$C 34 / \delta$
 A-29

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИСС́ЛЕДОВАНИЙ
Дубна

B. Akhmadkhodzaev, V.B.Belyaev,

 J. Wrzecionko , A.L.ZubarevCALCULATIONS OF PROPERTIES OF THE THREE-NUCLEON SYSTEMS WITH LOCAL POTENTIALS

1971

B. Akhmadkhodzaev*, V.B.Belyaev, J. Wrzecionk $0^{* *}$, A.L.Zubarev***

CALCULATIONS OF PROPERTIES OF THE THREE-NUCLEON SYSTEMS WITH LOCAL POTENTIALS

[^0]In the last jears the sensible progress in a model-independent description of properties of the three-nuoleon aystem has been made. The model-independent description is given by the correct dynamical equations - the Faddeev equations, and quite effective methods for the solution of these equations.

Almost all the methods for solving the Faddeev equations can be divided into two groups. The first group contains the methods $/ 1 /$ which enable one to derive the approximate solutions of the exact equations. The second group inoludes the methods $/ 2$ / for obtaining the exact solutions of certain approximate equations. The above approximation consists in the replacement of the exaot two-body $t \rightarrow$ matrix by superposition of the faotorized terms. It means that within the second group methods the approximation of three-body problem 1s made at the level of the two-partiole problem. This makes it possible to introduce there the oriteria to oharacterize the degree of approximation in a way independent of the quantity calculated.

Hereafter one of such possibilities of solving the Faddeer equations based on the so-called Bateman method $/ 3 /$ will be considered The prooedure developed turns out to be rather unirersal and permits one to solre the Faddeer equations for the local potentials of an arbitrary shape. The method requires no changes if one proceeds from the bound-state desoription to the soattering problell.

Thus let the 1-st partial wave projection of the potential in the momentum representation be expressed as $V_{l}\left(K, K^{\prime}\right)$

$$
V_{l}\left(k, k^{\prime}\right)=\frac{1}{2 \pi^{2}} \int_{0} j_{l}(k r) j_{l}\left(k^{\prime} r\right) V(r) r^{2} d r
$$

Without loosing the community in assertions we consider the oas $1=0$ for the Yukawa potential.

As a point of departure we apply to the plot of the function

Using the Batsman technique let us cut the surface $V_{0}\left(k, k^{\prime}\right)_{\text {by }}$ the planes which are parallel to the coordinate planes and construct the approximate surface $\tilde{V}\left(k, k^{\prime}\right)$ coinciding with the exact one along the lines of intersections of those planes with the surface $V_{0}\left(k, k^{\prime}\right)$. The function $\widetilde{V}\left(k, k^{\prime}\right)$ is of the form

$$
\begin{equation*}
\widetilde{V}\left(k, k^{\prime}\right)=\sum_{i, j=1}^{N}\left[d^{-1}\right]_{i j} V_{0}\left(k, s_{i}\right) V_{0}\left(s_{j}, k^{\prime}\right), \tag{1}
\end{equation*}
$$

where $d_{i j}=V_{0}\left(s_{i}, s_{j}\right)$ and s_{i} are, for the moment, arbitrary parameters.

In such a way we possess the approximate factorized potential $\widetilde{V}\left(k, k^{\prime}\right)$ which coincides with local one $V_{0}\left(k, k^{\prime}\right)$ along N lines $V_{0}\left(k, s_{i}\right)$. Hence, it is also clear that ohoosing number N sufficiently large and placing the points S_{i} in a proper way it is possible to
approximate as good as necessary the local potential $V_{0}\left(k, k^{\prime}\right)$ by the expression (1). It can be shown/4/, if one needs, that for the appropriate ohoioe of the points S_{i} the series (1) oonverges uniformly. So far for all the short-range potentials the functions $V_{\ell}\left(k, K^{\prime}\right)$ deorease with increasing K and K^{\prime} the oonvergenoe of (1) will be the faster the stronger this decrease. Finally, we shall fix the parameters S_{i} by minimizing the mean-square deviation X^{2} of the approximate potential from the exact one:

$$
\begin{equation*}
X^{2}\left(s_{1} \ldots s_{N}\right)=\frac{\iint\left|V\left(k, k^{\prime}\right)-\tilde{V}\left(k, k^{\prime}\right)\right|^{2} d k d k^{\prime}}{\iint V^{2}\left(k, k^{\prime}\right) d k d k^{\prime}} \tag{2}
\end{equation*}
$$

The quantity X^{2} oan serve for a oriterion of calculation acouraoy ${ }^{\text {II }}$ sinoe no other approximations are made.

