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llulti~channel aspects in the A(dp)B rcaction,
connected with a parting in stripping of the low-lying
collective states of the A and D nuclei can be analysed
in the framework of the so-called generaliued distorted
wave Born approximation[ll which, using the zero-range

approximation, gives us the following amplitude.
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Here éyd) are the multi~-channel entrance and exit wave
functions. They may be calculated.with the help of the
coupled channel method[z], which finds out them as an

expansion
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where /“,> denote nuclear state wave functions. Thus,
the stripping cross section is
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ding spectroscopic amplitudes J~~ are given by
1

relation
o
J:L/éz </%/a;/o(> .

Tt 1s found out from eq. (3) that the stripping
mechanism can be interpreted as a multi-step one, where
there exist additional indirect transitions through the
collective states /> and /B> . Otherwise, the
result of the standard DWBA-method follows from eq. (3

neglecting all the intermediate transitions, and gives us
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are the kinematical amplitudes. The correspon-

(4)



the only one-step desoription of stripping:

(w_j;_g;/ ,S:B /Zf/i.e/i (5)

Here 5:5 is the usual spectroscopic factor.
Unfortunately, the result (3) is in a rather abstract
and non-obvious form. Thus, it is not possible to estimate
the order of higher stripping steps, while the numerical
calculations on the basis of eq. (3) are very complicated.
Therefore, to simplify the problem we use later a so-—called
double-adiabatic approach. It consists o“f an approximate
expansion of the multi-channel wave functions in the follo-

wing set of partial waves:
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where
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llere the initial ground state /004> and final state -

/Jg/‘/38> wave functions are included obviously, while the
radial functions take into aconunt an additional dependen-
ce on intermal nuolear variables considered as parameters.

Hamely,
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where % are the radial functions in a central optilcal
potential with the radius parameter Vod , and



A7) = = g/w " /r/ (19)
depends on the nuclear collective variables 5,,/7
It was shownD‘,] that expansions given by egs. (6) and (7) are
satisfied within the smallnest of 0/7/(/r/2)"3)1f the condi-
tions A#A>>7  apna £> E;’ﬁ’ are fulfilled.
Substituting eqs. (6) - (8) into the amplitude @))

and using the relation

< I oo 20 £, 5 A )ff00A > =/ /7 GA) Y (11)

it is possible to obtain the multistep cross section

Zf /,/cz 19/%, - (2)

llere the weight- and kinematical factors of the corresponding

stripping steps are the following

x B It/ ~Ja 4 4 L 4
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'his latter is in a form very similar to the one given by
DWHA-method which therefore can be used here very well as a
rather simple numerical method L47 « Our notions are

1 — o A 4
R=iney ; OF= 2B Ap 7
? IR 4 SR

(15 )
Now we analyze the results (12) - (14) 1n some details.
1. First of all, the following momentum and parity selec-

tion rules for the momentun transfer £
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L=C+7 (16)
Crh+T=even (17

hold.

Therefore, for the even intermedlate exoltationmmentunm
v the ¢ and 4 are the same parity, otherwise
( I-0dd) they are in opposite parities.

5, When I=0 ( there are not inoluded intermediate
excitations) the transferred momentum X  coinoides

with a captured neutron orbital momentum l » and eq. (12)
i1s simplified to the ordinary ome-step result

6/291: Zjéf/ rAB/e/Z /541’1()9//2 (18)
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The non-vanishing one-step transition (,C =€; 0{4—3 ;1—0]
may be oalled by allowed one and the corresponding

part of the whole amplitude is the principal compoment.

In the case of JZ =0 the one-step transfer L=f
beoomes forbidden and stripping 1s golng through intermedia-
te oolleotive states ( 7#C ) , so that the first and the
next non-vanished steps are called :1e two-step and higher
ones.

Generally speaking the multi-step cross seotion
depends on the all speotroscoplc amplitudes f « They
denote ( see eq. (4) ) the ( quasi-) partiole (f'/s) ,
( quasi-)particle + one phonmon ( or "roton" ) (J;;!) and
the other higher components in the whole odd nuoleus
wave funotion (8) .

3. It is possible to obtain the two-step oomponents



of the stripping amplitude, which characterizes a virtual
transition through the one—phonon ( one-roton) intermediate
state. For these we retain only the first term on .2

in a perturbation expansion of eq. (11). It gives us

A
(19
H. = a, (5. * Resg )
where the value <, 1is connected with a mass transi-
A
tion I- multipolarity operator MZM
4
T r 0
= 5 IO} M, 00> (20)
A 4 I
= rn 7 21
/7Z]'M 5%1 ¢ KM(’?). (21)
Introducing a dimensionless effective charge é‘e/
and an effective nucleon number ie/ we obtain
% (22)
Lo | s
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where JV is the B[_’(é:f) - transition probability
in the single particle units,
It is important that the magnitude of <2, can
be obtained independently ffaminelastic scattering datab]
or calculated with the help of the experimental B( EI)-pro-

babilities using (‘te{’/ee/) ~ ,4/2

In a particular case, neglecting the operator A, - U?
Yl

in eq. (19) and putting the generalized form 59;((/;’/5[/; J

instead of ,)/? into the radial integral of eq. (14),

one obtains the result of previous worko[ ’7] where the



so-called " core-cexcitation stripping model® was treated
in the first order in the exit channel only.

