$$
S-70
$$

Дубна.

AAБOPAYOPMЯ TE OPETMUECKDX่ OMAMKM
V.G. Soloviev

COMPLICATION OF THE NUCLEAR STATE STRUCTURE WITH INCREASING EXCITATION ENERGY

1970

E 4 - 5469

V.G. Soloviev

COMPLICATION OF THE NUCLEAR STATE STRUCTURE WITH INCREASING EXCITATION ENERGY

Review talk submitted to the XXI Anmual Conference on Nurlear Spectroscopy and Atomic Nucleus Structure

I. The generally accepted description (f the nuclear speotra $1 s$ based on the division of the nuclear motions into three types: rotational, vibrational and que.siparticle. Using the semi-microscopic approach a basis has been created for a unified desoription of both the quasiparticle and vibrational motions. Some premises have also been created for including into this scheme the rotational motion.

The description of the excited states of complex nuclei in terms of the quasiparticles and phonons is widely used. This description is rather good for doubly regic nuoleus and the neighbouring nuclei and good enough for the ground and low-lying states of strongly deformed nucle1. As going away from the doubly magio nuclei and with increasing excitation energy the structure of the levels becomes more complicated due to admixtures to the quasipartiole and fhonon components.

There are two main causes leading to tre appearance of admixtures to the quasipartiole and phonon states. This is the coupling of the internal motion with the rotation of the nucleus as a whole and the interaction of quasiparticles with phonons. A large amount of new experimental data has allowed to conclude that the low-lying states of spherical and deformed nuclei turned out to be essentially more complicated compared to the conceptions which have recently been formulated. Therefore, to continue the study of the structure of low-lying nuclear states and go further to higher excitations it is necessary to combine different methods: alpha-, beta- and gam-
ma-ray spectroc copy (including ($n \gamma^{\sim}$) reactions) with direct nuclear reactions.
2. We present here the basic formulas of the theory in which the interaotion of quasiparticles with vibrational phonons of the coiresponding even-even nuclet is taken into account ${ }^{1,2}$.

The wave lunction of an odd-A nucleus describing the states with given $K^{\tilde{\mu}}$ is written in the form

$$
\begin{equation*}
H_{c}\left(K^{\hat{\kappa}}\right)=C_{\rho}^{i} \frac{1}{\sqrt{V}}=\left\{\sum_{\varepsilon} \alpha_{f \varepsilon}^{+}+\sum_{\lambda \in \xi} \sum_{s \in} D_{\mu s \in}^{\lambda \mu L} \alpha_{s \in}^{+} Q_{j}^{+}(\lambda \mu)\right\} \Psi^{\prime} \tag{I}
\end{equation*}
$$

where $Q\left(\lambda_{\mu}\right)$ is the phonon operator of multipolarity ($\lambda \mu$), $\chi_{s c}^{+}$is the qiasiparticle creation operator, $\sigma= \pm 1, \Psi$ is the ground state wave function for an even-even nucleus, $\rho \in$ stands for the set of quantum numbers specifying the single-particle level with a given $\bar{K}^{\sqrt{4}}$ and $s \in$ are the remaining average field levtls.

To calculz.te the energies and the wave functions of the nonrotational states in odd-A nuolei we should find the expectation values "f the Hamiltonian involving the pairing and the multiple-multiple interaction. From the condition of the energy minfraum we ribtain the following secular equation:
$\varepsilon(f)-\eta_{i}-\frac{1}{4} \sum_{\lambda L j} \sum_{s} \frac{\tau_{s}^{2}}{Y^{\nu}(\lambda \mu)} \frac{\left[f^{\lambda \mu}(\rho s)\right]^{2}}{\varepsilon(s)+\omega_{j}^{\lambda \mu}-\eta_{i}}=0$,
defining the energies η_{c} of the nonrotaticnal states. Here $\varepsilon(s)=\sqrt{C^{2}+[E(s)-\lambda]^{2}}$ (C is the correlation function, λ is the chemical potential), $v_{j s}=u_{f} u_{s}-2_{f} \tau_{s} \quad\left(u_{s}\right.$ and i_{s} are the coefficients of the Bogolubov transformation), $f^{\lambda \mu}(f ; s)$ is the matrix element of the multipole moment operator, the quantity $Y^{j}(\lambda \mu)$ characterizes the collectiveness of the single-phonon state, the explicit form of it is given in refs?,? $\omega_{j}^{\lambda \mu}$ are the single-phonon state energies. The summation in eq.(2) over $\lambda \mu j$ means that the interaction of quasipartickles with quadrupole $\lambda=2, \mu=0,2$ a ad octupole $\lambda=3$, $\mu=0,1,2$ phonon is taken into oonsideration.

