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I. The generally accepted description ¢f the nuclear
spectra is based on the dlvision of the nuclear motions into
three types: rotational, vibratlonal and qucsiparticle. Using
the semi-microscoplic approach a basis has been created for
a unified description of both the quasiparticle and vibratio-
na2l motlions., Some premises have also been created for inclu-
ding into this scheme the rotatlional motion.

The description of the excited states ¢f complex nuclei
in terms of the quasiparticles and phonons 1s widely used.
This description is rather good for doubly raglic nuoleus and
the neighbouring nuclel and good enough for the ground and
low-~lylng states of strongly deformed nuclel, As going away
from the doubly magio nuclel and with increasing excitation
energy the structure of the levels becomes nore complicated
due to admixtures to the quasipartiole and rhonon components.

There are two main causes leading to tle appearance-of
admixtures to the quasipartiole and phonon states, This is
the coupling of the internal motion with the rotation of the
nucleus as a whole and the interaction of Quasiparticles with
phonons, A large amount of new experimental data has allowed
to conclude that fhe 1ow-lying states of spherical and defor-—
med ngclei turned out to be essentially more complicated compa—
red to the conceptions which have recently teen formulated.
Therefore, to continué the study of the structure of low-lying
nuclear states and go further to higher excitations it 1is ne-

cessary to combine different methods: alpha—, beta~ and gam-



ma~ray spectro:copy (including (71)*) reactions) with direct
nuclear reacticns,

2. We present here the basic formulas of the theory in
which the interaotion of quasiparticles with vibrational pho-
nons of the corresponding even-even nuclei is taken into ac-
countl’z.

The wave function of an odd-A nucleus describing the sta-

K
tes with given K is written in the form

¥ (K)C T (T T T DL Cu QU @

€ ’\t",, ic

where Cz (Aé*) 1s the phonon operator of multipolarity (Aéo),
115; 1s the quasiparticle creation operator, 6=%1 , 5? is
the ground state wave function for an even-even nucleus, PE
stands for the set of quantum numbers specifying the single-~par-
ticle level with a given ]YJT and 3€ are the remaining ave-
rage fleld levels,

To calculete the energies and the wave functions of the
nonrotational ¢tates in odd-A nuolei we should find the expec—
tation values «f the Hamiltonlan involving the palring and the
multiple-multiple interaction. From the condition of the ener-

gy minimum we «btain the following secular equation:
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defining the energies 2‘_ of the nonrotaticnal states., Here

é(i):‘/czr[g(‘s) ~~/\]L (C is the correlatior function, A 1is
) = -2 b
the chemical potential), 6‘4 2{{’11.s AR Cu, and; vy
are the coefficients of the Bogolubov transformation), _f d?f{ 5)
is the matrix element of the multipole momert operator, the
J
quantity Y (Ag) characterizes the collectiveness of the

single-phonon state, the explicit form of it is given in refs:!"‘2

CL)A& are the single-phonon state energles, The summation
1nJeq.(2) over AL/ means that the interastion of quasipar-
ticles with quadrupole A = 2, & = 0,2 aid octupole A=3 ’
= 0y1,2 phonons 1is taken into oconsideration.

Using the normalization condition for t.ie wave function
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The quantity (cfL )2 defines the contribution of the single-
~quasiparticle oomponent with a given p to the wave funoti-
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on of the state in question. The quantity (‘i}‘e . ) =
c 2 — A 2
=1 (C ) 2 (_D &LJ) defines the contribution of the com-
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Bach state with given K™ has its own version of eq.(2)

the sclutions of vhich are the energies o ,
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For the ground stete of an odd-A nucleus 71 (ﬁajljg gF ta-

kes the lowest valuc, and the excilted state energies are
& () - 7 (kT )-p . D)

The quasiparticle-phonon interactions lead +to the appea-
rance of admixtures in the quasiparticle and phonon states and
the appearance of complex structure states., The quasiparticle-
—~phonon interacticns in odd-A spherical3 and deformed l’2’4’5nuc
lei are the best Investigated ones.

