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increased recently. This is connected with the fact that with the

The interest in using nonlocal separable potentials has
help of such potentials the Faddeev equations 3/ used for sol-
_ving the quantum-mechanical three-body problems can be reduced
to a coupled system of one-dimensional integral equations /2/
However there is an important barrier in solving this system, na-
| mely the number of the coupled equations and cohsequently the
dimension of the matrices to be inverted are proportional to the
total number (N+M) of terms contained in nonlocal separable po-

%)

tentials
g N4M 2
V(E, k' )=A" 2 c,)\‘g,(k)gl(k'), (9
inl )
where ¢,=-1 for 0<igN , ¢, =+1 for N+1<ig<N+M ,ApOfor
I1<igN+M, and the g,;(k) are N+ M linearly independent
functions fulfilling some simple conditions / 4_8/. Of course it is

desirable to include into the two-particle system, with the help

of minimally possible number of terms, as many physical

%) ‘For convenience we investigate only potentials acting in the
relative s-state,
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information as one can. Such an information is the number of

) Vs
bound states and that. of resonances in the two-particle systems, -
The number of bound states %) N(b.s.) which can be obtained by

potential (1) is limited by the number of negative coefficients

/4,9/.
, :

N(b.s)<N. : )

This . means that we cannot choose such functions ¢, (& ) whic;h give

‘more than N bound states.

" The two-particle systems may have also some resonances if

the equation

 D(=k) =det}M,, (=k)]| =0 (3)
is satisfied for —k=Fk =k ~ik, y where £ > k,>0 and
- ' < (p)p2d s
M (=k)=8, 4dnNic e A A s,(p)e, (p)p7dp (a)
A ! 0 k’—p_’+i€

Of course, the investigation of the resonances is very imporl:éht,
too. » ‘ | :

The question arises whether we must increase the number
of terms in potential (1) for including Vres‘onances into the two-par-
ticle system br this can be made by ‘a proper choice of the
formfactors g (k). To answer this question we shall investigate
the motion of the poles by changing the strength parameter A7,
The problem of the pole motion ‘has been investigated for some

local potentials, For example, the case of the square~well potential.

*) Here and in the following, except that when we specially
emphasize, we are speaking of the bound states of negative
energy.
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- and the case of the screened attractive Coulomb potential have
ibeen discussed in /10/ and / /, respectively, When increasing A?
‘the resonance poles (more exactly they "partners" with kS o=
S : , 12, 13 ‘
=—-k=';, =—kl—lk2 / - 6

We can investigate the problem whether: the situation for the

turn into bound states.

case of nonlocal separable potentials is similar to the local one.

If all resonance poles become bound states at sufficient large A?

: then because of the fact that when increasing the strength para-

/5,91

.and due to inequality (2) the total sum of the number of the reso-

meter ~ A?  the energy of the bound states does not decrease

nances (N(rs .)) and that of the bound states (N(b.S.)) must be
l‘imited by
N(rs.)+N(bs.)<N. (5)

However, it turns out that for potentials of kind (1) the inequality
(5) does not hold, In order to see the breakdown of the inequa-
lity (5) we shall investigate some illustrative examples for three

simple kinds of interactions. .

1. "Repulsive" potentials

V(kE)=A"g(k)g (k) R ‘ (6)

where é.g, ; o ‘ ﬂ
, - e
g (k)= m—— . o N )
k2 B2 ‘ ‘
The zeros of the determmant (3) for this case can be found' from

: eqqatnpn
‘ Cpaa2? o - o
1 + i ] (8)
B(B-iky?
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2
A B we' have a resonance pole, Of course,. the,

>

F‘or
m

potential (6) ‘cannot give any. bound state. (’I‘h1s -situation is 51m11ar
to the ‘case of the repulsive local poten’ual, ‘e.g. to the .case of
the‘square_-barrier"‘ potential giving no bound state but which can
give resonances 10, )

2, Pbrtent‘ialsr_w'ith "répulsion and attraction"

VIk k") ==Ag(k)g(k?), R - (120)

