK n R 1 

A A ( n ) = I sin TJ L a LA (- i) e Y L (n1. 
I,L 

(2.16) 

(2.15) and (2.16) show how to calculate the wave function outside 

the spheres and especially the asymptotic behaviour from given 

cluster-phase shifts TJ A and coefficients a ~A .Because TJ A , aLA and 

Y L (i:J are real, the amplitudes A A (iO have the property A*(iiJ =A (-n). 

The amplitudes A A (n'J are also orthogonal 

JJOA *(i:: )A (f:),,. I sinTJ' a I J 11
, sinTJ I a I = 8 A A, L LA L L L , L 'A, M, 

I,L, 
~L • 

(2.17) 

as can be shown easily by combining (2.ll) for different eigenvalues 

ctg TJ A in the usual way. 

By means of the system of equations (2.ll) the different expres

sions for the wave function (2. 7) and (2.15) are equivalent in the 

immediate surrounding of each mt -sphere. Namely the following 

is true (for r, < R,1(,t, ,1 and outside the spheres} 
¢>..,m -¢~ (;)=I i La, ) I,[( sin TJ A H:~--COSTJ A J L~ ,)sinTJ 1 ,+ 

• • L 1 /'L (2,18) 
+ 8

11 
8LL ,SinTJA COSTJL ]aL 'A 

as shown in the Appendix 2 using only an appropriate addition theo-

rem about the spherical Neumann functions nL(rJ , also derived 

in the Appendix 2. 

Owing to (2.ll) and (2.13) the right hand side of (2.18) is va

nishing, showing the equivalence of (2.7) and (2.15). Of course,this 

conclusion may be inverted, considering (2.15) as an ansatz for the 

wave function in the whole space outside the spheres and demanding 

the equivalence of ¢A (;J and ¢~(rl in the immediate surrounding 
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of each mt -sphere, that is demanding the left hand si 

to be zero ; then (2.ll) and (2.13) follow. In this way 

of equations (2.ll) determining ~ and <A is deri· 

Green's functions using only the mentioned additional tl 

then (, ... ) . This way is analogous to Korringa's treatment L 

structure of an ideal mt-lattice/1/ 

3. Discussion of the Algebraic Equations D 

TJ A and A A ( ;;) 

The considered mt-phase shifts TJ 'L , the numbe: 

is assumed to be D , produce via (2.ll)D non-trivial 

aL
1
1 1 "'I aL~ ( L ~ ·f, ); the corresponding eigenvalues tgTJ

1 
1 

dontt vanish (forK,;, O ), because the case fgTJA = 0 owing t 

appears only for trivial solutions a' :D(Lr; f 
1 
J. The coef1 

LA 
for Lr;f, are not determined by (2.ll); they correspond to1 

mogeneous, non-scattering wave functions with TJAJJ and< 

to complete the set of amplitudes A (n)
1 

... , A (nJby an ortl 
J D 

ing procedure. 

If one of the mLphase shifts passes tn' = o for a 
L 

energy K 0 , then the number of equations (2.ll) reduce, 

Therefore also one of the cluster phase shifts TJA passe~ 

at the point K=K
0 

• 

In the limiting case of large distances between tlJ 
, 1/ d . 1/ tials, ~t 1 -oalt1 anda ... <><~ 1 0wingtoHLL· ... O an JLL' ... B,

1 
BLL' 

ctg~->ctg TJ ~ from (2.ll).Therefore turning reversely to 1 

tances R 11 , each cluster-phase shift TJA remains witl 

11 



of each mt -sphere, that is demanding the left hand side of (2.18) 

to be zero ; then (2.11) and (2.13) follow. In this way the system 

of equations (2.11) determining ~ and a~.\ is derived without 

Green's functions using only the mentioned additional theorem for 

then (;') . This way is analogous to Korringa' s treatment of the band 

stru~ture of an ideal mt-lattice/1/. 