The gquasiparticle-phonon interactions lead to small ad-
mixtures in the ground and low-lying single-quasiparticle sta-
tes 1n odd-mass deformed nuclei, With increasing excitation
energy the role of admixtures becomes more important, The qua-
siparticle—phonon interactions lead to a fragmentation of the
single~particle states of the Nilsson and Saxon-Woods poten-
tinls in a number of nonrotational levels with given K’f.

With increasing excitation energy the fragmentation of the sin-
gle-particle states 1s performed in an ever-increasing number
of levels 6 .

The investigation of the structure of odd-4 deformed nuc-—

lel by means of thz (dp) and (dt) reactions showed that the

experimentally obszrved number of the vonrotational states



with given Kjris much larger than that given by tlie Saxon-
Woods scheme, although the total excitation intensity is in
agreement with the estimates obtained with the wav: functions
of the Saxon-Woods potential. These experiments prove the con—
oclusions of the model about the fragmentation of the single-
—quasiparticle components in many nonrotational levels.

The degree of fragmentation of the three—quasiparticle
components in many levels is expeoted to be still much larger.
Among the three—quasiparticle states, the states vith the lar-
gest K are pure, the states out of which it is :mpossible to
make the oombination quasiparticle plus phonon wi:h A = 2 or
A = 3 are relatively pure,

At excitatlion energles of 2-3 MeV or higher che fragmen-
tation of the single- and three-quasiparticle components in
the nonrotational levels in odd—A nuclei must be essentially
inoreased compared to lower excitation energies. The experi-
mental data on the structure of such states in deformed and
spherical nuolei is very poor. One may hope that the construc-
tion of mass—separators on particle beams will mtke it possib-
le to go still further in the study of the level: of medium
and heavy nuclel of an energy of 2-5 MeV,

The great progress in neutron spectroscopy nade 1t possib-
le to begin the study of the structure of highly excited nuc-
lear states., By the highly excited states we mean the ones
with excitation energies close to the nucleon binding energy
or higher., It is interesting to try to treat the highly exci-

ted states by means of the semi-microscoplc description in the




language of tle quasiparticle and phﬁnon operators, Such an
approach 1s siggested in ref.7.

3. The aliove model which takes into account the quasipar-
ticle-phonon nteractilor may be useful in understanding how
the fragment:s lon of the single-~particle states proceeds and
to what exten: the level density increases with lncreasing excl~
tatlon energy

The calcilations of the energles and the single-quasipar-

ticle componeits were performed for a number of states of 239

U,
the neutron bining energy of which B, 1s 4.80 MeV, The cal~
cwlations werte performed with the single-particle energies and
the wave func lons of the Saxon-Woods potential with A = 237
at fi, = 0.22 A = 0.08 ® ., The nonrotational levels of odd-
-mass nuclel .n the actinide region which are calculated in
ref. ? .with . hese single-particle energies and the wave func-
tions are in ;00d agreement with the corresponding experimental
data. Since w: are interested in the distribution of the single~
quasiparticle components over all the excitatlons up to 5 MeV
we should tak: into account all the poles of the secular equa-
tion up to 5 lleV, To this end, we had to take ten roots for each
secular equat:.on definlng the phonon energies in 238U, l.e.
J = 1,243y os. 10,

The resu.ts of calculations are givern in Tables I and 2.
Table I gives the fragmentation of the single-~particle states
the single-—pa:i*ticle energies ofywhich are near the Fermi surface,

Table 2 gives the fragmentation of the following single-partic-
le components: 1/2*[640] lying below the Fermi surface energy



by 3.5 Mev, 1/2%[880] and 1/2*[600] 1lying above :he Fermi sur-
face energy by 4.4 and 5.2 MeV, In the upper par: of the tab-
les are presented six levels which cover mainly —he strength
of the single-particle components, In the lower part of the
tables are given the energlies and the single—quatiparticle
components for 16 levels near B, = 4,80 MeV .,