Now, solving the Lippman-Sohwinger equation with a potential of the type (1) for the partial t-matrix $t_{\ell}\left(k, k^{\prime}, z\right)$ we find

$$
\begin{equation*}
t_{l}\left(k, k^{\prime}, z\right)=\sum_{i, j=1}^{N}\left[C^{-1}(z)\right]_{i j} V_{l}\left(k, s_{i}\right) V_{l}\left(s_{j}, k^{\prime}\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{i j}(z)=d_{i j}+8 \pi \mu_{12} I_{i j}(z) \\
& L_{i j}(z)=\int_{0}^{\infty} \frac{V_{\ell}\left(k, s_{i}\right) V_{\ell}\left(k, s_{j}\right) k^{2} d k}{k^{2}-2 \mu_{12} z-i \varepsilon}
\end{aligned}
$$

and $\mu_{12}{ }^{1 s}$ the reduoed mass of the colliding partioles.
The expression (3) 1 s the most oonvenient for the potentials

Fote that the actual acouraoy of computing some quantities can be and, in faot, is higher than an estimation of (2).
of which the Fourier transforms are expressed in the explicit analytio form (egg., for superpositions of the Yukawa potentials).

Nevertheless, there exist phenomenological potentials such as, for instance, the Hamada-Johnston potential to which the Bateman method cannot be applied immediately. In this case the functions $V\left(k, s_{i}\right)$ in (1) should be replaced, for example, by the interpolting functions $P\left(K, S_{i}\right) / 4 /$ coinciding with $V\left(K, S_{i}\right)$ at the points $S_{1}, S_{2}, \cdots S_{N}, S_{N+1}, \cdots S_{N+M}$.

Then the expression

$$
\begin{gather*}
\tilde{V}\left(k, x^{\prime}\right)=\sum_{i, j=1}^{N}\left[d^{-1}\right]_{i j} \rho\left(k, s_{i}\right) P\left(s_{j}, k^{\prime}\right) \tag{la}\\
d_{i j}=V\left(s_{i}, s_{j}\right)
\end{gather*}
$$

ooinoides with the Fourier transform of potential at the points

$$
\begin{array}{ll}
\tilde{V}\left(s_{i}, s_{j}\right)=V\left(s_{i}, s_{j}\right) & 1 \leq i \leq N \\
\tilde{V}\left(s_{j}, s_{i}\right)=V\left(s_{j}, s_{i}\right) & 1 \leq j \leq N+M
\end{array}
$$

Just as (1) the expression (la) converges uniformly.
Next, if the t-matrix is ohosen in the form (3), the Faddeev equations for the definite momentum states reduce to the system of the one-dimensional equations. In partioular, these were solved for the following problems: three-barjon bound state $\left(H^{3}, \mathrm{He}^{3}, \Lambda^{3}\right)$ and nd-soattering at zero energy of neutrons. Calculations were performed with two rrealistion potentials describing ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$ - phase shifts of NN-soattering in the energy range from 0 up to $300-400 \mathrm{MeV}$ as well as with a number of potentials without repulsion.

Let us list here the potentials used

$$
\begin{gather*}
V_{1 m}(r)=V_{o m}\left[e^{-2\left(2-r_{m}\right) / a_{m}}-2 e^{-\left(2-2_{m}\right) / a_{m}}\right] \tag{4}\\
m=1,2 ; 3 .
\end{gather*}
$$

Table I. Parameters of the potential (4).