Using the normalization condition for tie wave function (I) we get the functions C_{f}^{i} and $D_{f=c}^{\lambda, c}, \quad$ in the form
$\left.\left(C_{f}^{2}\right)^{-2}=1+\frac{1}{4} \sum_{\lambda \in c} \sum_{s} \frac{\mu_{f s}^{2}}{Y^{\nu}(\lambda \xi)} \frac{f^{\lambda \mu}(\rho s)}{\varepsilon(s)+\omega_{j}^{\lambda \mu}-2}\right]$,
$D_{j s \sigma}^{\lambda \mu \nu}=\frac{1}{2} \frac{\nu_{\rho s}}{\sqrt{Y^{j}(\lambda \mu)}} \frac{f^{\lambda \mu}\left(f^{\prime} s\right)}{\varepsilon(s)+\omega_{j}^{i \mu}-\eta_{L}}$.

The quantity $\left(C_{f}^{i}\right)^{2}$ defines the contribution of the single--quasipartiole component with a given ρ to the wave funotion of the state in question. The quantity $\left(d_{f \in s}^{1 E L j}\right)^{2}=$ $=\frac{1}{2}\left(C_{f}^{2}\right)^{2} \sum_{\sigma}\left(D_{f s \sigma}^{\lambda \mu u}\right)^{2}$ defines the contribution of the component with a quasiparticle in the s state plus phonon λ pic to the wave function $\Psi\left(K^{\pi}\right)$.

Each state w th given $K^{\tilde{h}}$ has its own version of eq. (2) the solutions of vich are the energies $\imath_{1}, \imath_{2}, \ldots$. For the ground stets of an odd-A nucleus $\eta_{i}\left(K_{v} \pi_{-}\right) \equiv \eta_{F}$ takes the lowest value, and the excited state energies are

$$
\begin{equation*}
C_{,}(\mathcal{F})=?_{2}\left(K^{\pi}\right)-\eta_{F} . \tag{5}
\end{equation*}
$$

The quasiparticle-phonon interactions lead to the appearance of admixtures in the quasiparticle and phonon states and the appearance of complex structure states. The quasiparticle--phonon interacticns in odd-A spherical ${ }^{3}$ and deformed $1,2,4,5$ nuc lei are the best investigated ones.

The quasiparticle-phonon interactions lead to small admixtures in the giound and low-lying single-quasiparticle states in odd-mass deformed nuclei. With increasing excitation energy the role of admixtures becomes more important. The qua-siparticle-phonon interactions lead to a fragnentation of the single-particle states of the Nils3on and Saxon-Woods potentials in a number of nonrotational levels with given K^{π}. With increasing excltation energy the fragmentation of the sin-gle-particle states is performed in an ever-increasing number of levels ${ }^{6}$.

The investigation of the structure of odd-h deformed nuclet by means of the (dp) and (dt) reactions showod that the experimentally goserved number of the conrotational states

With given $K^{\tilde{\mu}}$ is much larger than that given by the SaxonWoods scheme, although the total excitation intensity is in agreement with the estimates obtained with the wav? functions of the Saxon-Woods potential. These experiments prove the conclusions of the model about the fragmentation of the single--quasiparticle components in many nonrotational levels.

The degree of fragmentation of the three-quasiparticle components in many levels is expeoted to be still much larger. Among the three-quasiparticle states, the states vith the largest K are pure, the states out of which it is :mpossible to make the oombination quasiparticle plus phonon wi:h $\lambda=2$ or $\lambda=3$ are relatively pure.