It is seen from Table I that for the states the single-
particle energy of which is close to the Fermi sirface energy
the first root of the secular equation (2) contains about 90%
of these single-particle state. Thus, the low-lying nonrotatio-
nal states are close to the single—quasiparticle ones, However,
even in these cases the single-particle state is distributed
over many levels including the levels of an excitation energy
of 4-5 MeV, For example, 16 states in the region 4.4 - 5,0 MeV
contain (0.1 - 0.6)% of the corresponding single-juasipartic-
le component,

The oomplication of the state structure with increasing
excitation energy is demonstrated in Table 2, Slx levels con-
taining the largest single-partiole components coataln only
60-70 % of the single-particle state strength. From the com-
parison of the data given in Table I and 2 it 1s :ieen that the
sum of the (C;)2 values over 16 levels in the raige of
4,4 - 5,0 MeV 1increases as the single-particle encrgy appro-
aches the B, - value.

The growth of the nonrotational level densitj in 239

V)
with increasing excitation energy is illustrated in Table 3,

It 18 seen from it that the nonrostational level écensity at an




excltation energy of 2,5 MeV or higher increases by a factor
of 10-20 compared to the density in the independent quasipar-
ticle model. A% an energy of 4.5 MeV the density of the states
with K= 1727 is larger than that for the states with

-t

K = 5/2% and 9/27 by a factor of (1.5-3).
The exper:.mentally measured average distance between the

states with K‘“= 1/2+ in odd-mass deformed nuclel in the acti

nide region, 1} , 1s about 10 eV at excitations close to BA,.

The calculations performed in the framework of the independent
quasiparticle niodel give the average distance between the le~

vels D =~ 1 Me/. Thus, the difference is five orders of magni-
tude., The calcilations by the model taking into account the

239y show that for the

quasiparticle-shonon interactions for
KJT= 1/2+ stat:s at an excitation energy of 4.5 — 5.0 MeV
D ~ 10 keV. Tius, the account of the quasiparticle-phonon in-
teraction lead3 to an increase in the level density near B
by about a factor of 100 compared to the independent quasipar-
ticle model. However, to obtaln agreement with experiment ano-
ther three ordesrs of magnitude are needed.

To clarify the process of fragmentation of the single-par-
ticle states and to study the structure of high-energy states
it is necessary to improve the model taking into account the

quasiparticle-phonon interactions by adding to the wave func-

tion (I) terms like
X, OJ; (A &1)0& (A &),

+
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etc,and taking into considsration the phonon: with A > 4,

4, To study the structure of the excit:d states it is
useful to introduce a wave function containirg a large number of
components with different number of quasiparilcles. Using such
a wave function it is possible to describe tle alpha-, beta-
and gamma-transition probabilities and the ci1oss section of
nuclear reactions.

In ref, 7 a wave function for the highly excited state of
an even-even spherical nucleus is constructed. It contains two-,
four-, six- and so on quasiparticle components, Among the pro-

+ *

/
ducts of the two operators Q/nﬂ c</_01

shell J there are such for which the total angular momentum I

being on the same sub-

1 In order that th ts (& AT ) do not
8 zero. In order that the components m X e a0 0 no
spoil the wave function due to the presence cf spurious states,
+
instead them, the pairing vibration phonon orerators J? z are
introduced.
Let us construct, e.g. the wave functior for the excited

state of an odd N deformed nucleus in the form

jf(K) 26 (s)oz Yo+
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The coefficients ﬁ/"‘,-m define the contribution of the corres-
ponding quasiparticle component, . is the number of the ex-—

cited state with a given K °. The index t = n indicates the

neutron and t = p the proton systems. The summation 2

'.!,_,5,,5_,

o, ta €
S, = 3y, “gré-absent
and that £(s, )< £(4.)< F(3,) . By #. we denote the

product of the quasiparticle vacua for the neutron and the pro-

means that the terms §,=3,  4,=3,

ton systems, 1.e.

