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1 
I. 

In paper/1/ the properties of the f.c.c. lattice with the nearest 

neighbour central force interaction were considered in the case 

of the arbitrary external pressure. In the present paper the instabi­

lity temperature, the critical temperature, the phonon frequencies, 

the phonon widths and the thermodynamical properties of the f.c.c. 

lattice are calculated in the high temperature limit. 

The High Temperature Limit ( (} •:>> ru n ) 

In/2/ an expression for the self-energy operator (1.4)x/ 

obtained in the high temperature limit in tne form 

2ru 

Ctl 
L 

) ' 

wac:• -· 

'(2.1) 

where Sk ( ~) is a dimensionless sum which was calculated 

/3/ CtJL -> in for some values { k,jl ,ruL=vBf((J,e)/M is the maximum fre-

quency of the lattice in the pseudoharmonic approximation, run ,. l.05ruL. 

The notations are the same as in/1/. 

x/The formulae of our preyir.us papeJ
1

/ are quoted as (1 ••• ), 
e.g. (1.4) means formula (1.4) of/1 , 
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Equation (1.8) can be written in the high temperature lif!Ut 

taking into account the explicit from (2.1) of the self-energy operator 
approximately as in /2/ ·. 

2 - g2 ((J, f) -1 1 CUL ~ f (O,f) u
2 

(f)= 3 8 I [ 1-o.n.e. - 1 +- ---a I , (2.2) 
2 fa( (J , f ) 24 (J 

'l'aking into account (1.17)1 {1.18) and {1.22) the S.C. equation (2.2) 
can be written approximately as follows 

. 4y P*(-i--)2 
F(y)=-11-[ o 

T* 

; 

6 T* 
-B]yl-

_ 1
1 

_ [ P*(-+-)2 
0 

3 T* 
2 y 

-B]y I e =0, 

(2.3) 

where T * = 8 I £ is the reduced temperature, B = 0.22 I 2 + 1 I y 12 • 

It is also convenient to introduce the dimensionless temperature 

r = 8 I cu 0 L =AT* I ll.76 , where A= Z £I£<~> is the dimensionless 

coupling constant of atoms, £~> "'1.02 cu 
0 

L is the zero-point energy 

per atom in the harmonic approximation, . cu 0 L = v'8T7M is the 

maximum value of the harmonica! vibrational frequency. 

We point out here that the S.C. equation {2.3) has different 

number of real solutions depending on the P* , T* values. '!'he 

physical solution is that one, which coincides with the harmonic 

solution if the anharmonic terms tend to zero. '!'he harmonic solu­

tion is given by 

yh 
T* 

2 
4ah 

T* 

P* f 2 P* f 2 
211 + --<-> +v1+-<-> 

6 r 0 h 6 r 
0 

h 

(2.4) 

'!'he dependence of the real solutions of the S.C. equation {2.3) 
on the reduced temperature T* and neduced 

in Fig. 2.1. If the pressure ( P* < P* ) and 
. 0 

(T*<T *( P* )) are sufficiently low the S.C. 
- s 

4 

pressure P* is given 

the temperature 

equation { 2,3) has real 

solutions, the smallest being the physical one. It 

a stable crystal state S 1 • The instability temper 

is determined by the coincidence of the hvo real sol1 

= y2 ( T; _).. Consequently the instability temperature 

mined by this condition can be obtained by solvinJ 

system of equations: F ( y) = 0 and F '(y) = 0 . Solut 

ponds to an unstable state. In all figures the dotte 

the unstable state. For T* > T* (P*) the solutio . s 

become complex conjugate therefore the phonon freqt 

complex conjugate too which shows the vibrationa 

the lattice in the state S 1 corresponding fo the 

It is worth-while to note that if P >~~> 0 in the regie: 

self-consistent equation (2.3) ha.s another real solu1 

corresponds to a stable state S 2 

In the region of sufficiently high pressure o 

P*> P* or T*> T* , the S.C. equation {2,3) has a 
- 0 - 0 

solutions, the smallest of them is the physical one, wh 

function of the temperature and the pressure. In this 

non frequencies are always real. '!'he critical tempe 

the critical pr~ssl.tre P * are characterized by the 
.. . •· ~ • . ~. 0 

of the' vibrational instability of the lattice and they . 

by the coincidence of three real solutions of the 

(2 3): y ( T * P * ) = y (T * P * ) = y (T * P * ) consequen 
• 1 o'o 2oo 3 o'o 

obtained from the solution of the following systen 

F (y ) = 0 I F '( y) = 0 I F "( y ) = 0 • 

';['he dependence of. the reduced instability temper. 

the reduced pressure P * is presented in Fig. 2. 

temperature limit we get the following value for _the c 

P * .. 1.35 and the critical temperature T* .. 0,98, 
0 0 . 

· The frequencies of the renormalized phone 

widths (1.3) according to (1.17)1 (1.18), (1.2 2) and 

written in the following form 

3 • __ £k_ .. a- 2 
cuo k 

10-2 _.!... ( 2 + _1_)2 
a y 
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'1igh temperature lif!Ut 

te self-energy operator 

(2.2) 

the S.C. equation (2.2) 

(2.3) 

e, B = 0.22 I 2 + 1 I y 12 
• 

tsionless temperature 

is the dimensionless 

the zero-point energy 

L=y8f,iM is the 

frequency. 