At excitation energies of $2-3 \mathrm{MeV}$ or higher che fragmentation of the single- and three-quasiparticle components in the nonrotational levels in odd-A nuclei must be essentially inoreased compared to lower exoitation energies. The experimental data on the structure of such states in $d \in f o r m e d$ and spherical nuolei is very poor. One may hope that the construction of mass-separators on particle beams will mike it possible to go still further in the study of the level:s of medium and heavy nuclet of an energy of $2-5 \mathrm{MeV}$.

The great progress in neutron spectroscopy nade it possible to begin the study of the structure of highly excited nuclear states. By the highly excited states we mean the ones with excitation energies close to the nucleon binding energy or higher. It is interesting to try to treat the highly excited states by means of the semimicroscopic description in the
language of the quasipartiole and phonon operators. Such an approach is suggested in ree. ${ }^{7}$.
3. The alove model which takes into account the quasipar-ticle-phonon nteraction may be useful in underatanding how the fragnenta lon of the single-particle states proceeds and to what exten the level density increases with increasing excitation enerey.

The calolations of the energles and the single-quastparticle componests were performed for a number of states of ${ }^{239} U$, the neutron bining energy of which B_{n} is $4,80 \mathrm{MeV}$. The calculations wert performed with the single-particle energies and the wave func lons of the Saxon-Woods potential with $A=237$ at $\beta_{2}=0.22 \beta_{-}=0.08^{8}$. The nonrotational levels of odd--mass nuclei n the actinide region which are calculated in ref. ${ }^{9}$.with hese single-particle energies and the wave functions are in ;ood agrement with the corresponding experimental data. Since w: are interested in the distribution of the singlequasiparticle components over all the excitations up to 5 MeV we should tak: into account all the poles of the secular equation up to 5 lleV . To this end, we had to take ten roots for each secular equat: on defining the phonon energies in ${ }^{238} 8_{U}$, i.e. $j=1,2,3, \ldots 10$.

The resui.ts of calculations are given in rables I and 2. Table I gives the fragmentation of the single-particle states the single-pa:ticle energies of which are near the Fermi surface. Table 2 gives the fragmentation of the following single-particle components: $1 / 2^{+}[640]$ lying below the Fermi surface energy
by $3.5 \mathrm{MeV}, 1 / 2^{+}[880]$ and $1 / 2^{+}[600]$ lying above :he Fermi surface energy by 4.4 and 5.2 MeV . In the upper par: of the tables are presented six levels which cover mainly the strength of the single-particle components. In the lower jart of the tables are given the energies and the single-quasiparticle components for 16 levels near $B_{n}=4.80 \mathrm{MeV}$.

It is seen from table I that for the states the singleparticle energy of which is close to the Fermi surface energy the first root of the secular equation (2) contains about 90% of these single-particle state. Thus, the low-lying nonrotational states are close to the single-quasipartiole ones. However, even in these cases the single-particle state is distributed over many levels inoluding the levels of an excitation energy of $4-5 \mathrm{MeV}$. For example, 16 states in the region $4.4-5.0 \mathrm{MeV}$ oontain ($0.1-0.6$) $\%$ of the oorresponding single-quasiparticle component.

The oomplication of the state structure with increasing excitation energy is demonstrated in Table 2. Six levels containing the largest single-partiole oomponents coitain only $60-70 \%$ of the single-particle state strength. Frim the comparison of the data given in Table 1 and 2 it is seen that the sum of the $\left(C_{f}^{i}\right)^{2}$ values over 16 levels in the range of $4.4-5.0 \mathrm{MeV}$ increases as the single-particle entrgy approaches the B_{n} - value.

The growth of the nonrotational level density in ${ }^{239} U$ with increasing excitation energy is illustrated in Table 3. It is seen from it that the nonrotational level censity at an
excitation energy of 2.5 MeV or higher inoreases by a factor of $10-20$ compajed to the density in the independent quasiparticle model. Ay: an energy of 4.5 MeV the density of the states with $K^{\hat{H}}=1 / 2^{-}$is larger than that for the states with $\mathrm{K}^{-i}=5 / 2^{+}$and $\left(1 / 2^{-}\right.$by a factor of (1.5-3).