3o Discussion of the Algebraic Equations Determining 

11 .\ and A .\ ( ;::) 

The considered mt-phase shifts 71
1
L , the number of which 

is assumed to be D , produce via (2.11)0 non-trivial solutions 

aL1
1

, ••• , aL~ ( L ~;; f
1 

); the corresponding eigenvalues tg71 1 , ••• , tg 11 0 

dontt vanish (forK,: 0 ), because the case tg71, = 0 owing to Jet\IJ 11 ,\1'>0 
" LL 

appears only for trivial solutions a 
1 

:D (L ~;. f 1 ) 0 The coefficients a 1
, 

LA Ll\ 

for L~;f 1 are not determined by (2o11); they correspond to purely ho-

mogeneous, non-scattering wave functions with 71.\:0 andean be used 

to complete the set of amplitudes A (ii), ... , A (ii 1 by an orthogonaliz-
J D 

ing procedure. 

If one of the mt-phase shifts passes tn1 = o for a certain 
L 

energy K
0 

, then the number of equations (2.11) reduces to D- J 

Therefore also one of the cluster phase shifts 71.\ passes tg 71,\ = 0 

at the point K=Ko 0 

In the limiting case of large distances between the mt-poten-

tials, ~ -+afl anda-+ "'',owing to NL
11

L·-+O and 'J 
11

, -+8 8 , we obtain 
I I LL lj LL 

ctg 11.\ -+ctg 11 ~ from (2o11) 0 Therefore turning reversely to finite dis-

tances R 
11 

, each cluster-phase shift 71.\ remains within the stripe 
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111r < 71 A <(n+ JJ11determined by the corresponding mt-phase shift 

71 
1 , because (2.ll) possesses for K,;, 0 no non-trivial solutions 
L 

with tgTJA=o. 

With this result, with the low energy property tg 71 A, K 
1P +' 

(see/6/) and with the Levinson theorem limits for the number of 

bound states, l=0/11li 7JA (OJ, can be obtained: 

_J_ I [ 71 
1 L(O J +a~ 11 1>,;:: z 2 _J_ I [ 71 

1L(O J - o - a~ ) . 11 L 
11 I,L 11 i,L 

(3.1) 

at which a~= J or 0 fortgTJ ~(OJ =±0. 

Also bound states E < o can be calculated by means of (2.11) 

and (2 .12). To this purpose it is only necessary to choose ctg 71 

(dropping now the index A ) in such a way, that the wave function 

for K being imaginary is normalizable; that means G( i'- ;·) can

not contain exponentially increasing terms for K = i; = i v- E. This 

property is evidently given by 7J = i (see (2.2)). Splitting appropri

ately imaginary units 
...... 

N11 = .e-e'+' ii1; J11 =/-e'.TI; 
LL'- 1 LL" LL'- LL' (3.2) 

I I 
1 cfg7J = i 1'1 L L 

we introduce real quantities H ~~L, I JL1~, I 1'1 ~ • Then (2 .12) changes 

into 

lj - -1/ -If I 

DLJ KhNLL ,-JLL ,+all aL 
I 

1'1 ' 
lj -

Jet ! I D L L ' ( K n ) i I ,. 0 . (3.3) 

(3.3) means, that one has to look for the zeros of the determinant, 

considered as a function of i< • The solutions 'K n =y-En depend 

on the geometry via the structure constants H ~ ~ ·~ i ~ ~ , and on the 

12 
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mt -potentials via the "phase shifts"<'Je(phieilip),;; 

1 11£ ( i< r ) R; , ( r) - ne ( 'K r ) R e ( r) 
1'1 ~ I 

L f {i< r) R f' ( r)- if ( i< r) R /_ ( r ) •=' 10 

the latter determined essentially by the logarithmi 

R 1 '1 R 1 at the mt-boundaries ,,.. r 
10 

• To obtain also 1 
I r 

tion the replacement sin 7J sin 7J 1 a 1 ... a L1 is suitable. ~ 
L L n 

solution Kn and with the abbreviations 

I .f+l-1 (-+) •• (-+) .-£+1,- (-+) 
aLn=-• aLnl nL r-IlL r "'' L r 

introducing again real quantities ; ~ n 1 ~ (; ) 1 the equa1 

(2.15) change into 

I o 11
,(K )aL

1
, =o~ 

L' LL n n 

-+ -1 - .... 
¢ (r)= I aL hL(r )I 

n I, L n I 
j, 

showing how to evaluate the wave function outside the 

for bound states. Similarly as in the case of scatter 

matrix D~1L' has a finite order, if the number of non-t 

shifts" 1'1 ~ is limited • 

The eigenvalues of (2.11) can be written in the 

pectation values" 