.. n
(Lj~ )ﬁuﬂu H

3

.
'j/c = 47 ('Z(3 + L’_s (véﬂs

*

where (& s 1s the neutron creation operator, a,“_ f"éu =0.
The phonon operrators determined separately for the neutron

and the proton systems are
Z + b4 . .
2,002 {X (3)A 9, 9) Y GIAG.9) > ®
14
where A(4,4) = l/z&((’r d¢_ s 4 1s the number of the root of

the corresponding secular equation. In just the same way it

is possible to comnstruct the wave functions for the excited

states of ever deformed nuclei.
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The wave function (6) is of a very gemeral form. It can
be used for the description of both lowlying ard highly exci-
ted nuclear states. In fact, when only the fir:t component
differs from zero the wave function is a single—quasiparticle
one. A number of terms in (6) containing the product of two
quasiparticle operators can be presented in the form of the
phonon operators describing, e.g. in the Tamm-llancoff approxi-
mation, the gquadrupole or octupole vibrations.

The wave function (6) can be used for the description of
the excited states of an energy of 2-3 MeV or higher up to ener-
gies at which the resonances do not yet overla), i.e. up to
excitation energies at which for the states wi:h given K‘Tthe
condition

7 <D, (9)

.

is valid, i.e. when the total neutron reduced vidth of the re-
sonance 1s much smaller than the average distaice between the
levels D,

To obtain certain integral characteristics the wave func—
tion (6) may be useful for the analysis of overlapping reso-
nances and thermal neutron absorption,

If the wave function (6) has a large number of non-zero
components, among which there are both few~ ani many-quasipar-
ticle ones, then it 15 the wave function of a compound state.

The presence of many-quasipartiocle components means that the

13




particle penetrated into the nucleus has undergone many col-
lisions by breaking many pals, The small values of the many-
quasiparticle components of this wave function result in a
hindrance of the probabilities of high—energy gamma transiti-
ons to the low-lying states, therefore the half-life of this
state must be much longer than that for the single—quasipartic-—
le state.

5. We consider the strength functions for s-neutrons. The
cross section for the s-neutron capture and the reduced neut-
ron width for an 1-th resonance on an even-even spherical nuc-

leus 1s written in the form

o L 2 Z o0
Sl e Gy wre (10)

ca
-

,L</)/;ngi +/ o,

J v

(11)

LI

J$'= 1/2%, {;(}) is the coefficient in the wave function (6).
In eq.(10) we singled out the term corresponding to the macha-
nism of the dir:ct neutron capture, 620 being the kinema-
tic term., The same is done in the expression for the reduced
neutron width., rChe faotor 1€/L points out that the contri-
bution to € and (1:;.); is given by the particle state

(i.e. states ly.ing above the Fermi surface).
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The reduced width of the s—neutron capture c¢n a defor-~

med even~even nucleus 1s of the form:

o

«/ JL
m ) b ) 1 +[ (12)
) -l Ze L (us| L

y
Ac 3

The summatiocn over 3 1s connected with the fact that seve-
ral single-particle K'L= 1/2% states may contribite to the wa-
ve function (6).

The strength function for the s-neutron 1s (efined as an
average value of the neutron width < Zj:; P over a number
of resonances divided by the average dlstance D between the
levels with K * = 1/72%, i.e. ‘

KI7>
52T @2

Using egs.(11) and (I2) we get the strength funcitlons for the

s-neutron oapture on an even-even spherical and ceformed nuclei

in the form
1 v re A 2',. o
R DN
_ e 2 Jo
e £ 15 )5
i v 3 o
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Here the summa .lon = is performed over the resonance

i Pl +
number 1n the cnergy interval A/:_) J = & . The
strength funct:.on for the s-neutron capture on an odd N defor-

med nucleus is

) /% ¢ (5,8 )w, | +8§ (16)

where X_ relate to the single-particle level which 18 occu-
pled by a quasiparticle of the ground state of an odd N target-

nucleus. The simmation of 5L 13 performed over the sing-

—~

e + 0o
le~particle stetes with K = 1/2°. The terms Sn

in eqs.(14),
(15), (16) are due to a more complicated (rather than the di-
rect one ) mectanism of neutron capture.

According to the widespread opinian (e.g. ref. 10 ) 1in
the strength function the term S, - Sgo is predominant, 1.e,
the strength function defines the contribution from simple
configurations. Sometimes the neutron strength function 1s de-
fined as the sum’of the spectrosoopic factors of the neutron
transfer reacotion of the (dp) type per energy unit.