The exper:mentally measured average distance between the states with $K^{\tilde{\mu}}=1 / 2^{+}$in odd-mass deformed nuclei in the actinide region, 11 , is about 10 eV at excitations close to B_{n}. The calculatiois performed in the framework of the independent quasiparticle nodel give the average distance between the levels $D \approx 1$ Mer. Thus, the difference is five orders of magnitude. The calcilations by the model taking into account the quasiparticle-shonon interactions for ${ }^{239} \mathrm{U}$ show that for the $K^{\tilde{\sqrt{r}}}=1 / 2^{+}$statss at an excitation energy of $4.5-5.0 \mathrm{MeV}$ $D \approx 10 \mathrm{keV}$. T ius, the account of the quasiparticle-phonon interaction leads to an increase in the level density near B_{n} by about a factor of 100 compared to the independent quasiparticle model. However, to obtain agreement with experiment another three orders of magnitude are needed.

To clarify the process of fragmentation of the single-particle states and to study the structure of high-energy states it is necessary to improve the model taking into account the quasiparticle-phonon interactions by adding to the wave function (I) terms like

$$
\begin{aligned}
& \alpha_{s \epsilon}^{+} Q_{j_{1}}^{+}\left(\lambda_{1} \mu_{1}\right) Q_{j_{2}}^{+}\left(\lambda_{2} \mu_{2}\right), \\
& \alpha_{s \epsilon}^{+} Q_{j_{1}}^{+}\left(\lambda_{1} \mu_{1}\right) Q_{j_{2}}^{+}\left(\lambda_{2} \mu_{2}\right) Q_{j_{3}}^{+}\left(\lambda_{3} \mu_{3}\right)
\end{aligned}
$$

etc. and taking into consideration the phonon: with $\lambda \geqslant 4$.
4. To study the structure of the excited states it is useful to introduce a wave function containing a large number of components with different number of quasiparitcles. Using such a wave function it is possible to describe the alpha-, betaand gamma-transition probabilities and the cross section of nuclear reactions.

In ref. 7 a wave function for the highly excited state of an even-even spherical nucleus is constructed. It contains two-, four-, six- and so on quasiparticle components. Among the products of the two operators $\alpha_{j m}^{+} \chi_{j-m}^{+}$being on the same subshell f there are such for which the total angular momentum I is zero. In order that the components $\left(\alpha_{j m}^{+}\left(x_{j-m}^{+}\right)_{i=0}\right.$ do not spoil the wave function due to the presence of spurious states, instead them, the pairing vibration phonon operators Ω_{3}^{+}are introduced.

Let us construct, e.g. the wave function for the excited state of an odd N deformed nucleus in the form

$$
\begin{align*}
& \Psi_{L}\left(K^{\pi}\right)=\sum_{s G} b_{\pi \pi}^{c n}(s) \alpha_{1 G}^{+} \Psi_{0}^{+} \\
& +\sum_{\substack{s_{1}, q_{2}, q_{3} \\
\sigma_{1}, \sigma_{2}, \sigma_{3}}} \sum_{t} b_{K \sigma_{i} \sigma_{1} \sigma_{2} \sigma_{3}}^{\ln 2 t}\left(s_{1}, q_{2}, q_{3}\right) \alpha_{s_{1} \sigma_{1}}^{+} \alpha_{q_{2} \epsilon_{2}}^{+} \alpha_{\dot{q}_{3} \epsilon_{3}}^{+} \psi_{0}^{+\cdots+} \tag{6}\\
& \text { (s) } \alpha_{s \sigma}^{+} \Omega_{\zeta}^{+}(t) \Psi_{0}^{+} \cdot
\end{align*}
$$

The coefficients $t_{i \pi}^{*}$ define the contribution of the corvesbonding quasiparticle component, \sim is the number of the excited state with a given $K^{\hat{T}}$. The index $t=n$ indicates the neutron and $t=p$ the proton systems. The summation $\sum_{j_{1}, s_{5}, s, ~}^{j}$
 and that $E\left(s_{1}\right)<E\left(s_{2}\right)<E\left(s_{,}\right)$. By Ψ_{j} we denote the product of the quasiparticle vacua for the neutron and the proton systems, 1, e.