ctg7J A= 

~ ~ · I I ( lj " 
1

] • I ;-;t t'L' sm TJ L aLA NLL'+a 1/ uLL'cfg7JL sm7JL 

~ ~ • I I Jll . • I I 
..:. ..:. ,Sin7JLaLA LL' Sln7JL,aL'A 
l,L j,L 

showing its stationary property with respect to sm~ 

a~ A around the solutions of the (2.11). Hence for var 

cluster phase shifts TJA with respect to the mt-pha, 

(or to the mt -centres R 
1 

) the coefficients can be trea1 
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mt -potentials via the "phase shifts"(Jlphieie(ip), ne(p):}-l ne(ip)) 

I'll .. rif(iZrJR~ ,(rJ-i1e(i<rJR£(rJ I , (3.4) 
L - -t {K. r} R r ( r}- if. ( iZ r} R f_ ( r } ,_' 10 

the latter determined essentially by the logarithmic derivatives 

R 1 '/ R 1 at the rot-boundaries ,,. r 10 • To obtain also the wave func-
' r 

tion the replacement sin., sin ., 1 a 1 ... a L1 is suitable. Then, with the 
L L n 

solution K" and with the abbreviations 

I ,f+l-1 (-+} ''(-+} .-f+l~(-+} 
aLn=-1 aLn 1 nLr -IlL' :1 nLr (3.5) 

introducing again real quantities ~ ~ n 1 ~ ( 1 } 1 the equations (2 ,ll) and 

(2.15} change into 

(
-+ -1 -+ 

cp r}== l aL hL(r1 }I 
n I, L n 

I o 11
,(K )aL

1
, ==o 1 

, LL n n 
I,L 

(3.6) 

showing how to evaluate the wave function outside the spheres also 

for bound states. Similarly as in the case of scattering states the 

matrix D~1L' has a finite order, if the number of non-trivial "phase 

shifts" 1'1 ~ is limited. 

The eigenvalues of (2.11) can be written in the form of "ex-

pectation values" 
"<:' "<:' 1 1 [ II <> 

1] I I ., ., , sin., L aLA HLL'+8 11 aLL'ctg71L sin71L ,a L 'A 
ctgTt = I,L I,L . •(3.7) 

A "' "' • 1 1 Jll • I I ._ ._ ,SinTtLaLA LL' Sln"'L,aL'A 
I,L I,L 

showing its stationary property with respect to small variations of 

a 1L A around the solutions of the (2.11). Hence for variations of the 

cluster phase shifts Tf.A with respect to the mt-phase shifts 

(or to the mt-centres R 
1 

) the coefficients can be treated as constants: 
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I ) 2 '> 0. a "'0._ = (sin Ti A 0 L A --, 
a.,L 

(3.8) 

If the ; - th mt -potential is changed in such a way, that one of its 

phase shifts < increases (decreases), then owing to (3.8) also all 

cluster phase shifts .,A increase (decrease). 

