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1 
I. 

In paper/1/ the properties of the f.c.c. lattice with the nearest 

neighbour central force interaction were considered in the case 

of the arbitrary external pressure. In the present paper the instabi

lity temperature, the critical temperature, the phonon frequencies, 

the phonon widths and the thermodynamical properties of the f.c.c. 

lattice are calculated in the high temperature limit. 

The High Temperature Limit ( (} •:>> ru n ) 

In/2/ an expression for the self-energy operator (1.4)x/ 

obtained in the high temperature limit in tne form 

2ru 

Ctl 
L 

) ' 

wac:• -· 

'(2.1) 

where Sk ( ~) is a dimensionless sum which was calculated 

/3/ CtJL -> in for some values { k,jl ,ruL=vBf((J,e)/M is the maximum fre-

quency of the lattice in the pseudoharmonic approximation, run ,. l.05ruL. 

The notations are the same as in/1/. 

x/The formulae of our preyir.us papeJ
1

/ are quoted as (1 ••• ), 
e.g. (1.4) means formula (1.4) of/1 , 
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Equation (1.8) can be written in the high temperature lif!Ut 

taking into account the explicit from (2.1) of the self-energy operator 
approximately as in /2/ ·. 

2 - g2 ((J, f) -1 1 CUL ~ f (O,f) u
2 

(f)= 3 8 I [ 1-o.n.e. - 1 +- ---a I , (2.2) 
2 fa( (J , f ) 24 (J 

'l'aking into account (1.17)1 {1.18) and {1.22) the S.C. equation (2.2) 
can be written approximately as follows 

. 4y P*(-i--)2 
F(y)=-11-[ o 

T* 

; 

6 T* 
-B]yl-

_ 1
1 

_ [ P*(-+-)2 
0 

3 T* 
2 y 

-B]y I e =0, 

(2.3) 

where T * = 8 I £ is the reduced temperature, B = 0.22 I 2 + 1 I y 12 • 

It is also convenient to introduce the dimensionless temperature 

r = 8 I cu 0 L =AT* I ll.76 , where A= Z £I£<~> is the dimensionless 

coupling constant of atoms, £~> "'1.02 cu 
0 

L is the zero-point energy 

per atom in the harmonic approximation, . cu 0 L = v'8T7M is the 

maximum value of the harmonica! vibrational frequency. 

We point out here that the S.C. equation {2.3) has different 

number of real solutions depending on the P* , T* values. '!'he 

physical solution is that one, which coincides with the harmonic 

solution if the anharmonic terms tend to zero. '!'he harmonic solu

tion is given by 

yh 
T* 

2 
4ah 

T* 

P* f 2 P* f 2 
211 + --<-> +v1+-<-> 

6 r 0 h 6 r 
0 

h 

(2.4) 

'!'he dependence of the real solutions of the S.C. equation {2.3) 
on the reduced temperature T* and neduced 

in Fig. 2.1. If the pressure ( P* < P* ) and 
. 0 

(T*<T *( P* )) are sufficiently low the S.C. 
- s 

4 

pressure P* is given 

the temperature 

equation { 2,3) has real 

solutions, the smallest being the physical one. It 

a stable crystal state S 1 • The instability temper 

is determined by the coincidence of the hvo real sol1 

= y2 ( T; _).. Consequently the instability temperature 

mined by this condition can be obtained by solvinJ 

system of equations: F ( y) = 0 and F '(y) = 0 . Solut 

ponds to an unstable state. In all figures the dotte 

the unstable state. For T* > T* (P*) the solutio . s 

become complex conjugate therefore the phonon freqt 

complex conjugate too which shows the vibrationa 

the lattice in the state S 1 corresponding fo the 

It is worth-while to note that if P >~~> 0 in the regie: 

self-consistent equation (2.3) ha.s another real solu1 

corresponds to a stable state S 2 

In the region of sufficiently high pressure o 

P*> P* or T*> T* , the S.C. equation {2,3) has a 
- 0 - 0 

solutions, the smallest of them is the physical one, wh 

function of the temperature and the pressure. In this 

non frequencies are always real. '!'he critical tempe 

the critical pr~ssl.tre P * are characterized by the 
.. . •· ~ • . ~. 0 

of the' vibrational instability of the lattice and they . 

by the coincidence of three real solutions of the 

(2 3): y ( T * P * ) = y (T * P * ) = y (T * P * ) consequen 
• 1 o'o 2oo 3 o'o 

obtained from the solution of the following systen 

F (y ) = 0 I F '( y) = 0 I F "( y ) = 0 • 

';['he dependence of. the reduced instability temper. 

the reduced pressure P * is presented in Fig. 2. 

temperature limit we get the following value for _the c 

P * .. 1.35 and the critical temperature T* .. 0,98, 
0 0 . 

· The frequencies of the renormalized phone 

widths (1.3) according to (1.17)1 (1.18), (1.2 2) and 

written in the following form 

3 • __ £k_ .. a- 2 
cuo k 

10-2 _.!... ( 2 + _1_)2 
a y 

5 



'1igh temperature lif!Ut 

te self-energy operator 

(2.2) 

the S.C. equation (2.2) 

(2.3) 

e, B = 0.22 I 2 + 1 I y 12 
• 

tsionless temperature 

is the dimensionless 

the zero-point energy 

L=y8f,iM is the 

frequency. 