$$
\begin{gather*}
\Psi_{c}^{j}=\Psi_{c}^{n} \Psi_{c}^{i} \\
\Psi_{c}^{n}=\prod_{s}\left(u_{s}+\psi_{s}{c_{s+}^{+}}_{s-}^{+} u_{s-}^{+} \Psi^{w}\right. \tag{7}
\end{gather*}
$$

where $\alpha_{s \in}^{+}$is the neutron creation operator, $a_{s e} \Psi_{o d}^{\prime}=0$ The phonon ope:ators determined separately for the neutron and the proton systems are

$$
\begin{equation*}
\Omega_{\xi}(t)=\frac{1}{2} \sum_{q}\left\{X^{2}(q) A^{+}(q, q)-Y^{\eta}(\dot{q}) A(q, q)\right\} \tag{8}
\end{equation*}
$$

where $A(q, q)=\sqrt{2} \alpha_{q,} \alpha_{q-}, \zeta$ is the number of the root of the corresponding secular equation. In just the same way it is possible to construct the wave functions for the excited states of ever deformed nuclei.

The wave function (6) is of a very genera] form. It can be used for the description of both lowlying and highly excited nuclear states. In fact, when only the first component differs from zero the wave function is a singlt-quasiparticle one. A number of terms in (6) containing the product of two quasiparticle operators can be presented in the form of the phonon operators describing, e.g. in the Tamm-lancoff approximation, the quadrupole or octupole vibrations.

The wave function (6) can be used for the description of the excited states of an energy of $2-3 \mathrm{MeV}$ or higher up to energies at which the resonances do not yet overla?, 1.e. up to excitation energies at which for the states wi:h given $K^{\tilde{r}}$ the condition

$$
\begin{equation*}
\Gamma_{n}^{0} \ll D, \tag{9}
\end{equation*}
$$

is valid, i.e. when the total neutron reduced vidth of the resonance is much smaller than the average distance between the levels D.

To obtain certain integral characteristics the wave function (6) may be useful for the analysis of overlapping resonances and thermal neutron absorption.

If the wave function (6) has a large number of non-zero components, among which there are both few- and many-quasiparticle ones, then it is the wave function of a compound state. The presence of many-quasipartiole components neans that the
particle penetrated into the nucleus has undergone many collisions by breaking many pais. The small values of the manyquasiparticle components of this wave function result in a hindrance of the probabilities of high-energy gamma transitions to the low-lying states, therefore the half-life of this state must be much longer than that for the single-quasiparticle state.
5. We consider the strength functions for s-neutrons. The cross section for the s-neutron capture and the reduced neutron width for an 1-th resonance on an even-even spherical nucleus is written in the form

$$
\begin{equation*}
\ddot{\Xi}_{2}=\epsilon_{i}^{\prime}\left|t_{j}^{i n}(j)\right|^{2} u_{j}^{\dot{i}}+\epsilon_{i}^{00} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Gamma_{n 0}^{0}\right)_{2}=\left|b^{c n}(J)\right|^{2} u_{i}^{2}+l_{2}^{00}, \tag{11}
\end{equation*}
$$

$j^{\tilde{I}}=1 / 2^{+}, \quad{\underset{j}{j}}^{i n}(j)$ is the coefficient in the wave function (6). In eq. (10) we singled out the term corresponding to the machanism of the dir zct neutron capture, σ_{i}^{0} being the kinematic term. The sime is done in the expression for the reduced neutron width. The faotor $u_{v}{ }^{2}$ points out that the contribution to ϵ_{i} and ($\left.\vec{n}_{n}^{"}\right)_{i}$ is given by the particle state (1.e. states ly lng above the Fermi surface).

The reduced width of the smeutron capture in a deformed even-even nucleus is of the form:

$$
\begin{equation*}
\left.\Gamma_{n c}^{0}\right)_{c}=\left|\sum_{s} b_{1 / L^{+}}^{c n}(s) u_{s}\right|^{2}+\Gamma_{c}^{\infty} \tag{12}
\end{equation*}
$$

The summation over 1 is connected with the fact that several single-particle $K^{\tilde{\mathcal{L}}}=1 / 2^{+}$states may contribite to the wave function (6).