Conclusion 

The. phase shifts and the centres of (non-overlapping) mt-po

tentials, forming an mt-cluster, determine purely algebraically the 

generalized phase shifts of the cluster·: We hope that such genera

lized phase shifts are useful for the discussion of the electron struc

ture of mt-ensembles with characteristic coordination properties 

(amorphous semiconductors, intermetallic compounds); the proposed 

scheme· should be also useful for the discussion of the scattering 

properties of molecules. 
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Appendix 1 

Expansion of G (,-"-1 ') in spherical harmonics 

To obtain (2.8) and (2.14) from (2.2) we need 

... ... r (Al.l~ C'OSK I +r ....,. _. -+ -lo _ ~~ ! l =4117_ (-1} [O(r 1 -r2 JnL(r1 )jL(r2 )+0(r2 -r1 )jL(rl JnL(r 2 J • 
~<lr1 +r2 1 
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sinK l ;, + ;2 I = 4" I (-l / . ( r ) • ( r ) 

I
. -+ -+'I L . I L. I IL. 2 

K. r 1 +r2 

as a generalization of (Al.2) 

e .. .. e,+e2 ...... 
I fL. ( r 

1 
+ r2 ) .. 4 rr I C L. L. L. i i L. ( r 1 ) i L. ( r2 ) • 

1. 1,1. 2 I 2 I 2 

Moreover, f"(-:J.(-l)ef"(?J 'and(-of .. ;-f will be used. 

According to the situation at Fig. we may Wl 

-+ -+ -+ -+ -+ -+ 'th f withR
1
p;lr

1
-r; I for;/:; and r-r'=r 1-r,' Wl r;'>r1 or;,.; 

fore the inhomogeneous part of (2.2) maybe expanded in 

ing way, using (Al.l) and (A1.3) in the 1st step and (2.9 

step 

COSKI;:.:--1 4 "C' (( J "' )4 "C' C .f-f't-f", (-+). (-+') 
_ = rr ._ , - u 11 rr .. , L. L. 'L. "1 1 L. r1 11. r 1 

~<lt-r"'l L.,L. L. 

( -+) (-+, )) , _. ( 1/ (->, 
+8 l}_L.' j t: r

1 
nL. r 1 =4rr I i[r1 ) HL.L.,;L.' r 1 )+811 l}_L. 

If L.,L., 

With (Al.2), (A1.3) and (2.9) the homogeneous part of 

be expanded in the following way 

sinK\;_;,! 
K lr-;'1 

.e -e , +f" . ·~ . --, . 
= 4 1T I 4rr I cl. L. , L." I I L.( 'I ) l ,( r I ) I L. , (I 

L,L' L." 

= 4rr I i (? ) JL.1~, i", r;· ) · 
L.,L.'L. I I 

Setting (Al.4) and (A1.5) into (2.2) then (2.8) turns out, q. 

For ; outside mt-spheres we have r-r'=r1 -r1' 

Therefore the inhomogeneous part of (2.2) may be wri 

coSK! ?-r~l = 4rr I. n l ~ )j L. (;',) 
_, -+ L. K! r-r'l 
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s!n K \ ;I + ;2 I = 4 11 I ( -ll . ( r ) • ( r ) 

I
-+ -+I L · IL I t 2 

K. r 1 +r2 

(A1.2) 

as a generalization of (Al. 2) 

f ( .... .... J ~ f1+ f2 .... ... ) (Al 3) 
; I L r 1 + '2 '"' 4 11 ~ C L L L ; i L ( '1 ) i L ( '2 • • 

L 1,L2 I 2 I 2 

Moreover, JL(-:J.(-lJe;L(;"J 'and(-d=;-f will be used. 

According to the situation at Fig. we may write;_-;-...-;,-;; +R 1; 

"th R · .... ...., ·1 f ' d .... ~ .... ... ' "th ' f Th Wl 
11

•>1r
1 
-r

1
. or;,.; an r-r sr 1-r 1 Wl r 1 •>r1 Orj=i , ere-

fore the inhomogeneous part of (2.2) maybe expanded in the follow

ing way, using (Al.l) and (Al.3) in the 1st step and (2.9) in the 2nd 

step 
f-f '. f, -~ .... .... 

) 4 11 t, C LL, L , i t- j L ( r, ) jL ( r l ) nL, ( R I I )+ cosKI~?-1=4 11 I ((l-8
11 

- .
1 
........ ,

1 
L,L' ,. (Al.4) 

+8 l}_L' j L(r
4

1 
)nL (,:-'~ )]=411 I ;fr;HN~L,;L,(i"1 ' )+811 q_L,nL,(t1')]. 