Potent- System	a_{0}	η_{0}	$V_{0 m}$	a_{m}	r_{m}
taal	(fm)	(fm)	(Mev)	(fm)	(fm)
V_{11}	${ }^{1} S_{0}, n p$	-23.678 ± 0.028	2.44 ± 0.11	61.99	0.3957
$V_{12}{ }^{1} S_{0}, n n$	-17 ± 1	2.84 ± 0.03	40.38	0.4799	1.0531
$V_{13}{ }^{3} S_{1}, n p$	$+5.397 \pm 0.011$	1.727 ± 0.013	119.49	0.3408	0.8668

(a_{0}, r_{0} are the scattering length and effective range, respeotimely)

$$
\begin{aligned}
V_{2 m}(2) & =\lambda_{1 m} \frac{e^{-\mu_{1 m} 2}}{2}+\lambda_{2 m} \frac{e^{-\mu_{2 m}{ }^{2}}}{2} \\
& m=1,2,3
\end{aligned}
$$

Table II. Parameters of the potential (5).

In Table III there are presented the oaloulation results for the doublet soattering length ${ }^{2} a$ and the tritium binding energy E_{T} as functions of the singlet radius $\eta_{o s}$. These have been oomputed for the following four types of potentials without repulsion: S -square-well potential, G - the Gaussian potential, E - exponential potential and H - the Hulten potential ${ }^{*}$).

Table III.

$\begin{aligned} & \text { Ros } \\ & (\mathrm{fm}) \end{aligned}$	$\begin{gathered} { }^{2} a_{(s)} \\ (\mathrm{fm}) \end{gathered}$	$\begin{aligned} & { }^{2} a(G) \\ & (\mathrm{fm}) \end{aligned}$	$\begin{array}{r} { }^{2} a(E) \\ (\mathrm{fm}) \end{array}$	$\begin{gathered} { }^{2} a(H) \\ (f m) \end{gathered}$	$\begin{aligned} & E_{r}(s) \\ & \text { MRV) } \end{aligned}$	$\begin{aligned} & E_{T}(G) \\ & (M R V) \end{aligned}$	$\begin{aligned} & E_{\mathrm{T}}(E) \\ & \text { (Mev) } \end{aligned}$	$\begin{aligned} & E_{T}(H) \\ & \text { (MRV) } \end{aligned}$
2.5	0.33	-0.08	-0.4		9.15	9.33	9.4	
2.6	0.52	0.11	-0.21		8.93	9.15	9.12	
2.704	0.71	0.285	-0.02	-1.8	8.72	8.96	9.02	10.5
2.8	0.9	0.46	0.17		8.52	8.76	8.83	

Two-particle parameters in Table III are as follows: $a_{0 S}=-23.714 \mathrm{fm} ., \quad a_{0 t}=5.4 .25 \mathrm{fm.g} \quad \tau_{0 t}=1.749 \mathrm{fm}$.

Throughout all the oalculations there has been used t-matrix (3) with $N=4$, the quantity $\sqrt{X_{N=4}^{2}}$ being equal to 6%, but the parameters a_{0} and z_{0} calculated differ from the initial ones only by about 1 \%.

To economize "paper space" we do not present here the results
${ }^{\text {6) }}$ The oaloulations were based on the separable representation of the two-partiole t-matrix by the Bateman method for the $S+E-$ potentials and for the Hulten potential H the expansion (la) was used.
for the spinless systems calculated by the same method and only point out the rapid oonvergence of the prooedure as for the soattering length so for the binding energy/7/.

Further, Table IV lists the oaloulation results for the doublet soattering length ${ }^{2} a$ and the tritium binding energy E_{T} as well as the experimental data on ${ }^{2} a$ and E_{T}. Table IV.