We give qualitative explanation of the behaviour of the
strength function for the s—neutron as a function of the mass
number A without recourse to the optical nuclear model. We
start from the assumption that the wave functions (6) for the
states of an excltatlon energy close to the neutron binding

energy Bn contain a relatively large quasiparticle component
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with Ijr= 1/2+ when the single~partio£F neutiron level }bsﬁQ,
in the case of spherical nuolei or KJyz 1/2+ level in the ca-
se of deformed nuclel are nearﬂPhe energy Bn' As the neutron
single-particle level with 1 ﬁ? 1/2% inoves avay fraom the
energy Bn the contribution of the correspondirg gquasiparticle
component to the wave function (6) must decrezcse.

In the upper part of Flig.I we glve the experimental data

on the strength functions for s—neutrous §¢'1C4

11

taken from
ref, o In the lowerpart of the same figure we give the be-
haviour of the neutron states 38 ,5,45; ,» and [ 640, 1/2%(651],
1/2%600], 1/2*[611], 1/2%|880] for deformed nuclei, the ener-
gy of these states is reconed from the Bn value (the negative
values correspond to the blnding states).

Let look for the behaviour of the strengta function depen-
ding upon A. In the range A = 40 - 60 the stat:? 35§& is
near Bn’ therefore the strength functlon must se maximum,., This
1s 1n agreement with the avallable experimental data.

In the range A = 60 - 100 the state 5556, moves away
from Bn remaining above the Ferml surface ener;y which leads
to a deorease of the strength function. In the range A = 100 -
120 the state 3 59@ 1s near the Ferml surface energy end
its oontribution to the wave functions (6) is ¢xpected to be
nbt large. In this range the subshells 3/?72 and '%Q%L are
near Bn and therefore the strength functlions must have large
values for p-neutrons.

In the range A = 130 - 140 the S, value increases
which 13 hard to explain since the subshell qsﬁﬁ. 1s still

17




above Bn by 6-8 VeV, It is possible that for a number of nuclei
with A =< 100 anl A = 120-130 being in the transition reglon
some exclted states are deformed. For them there are states
with K g 1/2% (marked on Fig.I) close to By.

In the range A = 145 — 155 the strength function has a
maximum. Then 1t 1is assumed that Sn somewhat decreases and
there 1s a secord maximum 1n the range A =180, The presence of
the 1/2% [640]and 1/2%[651] states near B, makes 1t possible
to account for large values of Sn for deformed nuclei 1n the
refgion 150 < A < 190, However 1t 1s hard to explain simply
the decrease of Sn at A = 165 compared to the values at
A = 150. New experimental data (e.g. ref. 12 ) point to sharp
changes of Sn from 1sotope to isétope rather than to the mini-
mum near A = 162,

The presence of the subshell QSyi for spherical nuclei
with A = 190 - 220 near Bn points out that the strength func-
tions Sn must heve large values,

It is not di:'ficult to explain the large values of Sn in
deformed nuclei w.th A = 226 — 250 since the states 1/2%)600],
1/2* |611]and 1/2* 880] are near tne B, values.

Tygs, basing on the looation of the single—particle levels
with IJ‘= 1/2% on¢ succeeds 1n explaining qualitatively the be-
haviour of the st:ength function for the s-neutron without re-
course to the opt:.cal nuolear model,

6, Some 1impo:'tant information on the struoture of highly
excited states ma;r be obtalned from alpha decay studles. There

are experimental (data on alpha transitions from the resonanses

18



to the ground, single-phonon and hilgher excitec states in even-

—~even spherical nuclel 13,14 7

« In ref, one oulculated the
reduced widths for the alpha transitlons from the hilghly excl-
ted states described by the wave functions (6) to the ground,
single-phonon and two-quasipartlcle states, It 1s shown that
the alpha decay 1nvolves a restrlcted number oi° the components
of the highly exclted state wave functlon, therefore from the
analysls of the approprlate experimental data It is possible
to obtain information on tke magnitude of these¢ components.