II L,L' 

K. r -r 

With (A1.2), (A1.3) and (2.9) the homogeneous part of (2.2) may 

be expanded in the following way 

~inK\;_;,1 f f' f" .... ... 
= 4 11 I 411 I CL L , L" ; - + i L( / 'l ,( r' ) i L , ( R I '= 

L L' L" 
1 

I I 
. (A.1.5) K I,._ ;-I 

-> II _.. 
=411 I i (r )JLL' j ,(r' ). 

L,L, L I L I 

Setting (A1.4) and (A1.5) into (2.2) then (2.8) turns out, q.e.d. 

For -; outsidemt-sphereswehave r-r'=r,-r,' withr,•>r;. 

Therefore the inhomogeneous part of (2. 2) may be written as 

I .... ~I ( .... ) . ( ..... ) cos K r- r = 4 11 I n L r
1 

I L r 1 
~ ~~ L K! r-r I 

(Al.6) 
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...... 

using (Al.l). The homogeneous part of (2.2) has the expansion 

sinK!;_, ... ,, =4TT .I jL(;' )jL(r->') (Al.7) 
_. _. L I I 

K! r-r'l 
using (A1.2). Setting (A1.6) and (Al. 7) into (2.2), then (2.14) is ob-

tained, q.e.d. 

Appendix 2 

Addition theorem about the spherical Neumann 
functions 

The generalization of (ALl) (A2.1) 

i' nL(r; +12 )=4TT .I CLL L if! ~2 [0(r7 -r2 
)nL (r; )j L (r2-> )+O('i -r

1 
)jL (r;) nL (r;Jl 

L7, ~ l 2 I 2 I 2 

may be derived in the following way. Using (see Messiah/7/) 

. ( ) ( )e ( cJ )e sin p ( ) ( )e ( cJ £ ( 1) cos p 'e P = -P P tlp P ' ne P = -P "PiP J - -P-

and (P =Cauchy principle value) 

cos K r = _1_ f cJ lc P - lc sin lc r 
7T /c2-K2 

we have 

( ) 1 cJ lc p 2( lc ) e. ) no Kr =- f -- ---- lc - 1 (lcr 
L 7T K /c2-K2 K f 

and therefore by means of (2.6) and (Al.3) 

.e . e, +f2 ... ... 
1 nL(r1+r2 )=4TT .I DLL L 1 YL (n 7)YL (n2 ) 

L l, L 2 l 2 l 2 

1 cllc 
DLL 1LtCLL1L2rrfK .!___ lc 2( .!_ ) e If ' ( lc r IJ; e 2 ( lc r 2 J. 

/c 2 2 K 
-K 

(A2.2) 

(A.2.3) 

(A.2.4) 

(A2.5) 

(A2.6) 

The integral can be evaluated easily by means of closing the con

tour in the complex 1c -plane. To this purpose it is necessary to 

replace the Bessel functions ; e ( lc r J partially by Hankel functions 
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I )r, cJ )r 
"r(p)=(-p p;rp e 1P r cJ ) e ~~~ (p)=<-p) <PTP ip-' 

Replacing at first ; e 
1 

( lc r 1 J and using 

.-rl 

-ip 

2 c 1 e+r 1+f 2 hf(p) .. (- 1 ) hr(-p), (-l} CLL1L
2

""CLL
1

L
2 

we obtain 

1 cJ/c 1c
2 

1c e 1 • 
DLL L = CL L L - f - .,----2(-) h f1 (/crl Jte (lei 

I 2 I 2 2 7T Cl +C2 K /c _ K K 2 

with contours c 1 and C 2 in the upper and lower lc -p: 

tively, parallel to the real axis. Owing to the asym] 

( lc ... "" ) 
1 f 2 lldr 1 +r2 1 lldr 1 -r

2
J "r (lcriJ;p (lcr2) ,.,(-1) e -e 

I 2 

we can close both contours C1 and C2 only for r 1 ·>~ 

1c -plane.Closing C1yields nothing, closing C2 only the p< 

contribute: 

0 c 1 [ ' ( e +f 2 , • LL L = LL L -- ho Kr )-(-1) · ho (-Kl J1to 
I 2 l 2 2i LJ l LJ 1 t; 

With (A2.8) this can be written as 

DLLIL2=CLL!L2 "r, (Kr, Jie2 (Kr2) for r,'>r2. 