4, To account the all orders im A in intermediate
transitions one needs to use concreicnuclear models., For
instance, basing on the results of ref. [5-1 ‘the operator
can be written in the framework of the surface phonon
vibration and rotational models:

a) one-phonon transition (0»/=2737)

Svib
ﬂz (10) ~6 (/i,%ﬂf-/?‘/%d*) /_’7,?) (23)

-

b) two~-phonon transition /(7-,

%,
ﬁ U0 - =4 b (146, ] /z,zzao/zo)/,,%,«@,%) ) (24)
¢) rotational trasitions (0>7=2%4%4% )
Grot 27 Wt (25)
j[ =[:7 ax /‘L_D(X/ESZ(X/,
/‘uf A4 (26)
H =1 L5 "R, 1S, 1 Re
2 1"/ c tjz “/‘5—:6\1,/7"2-5\'/'/:6\ + ) et
Tlere
/(/?/ @,Y/O Zﬁ¢/ 2? )"/P‘/a/?) \27)
-/ 2Ir! # Z) (28)
br=( %7 47 38, o),) ’
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where /5e/=/<0/§,)29 /0>/1/2 is an effective deformation
el

VAR

must be fulfilled. It was shown[slthat in the case of

P
parameter and the relation //‘?9'%) =K

rotatlonal model the all steps 1in entrance (/Z‘z) and
exit ( np) channels can be written separately, so that

the cross sectlion assumes a more obvious form
oZ, 2lgt! < ~rot = 2 2 Wl )2 (30)
6" (9) =8 5 5 Z/Za UsAZ/rz)e S B /
(}QMJL T oy M 7’%/’_40 /6112'9 ,

where the welght and spectroscopic factors have the forms

. , 2 Ar'a 4”" ’
B Z’:‘(i 150 7 (15 71400/79) " (4 04 feA ) o vofo) )Z’p qu 1
rot_ 2Lt Z (32)
Su= 145, r el s (G742 /T 5) %

Note that the well known perturbation result of ref. o]
is obtained from eq. (30) in a particular case, when only
7l,a= 0,2 are accocunted and the first terms in §
in eq. (26) are kept.

5. Now we estimate the order of higher step contributions
(with §; ) to the allowed transfer ( with ' ).
For thils we represent qualitatively the kinematical part of
an amplitude as follows[lo]

o
B, ~eqa,5ﬂ(/?9+z94). (33)

Then, with the help ofegs. (12) - (22) the ratio of the
Seoond to the first stripping steps becomes




L kR T % /)
x=2 Z 7% Tn (34

where ;2 is a correction factor ' used here in order

to account the vector additional coefficient contribution,
etc.

For spherical nuclei one must take into account
the phonon intermediate excitations. Supposing 44X ~70 ,
I=2 , Z=20 y M~4210 /QMJZ/ ~frfo’
and §y¢ ~ 0.5 we obtain

Zy ~03 =107 (35)

For deformed nuclei it is necessary to take into
consideration the different assymptotical exponential
behavionr of the bound-state Nilsson-type spherical compo-

nents. Assuming the surface character of the stripping

reactions we account this fact, putting
Grot ~Etp (4%, R ), where Ay, =y/Zrfe_ /TuiL

is a difference between the magnitudes of the bound-state mo-
ments of the corresponding comptnents, Then, expressing
the B(E2) probability as a function of the deformation

parameter /5 we obtain

AR Jag (36)
i~ i ey et R -

It is known that in the odd light-weight deformed nuclei

( A~ 25) the low-lying states are formed from the closely
disployed spherioal components, i.e. 4%, ~C0 and 5Zzt<¥Z,
Tms, for 4A ~ 10, A ~ 0.3 and [2el/)a,) ~0,2 =1
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one obtains

(37
2, ~ 05107 .

As to the heavy deformed nuclel 1t is clear from eq. (36)
that in different cases the gZDt — Tfactor may intensify
or relax the higher step contributions depending on the
fact which comporents must be necessarily taken into account
in a process., ,

Thus, we find out that the higher steps can rlay
an important role in the allowed transitions both in
angular distributions and absolute cross sections. This
thesis 1is confirmed by exact numerical calculations gilven
evze 1n regs. 11932] | 1t 4o clear that the forbidden

transitions are the pure two- or higher step processes,

I1
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