, ‘ s [14]

where g (k)  changes its sign at some kE e..

k% a? 1
k24 b2 k"+/34

g(k)=(k'~k?) (11a)

The vpotential (10) with formfactor (11a) can give a. bound/ 7tate
14]

(extinct bound state, EBS / 15/) By a small change of the parame-

of negative energy and.a bound state of posxtxve energy

ters the EBS becomes a resonance / 16/, but this ‘resonance ‘cannot
turn into a bound state when increasing ,\? ' because we have
already‘the only possible bound state which remains bound- state
when the interaétioh strength is increased, In Fig. 1 we illustrate
the pole motion for potential (10) with formfactor

a

o e(R) =g (k)2 (11B)
, : B Y : PR Y :

where B,>B; »a,>L. The potential (10) with formfactor (11b) by a
proper choice of the parameters has the same properties as the

one-term Tabakin's potehtial but has a more simple form.
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3. At last we investigate in details the potential (10) with
formfactors of definite sign e.g. with g (k)>0 for E>0 .

One can suppose that the resonance poles of such a poten-
tial, remembering us the "attractive" one, will turn into bound

states when increasing A, we investigate the pole motion for
the following formfactors
(2) 1 | ’
glk)=g "7 (k)= ~ — (12)
(k2+ BV (k2+87) :

g (k)=g™ (k)= —2t + 22 , (13)
k2+B2 k2+Bz
1 2

a, a3z
7 22 7 3.7 (19)
(k"+B)) (k"+B3)

g(k)=g""(k)=

The formfactor g(”( k) is proportional to g@)k) if in the latter

I l2]

(k*+B2)

we put a,=-g, and g?k) gives the formfactor

when puttiﬁg B,=B; .

a, g(k)=g™ (k)= - .
(k2+{/)(-k2+/3:)

- The trajeétory of the poles for . some B, is to be seen in Fig.2,

] In all potentials we can choose B,<B; , B:=1 and a;=1 ,
This means that the strength parameter a; is included in A
and that we are working in units B, . In order to fulfil the
condition g(k)>0 for k>0 we have to choose a,>-1.



The potential (10) with - g(k)=g?(k) gives four physical poles

but it does riot give any resonance, For the tWo"complex poles

. we_ have
v k3,4 "iVﬁxﬁz‘i(ﬁx"'ﬁQ)EV ﬁz'i(l +ﬁ2) . at Ao ) (15)
b, g(k)=g% (k)= ! + a2
D R Y K
It is easy to solve the equation .
: , = g(p)pidp ‘ s
D(—k)51+4ﬂh f—-;———}———:O (16)
0 E'=p +ice
for A» e~ |, Two of zeros ‘are given by
k124iiAA at Ao oo, (17)
whei;e
7
. 4
A=n\/1+ %2 2 ‘ (18)
1+ﬁ2 ﬁgv

and for the two other zeros of D(-k) the following asymptotical

expression can be obtained
ks> ta=ib  for Ao, ‘ (29)
If the. conditions
c>4d (20)
and ‘ ‘ ‘
max {0, [e—-d—Vc?~4cdll<a,x< g le—d+yei—dcd] © (2



-1)? —
(where ¢ = B2D)7 e d=y B, ) are fulfilled then a> b

)
B2+ ) :I

and for A- = we have a bound state and a resonance ’, In
F‘1g. 3 we jllustrate the pole motion for some sets of parameter of

g (k) .

I a,

e, gl(k)=g“k) = —_.
(k1) (k° +B3)?

