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Recently A/ in the '%° Ba nucleus an isomeric state of

an energy of 2,48 MeV has been found, There IS some experimen-
tal evidence that the isomeric transxtlon is the M2 transition to
the 6 level of the quasirotational band. Hence we may believe
that this state has 8~ spin and parity. The hindrance factor for
such a transition is 107. The evidence for the existence of a
similar 2,34 MeV isomeric state in the 132 Ce nucleus 2 per-
mitSus to assume that the both states are the two-quasiparticle
neutron states, In ref, Al isomerism of these states was accounted
for by the K -forblddenness. Assuming that the 0Ba nucleus
is deformed, i.e, the 6 state is the level of the rotational bahd
and the 8 isomeric state is a two-quasiparticle one it is easy
to find the degree of K -forbiddenness for the M2 transition
to be equal to 6,

. However, these assumptions are in disagreement with the

following experimental_ results:



1. The ratios of the energies of the 8+, 6+, 4+, 2% levels in this

nucleus strictly differ from the corresponding ones in strongly

deformed nuclei,

2, For strorgly deformed ‘nuclei the value of the hindrance factor,
calculated per one degree of K -forbiddenness is of 1,5 + 2
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orders of magnitude -while for a it is somewhat larger

than one order of magnitude.

Anocther possibility of explaining isomerism is the assump-
tion that this isomeric state is a two-quasiparticle state in the
spherical nucleus. Then the 6' state would essentially be a
six—quasiparticle one and isomerism would arise due to the large
difference in the number of quasiparticles for the initial isomeric
and the final 6° state.

However, it is impossible to explain in such a way the
absence of the two-quasiparticle levels below the 8 state the
decays to which would be allowed.

Thus, on the one hand, the absence of the two-quasiparticle
levels below 8 level in ''°Ba can be easily seen if this nucleus
is assumed to be deformed, On the other hand, this assumption
leads to the wrong values of the ratios of quasirotational level
energies and to the large value for the hindrance factor.

On Fig, 1 and 2 tk;e ground and excited {n 404, , n 5141 ]
date energies are given as functions of the collective B
variable. The tvo-quasiparticle [n 404' | n 5141] neutron state

is the one of the lowest states in 130Ba . The method of calcu-

I3/

As may be seen on Fig, 1, the difference between the

lation is the same as in ref,

deformation energies for prolate and oblate shapes of nuclei in

the ground state turns out to be small so that we are unéble



to assign to %0 B2 in the ground state some definite equilibrium
shape, But at the same time the dependence of the excited state
energy (see Fig, 2) on B8 enables us to assign to it a prolate
shape. To describe these properties of 208.  the following model
is just proposed.

Let us assume that:

1. The ground and quasirotational states may be considered in the
framework of the Bohr-Mottelson model with y -independent

potential energy a] (see Fig. 1).

2, The coupling of nuclear collective motion with quasiparticle
excitations leads to an additional dependence of the excited state
deformation energies upon y , such that the 8 two-quasiparticle
state may be considered in the framework of the collective model
with the potential energy having a deep minimum at y = 0, Then,

according to ref, [a] the quasirotatiomal level wave functions are
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Let us assume that the potential energy, being a function
of B , has a minimum sufficiently deep to allow the replacement

of B2 by the equilibrium value in the expression for the moment
E(4t) . E(6*) . E@B7)

E2t) | E(2Y) | E@T)

for the quasirotational levels turn out to be 2,5; 4.5; 7 correspon-

of inertia, Then the energy ratios:

dingly. These values are in good agreement with the e xperimental
ones: 2,54; 4.48; 6,86; for l30Ba .

It is worthwhile to note that the wave functions (1) have
components with different K} . For example, the contribution
of the K = 6 component to the norm of the 61 state wave func-
tion is 5% (see Appendix 1), It means that in this model the '
existence of the isomeric state cannot be explained by the K-

~-forbiddenness alone.,

For the collective potential energy, having a deep minimum

at y = 0, the 8~ two—quasiparticle state wave function is:
Il
\/-——i-—— F'(B)e 270 (D° (atat,) +
24”2 2 M8 s 8 K=8
Yo
p° (ata’ ) 10>
+ M-8 s 8’ K=—8 ’
where l‘

4

J F'*(B)yp dB=1.