The oalculations showed that the alpha decay to the ground
state of an even—even nucleus proceeds from the itwo-quaslipar—
ticle, four-quasiparticle of the type 2n2p and iwo quasipartic-—
les plus phonon 52; components of the wave function (6)
and all the quaslparticle operators must be particle ones, The
rsduced probablillity of the alpha transltion frcm the two-quasl-
particle componeunts of the type particle=particle of the wmave
function (%) 1s notloeably enhanced. The Ffluctiatlon of the
particle-particle components in (6) from resonsnce to resovan-
o3 must lead to the fluctuation of the correspcading alpha
widths,

Table 4 glves the experimental data odtained in xef, 14
on the reduced alpha widths for the transitioms from the reso~

1483, to the ground and one~-phonon 2%

nances with I = 3™ 1n
states in 144Hd. It is sesn from the table that the alpha

2
width { J;o z;for the transitione to the grouni state strong-

ly fluctuate from resonance to resonance,
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The alpha transitlons to the one-phonon states invol-
ves a much larger number of the components of the wave func—
tion (6) compared to the transitions to the ground states.
Therefore the reduced probabilities for the transitions to
the one-—phonor states must be larger than those to the ground
states. This fact 1s well demonstrated in Table 4, -

If the reduced probability for the alpha transition to
the ground state 1s larger than that to the one-phonon one
then this indicates that the wave funotion (6) oontalns rela-~
tively large two-quasipartiole components, Such a feature is
characteristic of the resonance with an energy 183.,7 eV in
1485, (Table 4),

The alphz transitions to the two-phonon states involve
a much larger number of the components of the wave function
(6) compared to the transitions to the one-phonon states,
Therefore the reduced probabllities for alpha transitiocns to
them may be lsrger than those for transitions to the ground

14

and one~phonor states., In ref, one measured the reduced

alpha width fcr the transitlon from the resonance of an ener-

148 144

gy of 39,7 eV in Sm to the two-~phonon 4% state in Nd,

2
it was found to be ( /:2 ) = 1.22, 1.e. by an order of mag-
nitude larger than (Jf;i ) = 0.12 and by two orders of magni-
tude larger tran ( ];z ), = 0.014. In the same paper it was

2 2
found that ( e ) = 2,44 and ( 1;1 )L“ 0.35 for transiti-

' 148

ons from the 1esonance with 1% = 47 in Sm to the two-—pho-

non state 4+ ¢nd the one-phonon 2+ states, These data indica-
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te to the fact that in some cases there are larg: alpha
widths for the transitions to the two-phonon states.

7. An important information on the structure of highly exe.
oited states may be obtained from gamma transitions to the low-

1ying states. In ref. !

one calculated the reduced probabilitiles
of the EI and MI tramsitlions from the highly excited states

to the ground, one-~phonon and two~quasiparticle states in even-
even spherical nuclei, It 1s shown that the gamra transition

to the ground state goes from the two—quasiparticle component

of the type particle-hole of the wave function (6), The gamma
transitions to the one-phonon states involve a large number

of components of the wave funotion (6) compared to the transi-
tions to the ground states,

The gamma transitions from the highly exciied states to
the two—quasipartiole states involve a large nuitber of the
components of the wave funotion (6), The select:.on rule requ-—
ires that one or two quasiparticles in the highly excited
state be on the same subshells as the quasipart:ioles 1n the
final states, Owing to these selection rules it may be expec—~
ted that the reduced probabilities for gamma transitions to
the two—quasipartiole states will be smaller thain those to the
one-phonon and ground states,

Using the exolted state wave function (6) let us analyse
whioh prooesses may be correlated with one another. The cor-
relation of two processes proceeding throughout the same sta-
te takes plase 1f the maln contribution to both processes co—

mes from the same components of the wave function of this state
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The performed analysis showed that there must be correla—
tions between the followlng quantitles:l) the reduced neutron
widths (/:: ) and the reduced probabilities for the EI tran-
sitlons to th: single-quasipartlicle states in odd-mass nuolel
and to those two-~guaslpartlcle states of the even spherical
nuclel in whi:h one quasiparticle ocouples the level corres—
ponding to th: ground state of the nuoleus whioh captured the
neutron; 2) tie reduced neutron widths (1”;; )L and the redu-
ced EI and MI transitlons to the slngle—quasipartlole and two~
quasipartiole (one gquasipartlole of which 1s on the level of
the Fermi sur:lace of an odd A~I nuoleus) of deformed nuolei,

The exam)>les of suoh correlatlons were given in a number
of papers, fo:: example, in ref, 12 .