	$V_{11} V_{13}^{/ 7 /}$	$V_{12} V_{13}^{/ 7 /}$	$V_{22} V_{23}$	$\begin{array}{r} / 7 / \\ V_{21} V_{23} \end{array}$	$\begin{aligned} & \text { Experimental } \\ & \text { data } \end{aligned}$
${ }^{2} a(\mathrm{~mm})$	0.54	1.33	0.68	1.2	$\begin{aligned} & 0.7 \pm 0.3^{/ 8 /} \\ & 0.15 \pm 0.05^{/ 10 /} \\ & 0.48 \pm 0.05^{/ 9 /} \end{aligned}$
$E_{T}(\mathrm{MeV})$	9.12	8.10	8.90	8.56	8.48
$r_{o s}$ (fm)	2.44	2.7	2.6	2.8	

From Table IV it can be seen that for the "realistio" potentials the dependence of the binding energy and doublet soattering length on the magnitude of the singlet radius is considerably stronger than on the funotional shape of potential. The above situation is oompletely opposite that for the oalculations with the potentials without repulsion (which desoribe the data on "effective range" only), where the shape dependenoe $1 s$ more pronounoed (see Table III and Refs. $/ 1,12,13 /$). If this fact is not aooidental then computing of ${ }^{2} a$ and E_{T} with the "realistio" potentials apparently gives
no possibility to distinguish between various shapes of potentials. If all the results of calculations of E_{T} and ${ }^{2} a^{3}$ with the potentials $s-H$ are plotted as $E_{T}\left(\tau_{0 s}\right)$ and ${ }^{2} a\left(\tau_{o s}\right)$ then one obtains the straight ines and it turns out that the most close to the realistic case is just the result oaloulated with the squarewell potential without repulsion.

Table IV indicates also that beoause of large error the oldest experimental data do not allow to fix the definite variant of oiloulations - The most consistent with the experiment $/ 9 /$ are the calculations with $Z_{o s}=2.4$. However, if the correct experiment is the experiment $/ 10 /$ then the essential corrections to the present knowledge about the nature of NN-interaotions are necessary in order to agree the experimental data wt the calculations. One of the possibilities to obtain the above oonsistenoy with the experiment $/ 10$. Is as follows.

If we take the potential of the form

$$
V(r)= \begin{cases}\left.\lambda \delta_{(2-2}\right)+\Psi(2), & 2 \leq 2< \tag{6}\\ V_{1}(2) & 2>2<\end{cases}
$$

then it is easy to see that the phase shift of the scattering on such potential does not depend on Ψ and NN-wave function derived with this potential $(\Psi \neq 0)$ has the node $U\left(r_{c}\right)=0$. choosing the functions Ψ in the form $\Psi^{s}=V \delta\left(2-2_{1}\right), \Psi^{t} \equiv 0$ and the attraction as $r_{1}<r_{c}$

$$
V_{1}(z)= \begin{cases}-V_{1}, & r_{<}<2 \leq r_{0} \tag{7}\\ 0, & z>20\end{cases}
$$

where

$$
\begin{aligned}
& V_{1}^{t}=48.05 \mathrm{MeV}, \quad, \quad \tau_{c}^{t}=0.17 \mathrm{fm} . \\
& q_{0}^{t}=1.87 \mathrm{Im}, \\
& V_{1}^{S}=32.3 \mathrm{MeV}, \quad \tau_{C}^{S}=0.177 \mathrm{fm}, \quad \ell_{0}^{S}=1.9 \mathrm{fm} .
\end{aligned}
$$

we get the values of the doublet scattering length ${ }^{2} a$ and tritium binding energy $E_{T} \quad 11$ ted in Table v).

Table V_{0}

Thus, we can conclude that the very strong dependence of the three-body quantities on the off-shell forces I takes place. This is due to the strong dependence of the behaviour of the twonucleon wave function $U(2)$ on the shape of \mathbb{I} at $2<2$ a Since the behaviour of $U(z)$ at $2<\tau_{c}$, at least in the case of singlet soattering, is not known then it is quite possible to introduce the off-shell forces Ψ in singlet state of which the shape and parameters are derived from the three-body problem.

Further, the results of the following oaloulations: the chargeand magnetic radio of He^{3} and H^{3} nuclei, the admixture of the mixed symmetry state P_{s}^{\prime}, the quartet scattering length and axial matrix element $\left|\int \vec{\sigma}\right|^{2}$ for beta-decay of tritium with the potentials (4) and (5) $115 /$ are presented in Table VI.
$x)_{\text {It should be noted that the potential (7) provides too low value }}$ of $Z_{o s}=2.15 \mathrm{fm}$.