The strength function for the s-neutron is cefined as an average value of the neutron width $\left\langle\left\langle_{n c}^{c}\right\rangle\right.$ over a number of resonances divided by the average distance D between the levels with $K{ }^{\tilde{x}}=1 / 2^{+}$, i.e.

$$
\begin{equation*}
S_{n}=\frac{\left\langle\Gamma_{n c}^{0}\right\rangle}{D} \tag{13}
\end{equation*}
$$

Using eqs.(11) and (I2) we get the strength functions for the s-neutron oapture on an even-even spherical and ceformed nuclei in the form
$S_{n}=\frac{1}{\Delta E} \cdot \sum_{i}\left|b_{j}^{i n}(j)\right|^{2} u^{2}+S_{n}^{0<1}$,
$S_{n}=\frac{1}{\Delta E} \sum_{L}\left|\sum_{s} b_{1 / L^{+}}^{\ln }(s) u_{s}\right|^{2}+S_{n}^{00}$.

Here the suma, ion L is periormed over the resonance number in the inergy interval $\Delta E ; j^{\sqrt{4}}=1 / 2^{+}$. The strength function for the s-neutron cepture on an odd N deformed nucleus is

$$
\begin{equation*}
S_{n}=\frac{1}{\Delta E} \sum_{c}\left|\sum_{S_{0}} 6_{K \pi}^{-2 n}\left(s_{1}, s_{2}\right) u_{s_{x}}\right|^{2}+S_{n}^{00}, \tag{16}
\end{equation*}
$$

where S relate to the single-particle level which is occupied by a quasj particle of the ground state of an odd N targetnucleus. The simmation of s_{2} is performed over the sing-le-paritcle stetes with $K^{\tilde{4}}=1 / 2^{+}$. The terms S_{n}^{00} in eqs.(14), (15), (16) are due to a more complicated (rather than the direct one) mecranism of neutron capture.

According to the widespread opinion (e.g. ref. ${ }^{l 0}$) in the strength function the term $S_{n}-S_{n}^{00}$ is predominant, i.e. the strength function defines the contribution from simple configurations. Sometimes the neutron strength function 18 defined as the sum of the spectrosoopic factors of the neutron transfer reaotion of the (dp) type per energy unit.

We give qualitative explanation of the behaviour of the strength function for the s-neutron as a function of the mass number A without recourse to the optical nuclear model. We start from the assumption that the Fave functions (6) for the states of an excitation energy close to the neutron binding energy B_{n} contain a relatively large quasiparticle component
with $I^{\pi^{2}}=1 / 2^{+}$when the single-particle neut on level $K s_{1 / 2}$ in the case of spherical nuolei or $K^{\pi}=1 / 2^{+}$level in the case of deformed nuclei are near the enerpy B_{n}. As the neution single-particle level with $I^{\tilde{J}}=1 / 2^{+}$noves avay from the energy B_{n} the contribution of the correspondirg quasiparticle component to the wave function (6) must decresse.

In the upper part of Fig. I we give the experimental data on the strength functions for s-neutrons $S_{n} \cdot 1 C^{4}$ taken from ref. ${ }^{l l}$. In the lowerpart of the same figure we give the behaviour of the neutron states $3 s_{1 / 2}, 4 s_{1 / 2}$ and [640], $1 / 2^{+}$[651], $1 / 2^{+}[600], 1 / 2^{+}[611], 1 / 2^{+}$[880] for deformed nucle1, the energy of these states is reconed from the B_{n} value (the negative values correspond to the binding states).

Let look for the behaviour of the strengti function depending upon A. In the range $A=40-60$ the stat? $3 \mathrm{~s}_{\mathrm{i} / 2}$ is near B_{n}, therefore the strength function must je maximum. This is in agreement with the available experimental data.

In the range $A=60-100$ the state $3 \mathrm{~s}_{1 / 2}$, moves away from B_{n} remaining above the Fermi surface ener,sy which leads to a deorease of the strength function. In the range $A=100-$ 120 the state $3 s_{1 / 2}$ is near the Fermi surfan:e energy and its oontribution to the wave functions (6) is :xpected to be ntt large. In this range the subshells $3 / \rho_{1 / 2}$ and $3 \rho_{5 / 2}$ are near B_{n} and therefore the strength functions must have large values for p-neutrons.

In the range $A=130-140$ the S_{n} value increases which is hard to explain since the subshell $4 s_{1 / 2}$ is still
above B_{n} by $6-8$ HeV. It is possible that for a number of nuclei with $A \approx 100$ ani $A \approx 120-130$ being in the transition region some excited states are deformed. For them there are states with $K^{\widetilde{\nu}}=1 / 2^{+}$(marked on Fig.I) close to B_{n}.