The pole motion for a given set of a,, 8, is shown in Fig, 4.
One can see that by proper choise of the param=ters one bound
state (with good asymptotic behaviour) and one resonance can
be obtained, -

In order to illustrate the possibility of turning the resonance
pole into' a ‘bound state we present the pole’ mo’uon in F‘1g. 4b
for the potential (10) with formfactor (14) and a ,<-1.( This means
that ¢ (k) changes its sign at some value of k.) \
In summary, we have to say that by a proper choice of the

formfactors’ g, (k) we can put in our two-particle systems -

X) When k;>B, , where k, is the value of the imaginary part
‘of the bound state pole, the asymptotic behavour of the bound
state wave function ¢ (r ) will be wrong /17, 18/, namely
Yir)~e Pitat r + o , but in the investigation of the number
of the bound states this fact is not taken into account generally.
‘and the bound states with. wrong asymptotic behaviour are
included in this number.,



resonances without. increasing the number of terms contained in

(D) x—). Practlcally this means that the dimension of the matmces‘

to be 1nverted 1n solvmg the three—body problem does not 1ncrease
and the necessary computer time and the error of the calculatxons prac—
tically do not increase, too, Of course, the properties of the three—body

system (e.g. the three-body bound state energy) must be .investi- -
gated separately for every two-body pot’e'ntial.

References .

1, Y,Yamaguchi. Phys. Rev., 95, 1628 (1954).

2, A detailed discussion of the nonlocal separable interaction

can be found in A.G, Sitenko and V.E, Kharchenko, Preprint
ITF-68-11 (in Russian),

3, L.D.Faddeev, Zh,Eksp. Teor. Fiz., .39, 1459 (1960) (Soviet
Phys. - JETP, 12, 1014 (1961)).

4, G.C.Ghirardi and .A, Rimini, J. Math, Phys., 5, 722 (1964).

5. G.C.Ghirardi and A, Rimini. J. Math, phys., 6, 40 (1965),

6. AV.Rokhlenko, Zh, Eksp. Teor, Fiz., 47, 896 (1964).

7. D.Gutkovski and A, Scalia. J, Math, Phys., 9, 588 (1968);
ibid., 10, 2306 (1969). '

8. D.Gutkovski and A, Scalia. Nuovo Clmento, A 525 (1971).

9. A..Rokhlenko. Zh, Eksp, Teor, Fiz., 50, 93 (1966). |

10, H.M.Nussenzweig, Nucl. Phys., 11, 499 (1959).

11, E.M, Ferreira and A,F.F, Teixeira.J, Math, Phys,, 7, 1207 (2966),

%) It seems to us that resonances can be obtained more easily
by those formfactors which change their sign at some k ,Two
resonances can be obtained e.g. with formfactor g(k )=

2 k 8 p
= (k ;' I 8 which is a superposition of three Yamaguchi
B G BDGBY)
formfactors,

10



7 .1'2. K.W, Mc Voy. Trieste Lectures - 1966 (IAEA, Vienna (1967)).

- 13, R.G, Newton. 'ScaAttering Theor;y of Waves and Par"ticles,

. Mc Graw-Hill, New York (1966).

14. F.Tabakin, Phys, Rev, 174, 1208 (1968); 1b1d., 177, 1443
(2969). ,

15, M, Stihi. Nuovo Cimento, 60_A, 376 (1969),

" 16, I.E.Beam. Phys. Letters, 308 67 (1969).

17, P.Beregi, L.Lovas and J,Revai. Ann. Phys, (NY), 61,
57 (1970. ' ‘

18. P.Beregi and L Lovas. Z, Physik, 241, 410 (1971)

Received by Publishing Department
on May 26, 1971,

11



Fig.1. The pole motion for the potential (10) with formfactor (11b)
and a,=-2,83, f,= 2, The curves in full line are paths desc~
ribed by the poles., The bisectors of the third and fourth
quadrants are indicated by the dotted lines, The arrows show .
the direction of motion of. the poles for increasing A?
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Fig, 2, The pole motlon for the potential (10) with formfactor (12).
Fig, 2a: ,B =1
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~ Fig. 3. The pblemotion for the:

potential’(10) with' formfactor (13).

Fig. 36.: a2=—0.5,‘ B2=1.5
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Fig. 3b:
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Fig, 4. The pole motion for the potential' (10) with formfactor (14).
Fig., 4a:e,=-1, B ,= 1.5
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ig. 4b: a;= -5, B,=1.5, '
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