There ar: no correlations between ( /)~ ), and MI transiti-

1%

ons in spherical nuclei, ( ); amd EI and MI transitions

= ne
to the two-—quusipartlicle proton states and to those two—quasi-
particle neut:on states not a single guasiparticle of which
lie on the level of the Fermi surface of an odd A-~I nuoleus,
We consider the correlations between the reduced alpha
2. _—
widths ( ¥, -, and the reduced neutron widths . C7,. ).

as well as beiween (I;:)‘ and the gamma reduced widths from

- An, .
the same resonanoe . , The oomponents & 66J11)°f the
wave funotion of the highly excited state of an even-even nuc-—

e 2

leus enter the expressions for ( [, ). and ( Jop O. wWhioh
indioates the exlstence of the correlation between these pro-
cesses, However, the alpha deoay to the ground state involves

also a number of four—-quasiparticle oomporents and a far lar-
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ger number of the two—~quasiparticle oomponents :han in the neut-
ron capture, Therefore the correlation between | ;;;’)‘ and

( [;2 ) oan take place only in some cases.

The reduced probabllities of alpha— and EI transitions

from the resonanoe to the ground states of even-even nuclei con-

.

L edn, :
tain the quantitiles 6} <2J2Jh)where . related to the sub-
shell which is occupled by a quasiparticle in tae ground sta-~
2n

te of an odd N nucleus A-I. The guantity bf (/“/E/L) toge-

ther with the factors 26. ot enter the matrix element of

. Ja
the alpha—decay and with the factor (¢ 7 + i~ i« ) in
Jo g s s
the matrix element of the EI transition, In the case j = Jo it

may be approximately assumed that 16; = 251 « Therefore the
extstence of the correlation between both processes is possib—
le., However, the expression (j;j )L contains nmany other oom-—
ponents of the wave function of the highly exclted state.

0f great lnterest 1s the experimental determination of
the quantities ( !;i_)L and ( /;: )b and the reduoed probabi-
lities for gamma transitions for the same resorances, It would
be desirable to determine (/;Z ) and the protabilities of
gamma transitions for the resonance I‘V= 37 wiih an energy

183,7 eV in 148

Sm which has a rather large wid‘h ( ;:(: ) .
The performed i1nvestigations showed that ‘he expression
of the wave functlon in the form (6) turns out to be useful
for the study of the structure of these states.
In conolusion I express my deep gratitud: to L.A.Malov,
L.B.Pikeltner, Yu.P.Popov and V.I.Furman for tae help and dis-—

cussions,
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TABLETI
. 239 .
Fragmentation in U of the single-particle

states near the Fermi surface energy.