Potentials	$V_{11} V_{13}$	$V_{21} V_{23}$	Experimental data
P_{s}	4.7\%	2\%	
${ }^{4} \alpha$ (fm)	6.35	6.37	6.45 ± 0.05
$R_{m}\left(H^{3}\right)(f m)$	1.52	1.71	1.7 ± 0.05
$R_{m}\left(H_{e}^{3}\right)(f m)$	1.48	1.70	1.74 ± 0.05
$\Delta=4 R_{c h}^{2}\left(H_{C}^{3}\right)-R_{c h}^{2}\left(H^{3}\right)$	10.24	11.24	11.1 ± 0.58
$\left\|\int \vec{\sigma}\right\|^{2}$	2.63	2.83	$2.84 \pm 0.06^{/ 16 /}$

Aside from the quartet soattering length whioh is the same for both potentials all the given results testify to the potential (5) with the value qos $=2.8 \mathrm{fm}$. The reasons of such a differenoe between the potentials (4) and (5) are as follows: First, the repulsion in the singlet part of (4) is not enough that gives rise to inoreased values of the binding energy and deoreased values of the eleotromagnetio radii. Second, the attraotion in the triplet part of (4) is rather overrated beoause of whioh the value of $P_{S^{\prime}}$ is rather higher and the value of axial matrix element differs from that of experiment for beta-decay. We also picture in Fig.I the dependenoe of ratio of charge form factors of nuolei H^{3} and He^{3} on the momentum transfer squared under condition that the neutron form factor 1 s zero. Both the ourves relate to the calculations with the potential (5) but the solid curve was found with the rough acoount of the Coulomb interaction in He^{3} nucleus. The procedure was as follows. As the protons in He^{3} interaot in the singlet state so we have assumed the Coulomb potential to be responsible only for the deorease of the singlet
attraction. The deorease of attraotion was chosen in suoh a way that the Coulomb energy $E_{C}=0.76 \mathrm{MeV}$ was reproduoed.

The "body" form faotors $F_{0}\left(q^{2}\right)$ and $F_{L}\left(q^{2}\right)$ were oaloulated by using the potentials (4) and (5) without the Coulomb interaot1on/15/, too. The curve for oalculations with the potential (4) 1s higher than the experimental one, the disagreement inoreases with the growth of 9^{2} whioh, in turn, shows the nonsuffioient repulsion in the potential (4). As soon as the experimental data /19/ on the eleotrio form factor of He^{3} in the range $8 \leq q^{2} \leq 20 \mathrm{fm}^{-2}$ became available we computed this form factor with the potential (5). Our calculations (as in the paper/20/) do not result in the experimental minimum on the ourve $\left|F_{c h}\left(q^{2}\right)\right|$ at $q^{2} \sim 10 \mathrm{fm}^{-2}$. This indioates probably the stronger repulsion at short distanoes than in the potential (5). The above assertion has been oonfirmed by the oaloulations of form faotors of He^{3} and T with the Hamada-Johnston potential providing the minimum required experimentally,

So, if for the moment we do not take into consideration the recent experimental data on the doublet soattering length then we can say that the potential (5) with Vos $=2.8$ is the most preferable. The bound state wave funotions obtained by using this potential apparently reveal in the most adequate way the low-energy properties of the system. This has "inspired" us to compute the reaotion of μ-oapture on He^{3} nuoleus. If the nuclear wave funotions are known the probability of this reaotion depends only on one unknown variable - the weak coupling constant g_{p} of the induoed pseudosoalar interaotion. By using the experimental value of probability equal to $1468 \mathrm{seo}^{-1}$ for the pseudosoalar ooupling oonstant we get

