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In paper/l/ the properties of the f.c.c. lattice with the nearest‘
neighbour central force interaction were considered in the case
. of the arbitrary external pressure, In the present paper the instabi-
lity temperature, the critical temperature, the phonon frequencies,
the phonon widths and the thermodynamical properties of the f.c.c.
lattice are calculated in the high temperature limit.

The High Temperature Limit (6>> o )

In/2/ an expression for the self-energy operator (1.4)x/ was

obtained in the high temperature limit in the form

. ; ) a -
g (0,0) 2w <
I (e)==0 w5, ) 2.1)

fﬁ(e’Z) a)L

where S5, ( ) is a dimensionless sum which was, calculated
1n/3/ for some Lralues { k il o =V81(6,0)/M is the maximum fre-
quency of the lattice in the pseudoharmonic approximation, o ~1L05w,.

The notations are the same as in/1/,

XlThe formulae of our pre?nfus paper/ / are quoted as (1...',
e.g. (1.4) means formula (1.4) of .



Equation (1.8) can be written in the high temperature limit
taking into account the explicit from (2.1) of the self-energy operator

approximately as in /2/
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Taking into account (L17), (1.18) and (1.22) the S.C. equation (2.2)

can be written approximately as follows
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where T*=0/¢ is the reduced temperature, B=0.22{2+1/y}° .
It is also convenient to introduce the dimensionless temperature

r=0/w,, =AT*/11.76 , where A=Z ¢/ c® is the dimensionless
coupling constant of atoms, e(: ) 0y is the zero-point energy
per atom in the harmonic approximation, W4 L= V8 f/M is the

maximum value of the harmonical vibrational vfrequency.

We point out here that the S.C, equation (2.3)vhas different
number of real solutions depending on the P* , T* values, The
physical solution is that one, which coincides with the harmonic
solution if the anharmonic terms tend to zero, The harmonic solu-~

tion is given by

T* ) T *
Yy =—5— = _ ) (2.4)
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The dependence of the real solutions of the S.C, equation (2.3)
on the reduced temperature T* and reduced pressure P* s given
in Fig, 2,1, If the pressure (P*< P* ) and the temperature

(T*<T *(P*)) are sufﬁcienﬂy low the S.C. equation (2.3) has real
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solutions, the smallest being the physical one. It corresponds to
a stable crystal state §; . The instability temperature T * (P*)
is determined by the coincidence of the two real solutions: yl(T )=
= Y2(Ts ). Consequently the instability temperature T: (P*) deter-
mined by this condition can be obtained by solving the following
system of equations: F(y)=0 and F’(y)=0. Solution y, corres-
ponds to an unstable state. In all figures the dotted lines denote
the unstable state. For T*> T* (P*) the solutions y, and vy,
become complex conjugate therefore the phonon frequenciés become
complex conjugate too which shows the vibrational instability .ol-f
the lattice in the state S5, corresponding to the solution Y, .
It is worth-while to note that if P*0 in the region T*>T* , the
self~consistent equation (2.3) has another real solution y, which
corresponds to a stable state 5, .

In the region of sufficienlly high pressure or temperature:
P*>P* or T*>T* , the S.C. equation (2.3) has always two real
solutxons, the smal_lest of them is the physical one, which is a smooth
function of the temperature and the pressure, In this case the pho-.
non frequencies are always real, The critical temperature T’g and

the cr1t1ca1 pressure P* are characterized by the diéappearance

g of the wbratlonal 1nstab1].1ty of the lattice and they are determined .

'by, the coincidence of three real solutions of the S,C. equatm}n'
(2.3): y l(T’: » P* )=y (T* P* )=y, (T% ,P}) consequently they can be
obtained from the solution of the following system of equations
F(y)=0 , FA(y)=0 ,F"“(y)=0 ., .

The dependence of. the reduced instability temperature T¥ on
the reduced pressure P* is presented in Fig. 2.2, In the high
temperature limit we get the following wvalue for the critical pressure
P* = 1,35 and the critical temperature T} = 0,98,

The frequencies of the renormalized phonons and their
widths (1.3) according to (1..17), (1.18), (1.22) and (2,1) can be

written in the following form M

% _g-3 1072 Lo, 1y, . (2.5)
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(In the calculations the following approximate values were taken:
ReS, =~3x107% , ImS, =~ 1x107" ) . In Fig., 2.3 the depen-’
dence of the renormalized phonon frequencies ¢; /aw,, (P*=0)
on the reduced temperature T* is presented for some values of
P* . In Fig. 24 T, /e, is given as a function of T* . The
results obtained here. for P*<< 1 coincide ‘with those of work/2/,

In the high temperature limit according to 12,3/ we can write

the expressions (2.12) and (2.13) in the followmg form

F, = 3N @ In ( 0.65 —'--)
] (2.7)

. 2
Fo(6)=-No2a £40:0)
? 1300, )

where the numerical coefficient A ~ 5,6 x 10-2, Taking into

account (1.20), (2.2) and (2.7) the internal energy (1.10) and the

free energy (1.11) can be written in the form

e-—t E ~085T*-2a2(14+07y) s (L ¥ | (2.8)
3Ne 4 To
7.8 P* ) 2
ol Famrm (2 2y T a2, (—) . (2.9
3Ne¢ ‘)\ T* 3 3 4 r,

In the calculation of the free energy A =20 was taken,
In. Fig. 2.5 the reduced thermodynamical potential g =1+ P*y*
is given as a function of the reduced temperature T* , We note ,
here, that the function g(T*) has a minimum at the temperature
slighty lower than T} . The dependence of the reduced internal
energy e on the temperature T* is presented in Fig., 2.6, We
note here, that the decrease of the internal energy with the

increase of the temperature does not appear in the pseudoharmoniC“
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approximation and in the low temperature limit, In the both cases
the internal energy is an increasing function of the temperature
and its curves have a van der Waals character,

The dependence of the reduced volume v*=V\/-é—/ N'z=(2/"o )?
‘on the reduced pressure is given in Fig. 2,7. It is worth-while
to note, that the curves have a van der Waals character, An .
analogous result was obtained in /4/.

The calculation of the f.c,c. lattice properties in the low
temperature limit and a detailed discussion of the results will

be given in the following paper,

References

1. . Siklds and V.L.Aksienov. JINR, E4-5772, Dubna (1971).
2. N.M.Plakida and T.Siklds. phys.stat.sol, 39, 171 (1970).
3. A.A.Maradudin, A.E.Fein and G.,H. Vineyard, phys.stat.sol.,
2, 1479 (1962).
ALA.Maradudin, phys, stat, sol, 2, 1493 (1962),
4, L.vaneimendahl. Diplomarbeit, Physik-Department, T,H,.
Ml;inchen, 1970. "

Received by Publishing Department
on April 22, 1971,



Fig. 2.1. The real solutions of the S,C. equation.
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Fig, 2,2, The dependence of the instability temperature T* on

the reduced pressure P*
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Fig. 2.3. The dependence of the renormalized phonon frequencies
‘x/“'ok(P" 0) on the reduced temperature T* .
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Fig. 2.4, The dependence of the phonon widths I, /¢, on the
temperature T* ., '
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Fig. 2,5, The thermodynamical potential g=l+prv * as a
function of the temperature T*
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Fig, 2,6. The internal energy e =(1/3N¢)E

the temperature T*
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Fig. 2.7. The dependence of the reduced volume v*=(t /eyt
on the reduced pressure P* .
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