0
The M2 transition from this state to the 6+ quasirotational state
is forbidden, Indeed, the 8 two—quasiparticle state has K = 8,
while the M2 transition operator may change the K -number of

the quasiparticle maximum by two units.



The forbiddenness becomes weaker if one takes into account .
the interaction of quasiparticle excitations with y -—vibrations,

the Hamiltonian of which has the form /5/

(22)
v a a
s0,s’0” ss’ s0 s’0’

H =-ho, B, v, 3 f

int
8 0,5'0'

Then the weakening of the forbiddenness is due to the appearance
of the three-phonon component in the 8  state wave function, The
quasiparticle and collective parts of this component have K = 2
and K = 6 respectively, The contribution of this component to
the norm of the 8  state wave function calculated with the help

of perturbation theory is found to be equal to 10"5 (see Appendix
2). Thus, within the above mentioned assumption, the transition

8 - 6 turns out to be hindered due to the smallness of:

1) the weight of the three-phonon component in the 8 state wave
function, ii) the contribution of the K = 6 component to the 6"
quasirotational state wave function and ) the value of the over-
lap integral over the collective parts of the 8 and 6" state wave
functions, We have not calculated this integral but to obtain the
upper estimate we have put it to be equal to unity.

As a result, the hindrance factof is estimated to be

1 6
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Thus, the model considered permits us to explain 'the quasirota-
tional band energy ratios, the possibility of the existence of
isomeric states and the values of their hir;drance factors,

The existence of the isomeric two-quasiparticle levels may

probably be related to the fact that below them there are only



collective levels, the transitions to which are hindered due to
either the K -forbiddenness in strongly deformed nuclei or the
above mentioned reasons in transition nuclei or the quasiparticle
selection rules in spherical nuclei. Hence the hindrance factor
may be considered as a measure of the collectiveness of low
-lying states, which is the strongest one in the well-deformed
nuclei.

We have not discussed yet the effect of the y ~-dependent
terms in the potential energy, which are small compared to the
deformation energy, but comparable with the first o7 excited state
energy at large equilibrium B R value. The account of these
terms would reduce to some extent the weight of the components
with large K in the quasirotational wave functions, ‘and the
ratios of the quasirotational level energies would be close to
the ones for the well-deformed nuclei, However it seems unlikely
that these terms may change qualitatively the main results, but
the values of the quadrupole moments must be changed essenti-
ally. Even a small dependence of the collective potential energy
on y may give rise to large quadrupole moments for the -
quasirotational levels, This is just observed in experiment,

Furthermore the y ~-dependent terms in the Hamiltonian
_remove the energy level dggeneracy which is characteristic of
the model with y -inde\pendent potential energy. Hence the
collective model with y -independent potential energy may
be used only as a first step approximation,

In conclusion we want to emphasize that the y -indepen-
dent potential energy surprisingly well describes the quasirota-
tional level energy ratios for most of the known transition nuclei,
as is seen from Table 1, 1t is unclear how well this model

describes other properties of these nuclei.



Appendix 1 ,

Let us calculate the contribution of the K = 6 component

to the norm of the 6+ state wave function.

The normalized 6+ state wave function has the form:

1 &M i4v
F(8) 2’ € “,2#"(]2#9#@"5# a;f#fa";#w »
Vier 2 = s
91!
where
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Let us single out from it the component with K =26
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The contribution of this component to the norm of the wave

function is equal to

9!! 1 X4 2 m/2 .3 . 8
_—  — [ BT FT(B)B [ sin®y.sin®y dy x
l6r23 8 0 0

[]
« [ 40 (DL’ +DE% ) (DE, +Dy ) = 0.05.