$$
\frac{g_{P}}{g_{A}}=5.33
$$

Finally, we briefly review the problem of hypertritium. There exists the opinion (based on the calculations of light hypernuclei by the variational method $/ 17 /$) that the parameters of $\wedge N$-interaction employed to obtain the binding energy of light hypernuclei are somewhat different from those of ΛN-potential describing the elastic soattering of Λ-partioles on protons at low energies. By the above method we have caloulated/18/ the binding energy of Λ^{3} with the potentials of $\wedge N$ - and NN-interaotions of the form (4). The parameters of ΛN-potentials were fixed in such a was that the binding energj of $\wedge^{H^{3}}$ and the oross section of \wedge p-scattering were reproduced simultaneously. It turned out that the agreement of these data was possible only for the repulsion radius (1.e. the radius at whioh. a potential ohanges its sign) 0.55 or 0.65 fm (for the potentials of two types).

Fig. 1

REFERENCES

1. J.A.TJon. Phys.Rev., D7, 2109 (1970);
Y.E.K1m. J.Math.Phys., 10, 1491(1969).
2. V.N. Efimov. Preprint JINR P-2890, Dubna, 1966.
G. Sitenko, V.F.Kharchenko, N.M.Petrov. Phys.Lett., 28B, 308(1968);
V.B.Belyaev, J.Wrzecionko. Preprint JINR P4-4144, Dubna 1968.
3. H.Bateman. Proc.Roy.Soc., A100, 441(1922);
L.V.Kantorovich, V.I.Crylov. Priblifennye methody vysshego analysa, Gostekhizdat, M. 1950;
B.Akhmadkhodzaev, V.B.Belyaev, J.Wrzeo1onko. Yadernaya Fizika, 11, 5(1970).
4. V.B. Belyaev, A.L. Zubarev. JINR Comunications, P4-5510,

Dubna (1970); Yadernaya F1zika, 14, No 8 (1971).
5. G.Darewyoh, A.E.S.Green. Phys.Rev., 164, 1324(1967).
6. R.A.Malfliet and J.A.TJon. Nuol.Phys., A127, 161(1969).
7. B.Akhmadkhodzaev, V.B.Belyaev, J.Wrzecionko. JETP (Letters), 9, 692(1969);
V.B.Belyaev, J.Wrzeoionko, A.L.Zubarev. Preprint JINR P4-5000, Dubna 1970; Yadernaya F1z1ka, 12, 923(1970).
8. D.G.Hurst, J.Aloook. Can.J.Phys., 29, 26(1951).
9. L.Koster and H.Ungerer. Z.Phys., B219, N3 (1969).
10. W.T.Van Oers and I.D.Seagrave. Phys.Lett., 24B, 562(1967).
11. A.M.Badalyan et al. Yadernaya Fizika, 8 , 313(1968).
12. L.P.Kok. Factorability and the Nuclear Three-Body Problem. Nova Press, Groningen 1969.
13. G. Sitenko, V.F.Kharohenko. Preprint ITPh 69-71, Kiev, 1969. 14. V.B.Belyaev, A.L.Zubarev. Preprint JINR P1-5345, Dúbna, 1970.
15. B.Akhmadkhodzaev, V.B.Belyaev, J.Wrzecionko. Preprint JINR P4-4986, Dubna 1970.
16. R.C.Salgo, H.H.Staub. Nuol.Phys., Al38, 417(1969).
17. R.C.Herndon, Y.C.Tang. Phys.Rev., 165, 1093(1968); 153, 1091 (1967).
18. B.Akhmadkhodzaev, V.B.Belyaer, J.Wrzecionko. JETPh (Letters), 10, 557(1969).
19. J.S.McCarthy et al. Phys.Rev.Lett., 25, 884(1970).
20. T.A.Tjon, B.F.Gibson and J.S.O'Connell. Phys.Rev.Lett., 25, 540(1970).
21. M.A.Hennell and L.M.Delves. Preprint of University of Liverpool, England 1970.

Received by Publishing Department on Apr11 21, 1971.

[^0]: - Institute of Nuclear Physics, Tashkent, USSR

 Institute for Nuclear Research, Warshawa, Poland
 Phys. Dept of University, Tashkent, USSR