:m (2.3) , has different 

~* , T * values. The 

~s with the harmonic 

• The harmonic solu-

(2.4) 

S.C. equation (2.3) 

~essure P* is given 
e temperature 

[Uation (2.3) has real 

solutions, the smallest 

a stable crystal state 

being the physical one. It corresponds to 

S 1 • The instability temperature T * ( P *) 
- s 

is determined by the coincidence of the two real solutions: y 1 (T! ) = 
= y2 ( T: ) . Consequently the instability temperature T; ( P *) deter·

mined by this condition can be obtained by solving the following 

system of equations: F ( y ) = 0 and F ' ( y) = 0 . Solution y 2 corr.es·

ponds to an unstable state. In all figures the dotted lines denote 

the unstable state. For T * > T: ( P *) the solutions y 1 and y 2 

become complex conjugate therefore the phonon frequencies become 

complex conjugate too which shows the vibrational instability . of 

the lattice in the state S 1 corresponding to the solution y 
1 

It is worth-while to note that if P *> 0 in the region T * > T * , the 
- s 

self-consistent equation (2.3) ha-s another real solution y 
3 

which 

corresponds to a stable state 8 2 

In the region of sufficiently high pressure or temperature·: 

P*> P* or T*> T* , the S.C. equation (2.3) has alvvays two reel! 
0 - 0 

solutions, the smallest of them is the physical one, which is a smooth 

function of the temperature and the pressure. In this case the pho-

non frequencies are alvvays real. The critical temperature T ~ and 

the ~ri~cal pres~ure P: are characterized by the disappearance 

of the' vibrational instability of the lattice and they are determined . 

by the coincidence of three real solutions of the S.C. equation 

(2.3): y 
1
(T: , P; )=y 2<T: P: )=y3 (T! ,P:) consequently they can be 

obtained from the solution of the following system of equations 

F (y ) = 0 , F '( y ) = 0 , F "( y ) = 0 • 

';['he dependence of. the reduced instability temperature T* s on 

tl)e reduced pressure P* is presented in Fig. 2.2. In the high 

temperature limit we get the following value for .the critical pressure 

P: "' 1.35 and the critical temperature T~ "'0.98. 

The frequencies of the renormalized phonons and their 

widths (1.3) according to (1.17), (1.18), (1.2 2) and (2.1) can be 

written in the following form 

(k 3 -2 1 ( 1 )2 --- .. a--· 10 - 2+--
w0k 2 a y 
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rk 1 10-2"'* 1 {C) • 1 ,2 --=--• ..LV A. -\~ T --, 

WOk 2 a y (2.6) . 
(In the calculations the following approximate values were taken: 

-2 -2 ) 
Re sk "'3 X 10 ' Im s k "" 1 X 10 • In Fig. 2.3 the depen- · 

dence of the renormalized phonon frequencies ek I CiJ0 k (P*;. 0) 

on the reduced temperature T * is presented for some values of 

p * • In Fig. 2.4 r k I ( k is given as a function of T * • The 

results obtained here. for P * « 1 coincide 'with those of work/2/. 

In the high temperature limit according to '/2,3/ we can write 

the expressions (2.12) and (2.13) in the following form 

F 0 = 3 N fJ In ( 0.65 ~ ) , ( ) 
(J 2.7 

g2( (J, f) 
- ' 

f3((J, f) 
F (fJ)=-NfJ 2 A 

3 

where the numerical coefficient A "' 5.6 x 10-2. Taking into 

account (1.20), (2.2) and (2.7) the internal energy (1.10) and the 

free energy (1.11) can be written in the form 

1 2 P* e 2 
e = E "'0.85 T*- 2 a (l + 0.7 y ) +- ( --) 

3Ne 4 ro 
(2.8) 

1 7.8 a T* 2 y P * f 2 
f =--F .. T* In(--)-- -2a (1+- )+ --(--) . (2 9) 

3N ( A. T* 3 3 4 r
0 

• 

In the calculation of the free energy A = 20 was taken. 

In Fig. 2.5 the reduced thermodynamical potential g = f + P *v * 

is given as a function of the reduced temperature T* • We note 

here, that the function g ( T *) has a minimum at the temperature 

slighty lower than T: . The dependence of the reduced internal 

energy e on the temperature T* is presented in Fig. 2.6. We 

note here, that the decrease of the internal energy with the 

increase of the temperature does not appear in the pseudoharmonic 

6 

I. 

approximation and in the low temperature limit. In 

the internal energy is an increasing function of tl" 

and its curves have a van der Waals character. 

The dependence of the reduced volume v *= v, 
on the reduced pressure is given in Fig. 2. 7. It 

to note, that the curves have a van der Waals c 

analogous result was obtained in / 4 /. 

The calculation of the f.c.c. lattice properti, 

temperature limit and a detailed discussion of thE 

be given in the following paper. 
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(2.6) 

. te values were. taken: 

r1 Fig. 2.3 the depen

lcies t:k I cu0 k (P*= 0) 

ted for some values of 

function of T * • The 

with . those of work/2/. 

to /2,3/ vve can write 

•wing form 

(2.7) 

3 x 10-2. Taking into 

energy (1.10) and the 

:>rm 

(2.8) 

P* e 2 
. )+ -(-) (2.9) 

4 r 0 

y ,\ = 20 was taken. 

otential g = f + P*v * 
.erature T* • We note 

m.im at the temperature 

)f the reduced internal 

sented in Fig. 2.6. We 

nal energy with the 

iri · the pseudoharmonic 

approximation and in the low temperature limit. In the both cases 

the internal energy is an increasing function of the temperature 

and its curves have a van der Waals character • 

The dependence of the reduced volume v * = V y 2 I N r ~ = ( Ur 0 )
8 

on the reduced pressure is given in Fig. 2. 7. It is worth-while 

to note, that the curves have a van der Waals character. An 

analogous result was obtained in /4/. 

The calculation of the f.c.c. lattice properties in the low 

temperature limit and a detailed discussion of the results will 

be given in the following paper. 
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