If we replace ie
2 

(lcr2 ) in (A2.6) by Hankel functions 

milarly 

DLL!L2=CLLIL2 ip/Kr,Jne2 (Kr2) for r 2 '> ,, • 

Putting (A2.12) and (A2.13) into (A2.5) really (A2.1) tur 
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s 

r c1 ) r 
h r' ( p) =(- p) { Pi1P 

e'P 
ip-' 

r c1 / h~ ( p)=(-p) (prp 

Replacing at first ; r 
1 

( lc r 1 J and using 

.-rp 

-ip 

2 r , r+e,+£ 2 
he(p)=(-JJ hr(-p). (-JJ cLLJL2=cLL,L2 

we obtain 

(A2.7) 

(A2.8) 

0 
1 c11c lc

2 
1c e , 

LL1 L
2
= CL L

1 
L
2 

-
2 

f - -:r---2(-) h ~! (lcr, }if (lcr2J (A2.9) 
1T C1 +C2 K /c - K K 2 

with contours C 
1 

and C 2 in the upper and lower lc -plane, respec

tively, parallel to the real axis. Ow~ng to the asymptotic behaviour 

( lc _,"" ) 
h~ (lcr,}jn (lcr2),.(-l'C2 l/c(rl+r2) l/c(rl-r2) 

l r2 I e -e 
(A2.10) 

we can close both contours c, and C2 only for ,, ·>~in the upper 

1c -plane.Closing C
1
yields nothing, closing C2only the poles at /c-±K 

contribute: 

D C 
l [ '( f+f2 l • L L L = L L L -- ho Kl )-(-JJ · h n (-Kl })fo (Ki' J(A2 11) 

l 2 12 2i LJ I LJ I r 2 2 • 

With (A2.8) this can be written as 

DLLJL2=CLLJL2ne,(Kr, Jie2(Kr2) for r,'>r2. 
(A2.12) 

If we replace ie
2 

( lcr
2

J in (A2.6) by Hankel functions we obtain si

milarly 

DLL L =CLL L io (Kr,Jne (Kr2 J 
l 2 l 2 1 l 2 

for r 2 '> ,, . (A2.13) 

Putting (A2.12) and (A2.13) into (A2.5) really (A2.1) turns out, q.e.d. 
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As an application of (A2.1) we prove (2.18). We discuss the 

"Neumann part"and the "Bessel part" of the left hand side of 

(2.18) separately. With , .... 
1 
=~ +R11 and r 1 <R

11
c,;,. ,;Ne can write using 

(A2.1) and (2.9) 

I,a 1L'' nL,(r-+1 J-I a
1
L,nL(? )=I aL/,(1-8 )nL,(;*) (A~2.14) 

J,L " L " I /, L' " If I ' 

(1 " ) ( .... ) (1 " J 4 ~ r . f -f + f". .... .... .... 11 
-ulf nL' 't .. -ul/ 1T L~"L.L'L"' fL(rl)n,_,.(RI/) .. 7_ jL(riJHLL'' 

The "Bessel part" of cf>(;Jcan be treated with (Al.3) and (2.9) in the 
' -+ -+ .... 

following way ( again r 
1 

= r 1 + R 
11 

) 

-+ f-f '+f" -+ -+ · -+ , If 
;L,(r )=477 I CLL'I."i jL(r1)jL,(R

11
)=Ii[r

1
)JLL'' (A2.15) 

I L,L" L 

Essentially the difference between (A2.14) and (A2.15) yields (2.18), 

q.e.d. 
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Sites of the GF-variables r, r' for r inside the i -th mt -sphere. 
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