Aggendix 2 .

Let us estimate the admixture of the two—quasiparticle and thre

phonon state to the g8 state wave function, For the wave function
we have:
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where o . .

of F' (B)B dB=1
M is the momentum projection on the z - axis in the lab, sys-
tem, n is the number of phonons s,s ’ are quantum
numbers of the quasiparticle states, and 10 > stands for the

quasiparticle vacuum state,

To choose the dependence of the wave functions upon y
we have assumed that ’ y vibrations occur in the potential
well with a minimum at y = O,

For the Hint matrix elements we have

<8M8;n+1;s] s; IH,, |8M8;n;s s,>=-h w, B, ¥, Vn+l «
@2 5 5 @2 5 5

. \Y ’ ’ +f [ v - ,
8’0’1-5101 s’lsl 32 52 0‘20‘2‘ 520‘2,520‘2 52 82 slsl (7‘1(7‘l
A é 5 e é

~f , v s , s =1 .o v - , ‘.
191820, "8 85 "85, 0,0, 292 810y 85 s " sgsy " 0,0

It is assumed that the isomeric state is the two-quasiparticle
neutron state with quantum numbers:
18M8;0; 9/2~1[5141,7/2 4+ [404]1 >

As follows from the calculation of all the three-phonon
states from \N'thh tran51t10ns to the quaswotahonal levels are
allowed only the [8M8 :3;5/2-0532],1/24+[400 1> - state gives _

for the matrix elements, Hint noticeable wvalues,
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To calculate the admixture of this state to the wave function
we may resort to perturbation theory since the values of the H,
matrix elements are small compared to the energy differences
of the mixed states, If we take into account only those intermediate
states the contributions of which are large enough the value of

this admixture is equal to the product of the three following ratios:

<8M8;1;5/2~[5821,7/2 +[4041'H,,, |8M8;0;9/2-[514 1, 7/ 2 + [ 404 1>

=-0.04
E(5/2-15321]+ o, -E(9/2-[5141)
< 8M8;2;5/2 —~[5321,3/2+[402]1|H , , |8M8;1;5/2-[532], 7/2+ [404 ]>
=0.30
E(3/2+[402])+my -E(7/2+[404 1)
<8M8;3; 5/2-[5321,1/2 +[400]| H,,, |8M8;2; 5/2 - [532],3/2+[402]> _0.44

E(1/2 +[4001)+ @y - E(3/2+[402])

o) m
which is equal to 2,8 10 6. Here o, and E(K [anA])
&re the energies of the y -phonon and the quasiparticle respectively.
@y and ‘yz are put to be equal to my=1MeV
and y% = 0,1 which are characteristic of the axial

The quantities

- symmetric nuclei. The single par'ticlé levels and the B,

value were taken from ref, /3] , the matrix elements of the quadrupo-

f6/

le operator were taken from ref, .
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table I

Comparlson of the experimental results with the predic—
tion of the unified model with )/ —-independent potentianl
energy. Flgures in columns present experimentu1/7/ Cneryy e
tios for quasirotational levels. The Jast figure of each columrs

corresponds to the calculated value.

B(ah  (6h (8D (100 p(eny

Hucleus E(2+) E(2+) E(2+) Z‘J(?_‘.) E(?+)
120xe 2.47 4,34 6.52 8,92
122Xe 2,49 4,39 6.61 9.01
124Xe 2.48 4,38 - 6{63
130Ba 2.54 4,46 6.86
lBECe 2.64 4.74 7.16
134Ce 2.56 4.55 6.86
134Nd 2.68 4.83 7.30
186Pt 2.56 4,59 7.02 9.71 12.6
188Pt 2452 4,46 6,70
Prediction
2.5 4.5 7.0 10.0 13.5

of a nodel
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Fig. 1. The ground state energy of the !*°Ba nucleus as a
function of B
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Fig, 2. The energy of one of the lowest tuwo-quasiparticle neutron
states for the ''°Ba  nucleus as a function of o]
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