5/2-1622), &(3)=0,712 1/2~[631], &(5)=0,812 972-[734}, &GkE1.076

———— e — . v A . v . — — e e tmtn ey s S ciris et

2.- 2, ) 7 7. , 7., T
MeV (c, o Mev (¢ )% wev (c% )%
0 91.7 0.102 88.7 0.245 85.5
1.784 0.6 1.260 0.8 1.559 3.3
1.884 1.4 1.983 1.5 1.£39 3.0
2,892 0.4 2.504 1.4 2.249 1.2
2.906 1.4 2.768 1.1 2.298 1.6
3.371 0.5 4.700 0.6 5,292 2.0
Sum 96.0 Sum 94.1 Sur 96.6
4.690 1-10" 4.768 310~  4.401  0.00117
4.722 1-107° 4.769 0.14360 4,426 0.00706
4.737 7.107? 4.792 0.40573 4.432  0.00014
4.746 1:107° 4.801 0.06074 4.450  0.00026
4.765 21077 4.807 <107® 4,471 0.00089
4.770 2.107° 4.808 1107 4.:20 9.1077
4.825 11077 4.818 6107 4.933 2.10™
4.833 4:107° 4.826 3.00065 4.0 41 11077
4.892 <107 4.857 41077 4.:05 9-102
4.898 5.1077 4.862 5.00074 4.¢76  0.00044
4.910 4.107 4.871 0.00011 4.¢89  0,00971
4.912 0.00821 4.873 1.107°  4.025 6.0~
4.917 0.08576  4.901 51077 4067 0,07692
4.922 0.42494 4.916 51077 4,070 0.00168
4.930 9.00024 4.934 <10t a ot 6,00120
4.931 0.00576 4,935 41077 4. 73 0.00018
Sum 0.52512 Sun 0.61181 S 0.0997.

— - e Rt = 7 A AR R S S e S i .1 0 L 1 St SRR 1 8 2 S 0
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TABLE?2

239

Fragmentation in U of the single-particle states

far away of the Fermi surface energy.

172 +/640], ¢(3.)= 3,530 172 +[880], é(s)= 4,424 1/2+4[600], &(s,)=5,251
. 57, 7. -2, ,

MeV ¢, )% MeV €, )%  Mev . )
1.332 2.7 2.585 16.0 2.650 4.6
1.890 34.4 2,587 5.4 2.937 35.4
2,351 13.38 2.827 11.0 3.058 12,1
2.890 5.4 2.861 14.5 3,097 2,5
4.081 10.6 3.108 14,4 3.285 0.2
4.508 3.3 4.560 1.6 4.680 4.1
Sum 70.7 Sum 62,9 Sum 58.9

l 4,768 0.00203 4.768 10™° 4,768 2:10™

i 4.769 1.11736 4.769 107 4.769  0.00031

| 4.792 0.09847 4.791 2:107°  4.792 1106
4.801 0.02320 4.801 1207 4,802  0.86308
4.807 2-1077 4.806 4.10™°  4.804  0.00012
4.808 0.0007) 4.808 <107® 4.810 o0.01214
4.818 6:1078 4.819 0.38851 4.818 1-10°
4.826 18.1077 4.828 0.25372 4.831  0.09227
4.857 29.107 4.857 4107  4.857 21077
4,862 4.1078 4.861 0.02102 4.860  0.27764
4.871 7.1077 4.871 1-10™° 4.871  0.00080
4,873 0.00051 4.873 1207 4.873  0.00052
4.901 31072 4.900 0.00211 4.894  3.25660
4.916 0.00633 4.916 5.10™° 4,916 8:10~°
4,934 <1076 4.932 0.08336 4,934 <107
4.934 0.00352 4.935 6.107°  4.935  0,00010
Sum 1.252 Sum 0.749 Sum 4.502
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TABLE 3

Number of non-rotational

states 1in 239U
Excltation energy Number of nonrotatlonal states with
interval _—

MeV KI- T K'~= 'yz’ K"‘ 9%
0 - 0.5 1 1 1
0.5 - 1.0 0 0 0
1.0 = 1.5 0 3 1
1.5 - 2.0 2 7 2
2.0 - 2.5 5 11 11
2.5 = 3,0 13 29 22
3.0 = 3.5 18 17 40
3.5 - 4.0 27 23 17
4.0 - 4.5 42 31 14
4.5 - 5.0 50 30 11
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TABLE 4

Reduced widths for alpha transitions
148

from the states with I = 3~ in ~*°Sm

to the ground and one-phonon states
144

of Nd
Energy of Reduced widths for transition
resonance to states
& - 8. , grouxld one—phcinon
eV ( f,,(o),; ( 510,
3.4 0.425 1.14
29.7 0.098 0.11
39.7 0,014 0.12
83.3 0.480 0.86
102.6 0.044 0.99
123.4 0.191 0.25
183.7 5.720 -

— —— ————
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