:m (2.3) , has different 

~* , T * values. The 

~s with the harmonic 

• The harmonic solu-

(2.4) 

S.C. equation (2.3) 

~essure P* is given 
e temperature 

[Uation (2.3) has real 

solutions, the smallest 

a stable crystal state 

being the physical one. It corresponds to 

S 1 • The instability temperature T * ( P *) 
- s 

is determined by the coincidence of the two real solutions: y 1 (T! ) = 
= y2 ( T: ) . Consequently the instability temperature T; ( P *) deter·­

mined by this condition can be obtained by solving the following 

system of equations: F ( y ) = 0 and F ' ( y) = 0 . Solution y 2 corr.es·­

ponds to an unstable state. In all figures the dotted lines denote 

the unstable state. For T * > T: ( P *) the solutions y 1 and y 2 

become complex conjugate therefore the phonon frequencies become 

complex conjugate too which shows the vibrational instability . of 

the lattice in the state S 1 corresponding to the solution y 
1 

It is worth-while to note that if P *> 0 in the region T * > T * , the 
- s 

self-consistent equation (2.3) ha-s another real solution y 
3 

which 

corresponds to a stable state 8 2 

In the region of sufficiently high pressure or temperature·: 

P*> P* or T*> T* , the S.C. equation (2.3) has alvvays two reel! 
0 - 0 

solutions, the smallest of them is the physical one, which is a smooth 

function of the temperature and the pressure. In this case the pho-

non frequencies are alvvays real. The critical temperature T ~ and 

the ~ri~cal pres~ure P: are characterized by the disappearance 

of the' vibrational instability of the lattice and they are determined . 

by the coincidence of three real solutions of the S.C. equation 

(2.3): y 
1
(T: , P; )=y 2<T: P: )=y3 (T! ,P:) consequently they can be 

obtained from the solution of the following system of equations 

F (y ) = 0 , F '( y ) = 0 , F "( y ) = 0 • 

';['he dependence of. the reduced instability temperature T* s on 

tl)e reduced pressure P* is presented in Fig. 2.2. In the high 

temperature limit we get the following value for .the critical pressure 

P: "' 1.35 and the critical temperature T~ "'0.98. 

The frequencies of the renormalized phonons and their 

widths (1.3) according to (1.17), (1.18), (1.2 2) and (2.1) can be 

written in the following form 

(k 3 -2 1 ( 1 )2 --- .. a--· 10 - 2+--
w0k 2 a y 
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rk 1 10-2"'* 1 {C) • 1 ,2 --=--• ..LV A. -\~ T --, 

WOk 2 a y (2.6) . 
(In the calculations the following approximate values were taken: 

-2 -2 ) 
Re sk "'3 X 10 ' Im s k "" 1 X 10 • In Fig. 2.3 the depen- · 

dence of the renormalized phonon frequencies ek I CiJ0 k (P*;. 0) 

on the reduced temperature T * is presented for some values of 

p * • In Fig. 2.4 r k I ( k is given as a function of T * • The 

results obtained here. for P * « 1 coincide 'with those of work/2/. 

In the high temperature limit according to '/2,3/ we can write 

the expressions (2.12) and (2.13) in the following form 

F 0 = 3 N fJ In ( 0.65 ~ ) , ( ) 
(J 2.7 

g2( (J, f) 
- ' 

f3((J, f) 
F (fJ)=-NfJ 2 A 

3 

where the numerical coefficient A "' 5.6 x 10-2. Taking into 

account (1.20), (2.2) and (2.7) the internal energy (1.10) and the 

free energy (1.11) can be written in the form 

1 2 P* e 2 
e = E "'0.85 T*- 2 a (l + 0.7 y ) +- ( --) 

3Ne 4 ro 
(2.8) 

1 7.8 a T* 2 y P * f 2 
f =--F .. T* In(--)-- -2a (1+- )+ --(--) . (2 9) 

3N ( A. T* 3 3 4 r
0 

• 

In the calculation of the free energy A = 20 was taken. 

In Fig. 2.5 the reduced thermodynamical potential g = f + P *v * 

is given as a function of the reduced temperature T* • We note 

here, that the function g ( T *) has a minimum at the temperature 

slighty lower than T: . The dependence of the reduced internal 

energy e on the temperature T* is presented in Fig. 2.6. We 

note here, that the decrease of the internal energy with the 

increase of the temperature does not appear in the pseudoharmonic 

6 

I. 

approximation and in the low temperature limit. In 

the internal energy is an increasing function of tl" 

and its curves have a van der Waals character. 

The dependence of the reduced volume v *= v, 
on the reduced pressure is given in Fig. 2. 7. It 

to note, that the curves have a van der Waals c 

analogous result was obtained in / 4 /. 

The calculation of the f.c.c. lattice properti, 

temperature limit and a detailed discussion of thE 

be given in the following paper. 
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(2.6) 

. te values were. taken: 

r1 Fig. 2.3 the depen­

lcies t:k I cu0 k (P*= 0) 

ted for some values of 

function of T * • The 

with . those of work/2/. 

to /2,3/ vve can write 

•wing form 

(2.7) 

3 x 10-2. Taking into 

energy (1.10) and the 

:>rm 

(2.8) 

P* e 2 
. )+ -(-) (2.9) 

4 r 0 

y ,\ = 20 was taken. 

otential g = f + P*v * 
.erature T* • We note 

m.im at the temperature 

)f the reduced internal 

sented in Fig. 2.6. We 

nal energy with the 

iri · the pseudoharmonic 

approximation and in the low temperature limit. In the both cases 

the internal energy is an increasing function of the temperature 

and its curves have a van der Waals character • 

The dependence of the reduced volume v * = V y 2 I N r ~ = ( Ur 0 )
8 

on the reduced pressure is given in Fig. 2. 7. It is worth-while 

to note, that the curves have a van der Waals character. An 

analogous result was obtained in /4/. 

The calculation of the f.c.c. lattice properties in the low 

temperature limit and a detailed discussion of the results will 

be given in the following paper. 
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