In the range $A=145-155$ the strength function has a maximum. Then it is assumed that S_{n} somewhat decreases and there is a secord maximum in the range $A \approx 180$. The presence of the $1 / 2^{+}[640]$ and $1 / 2^{+}[651]$ states near B_{n} makes it possible to account for large values of S_{n} for deformed nuclei in the refion $150<A<190$. However it is hard to explain simply the decrease of S_{n} at $A \approx 165$ compared to the values at $A \approx 150$. New experimental data (e.g. ref. ${ }^{12}$) point to sharp changes of S_{n} from isotope to isotope rather than to the mintmum near $A=165$.

The presence of the subshell $4 S_{1 / 2}$ for spherical nuclei with $A=190-<20$ near B_{n} points out that the strength functions S_{n} must heve large values.

It is not di: ficult to explain the large values of S_{n} in deformed nuclei w..th $A=226-250$ since the states $1 / 2^{+}[600]$, $1 / 2^{+}[611]$ and $\left.1 / 2^{+}-880\right]$ are near tne B_{n} values.

Thus, basing on the looation of the single-particle levels with $I^{\tilde{\sim}}=1 / 2^{+}$on: succeeds in explaining qualitatively the behaviour of the sterength function for the s-neutron without recourse to the opt.cal nuolear model.
6. Some 1mpo: tant information on the struoture of highly excited states ma: be obtained from alpha decay studies. There are experimental clata on alpha transitions from the resonanses
to the ground, single-phonon and higher exciter. states in even--even spherical nuclei 13,14 . In ref. 7 one oillculated the reduced widths for the alpha transitions from the highly excited states described by the wave functions (6) to the ground, single-phonon and two-quasiparticle states. It is shown that the alpha decay involves a restricted number os the components of the highly excited state wave function, therefore from the analysis of the appropriate experimental data i.t is possible to obtain information on the magnitude of these components. The oalculations showed that the alpha decay to the ground state of an sven-even nucleus proceeds Prom the iwo-quasiparticle, four-quasiparticle of the type $2 n 2 p$ and ino quasiparticles plus phonon Ω_{ζ}^{+}components of the rave function (6) and all the quasiparticle operators must be particle ones. The reduced probability of the alpha transition frcm the two-quasiparticle components of the type particle-particle of the wave iunotion (5) is notioeably znhanced. The fluctiation of the particle-particle components in (6) from resonance to resonanos must lead to the fluctuation of the correspoiding alpha Tidths.

Table 4 gives the experimental data obtained in xef. 14 on the reduced alpha widths for the transitions from the resonances with $I^{\tilde{\mathcal{F}}}=3^{-1} 1 n^{148}$ Sm to the ground and one-phonon 2^{+} states in ${ }^{144} \mathrm{Md}$. It is seen from the table that the alpha widh (γ_{α}^{2}) for the transitions to the grouni state strongly fluotuate from resonance to resonanoe.

The alpha transitions to the one-phonon states involves a much laxger number of the components of the wave function (6) compared to the transitions to the ground states. Therefore the reduced probabilities for the transitions to the one-phonor states must be larger than those to the ground states. This fact is well demonstrated in Table 4.

If the reduced probability for the alpha transition to the ground state is larger than that to the one-phonon one then this indicates that the wave funotion (6) oontains relatively large two-quasipartiole components. Suoh a feature is characteristic of the resonance with an energy 183.7 eV in 148 Sm (Table 4).

The alphe transitions to the two-phonon states involve a much larger number of the components of the wave function (6) compared to the transitions to the one-phonon states. Therefore the reduced probabilities for alpha transitions to them may be larger than those for transitions to the ground and one-phonor states. In ref. ${ }^{14}$ one measured the reduced alpha width fcr the transition from the resonance of an energy of 39.7 eV in ${ }^{148} 8_{S m}$ to the tromphonon 4^{+}state in ${ }^{144} \mathrm{Nd}$, it was found to be $\left(\gamma_{\times 2}^{2}\right)_{L}=1.22,1 . e$. by an order of magnitude larger than $\left(\gamma_{x 1}^{2}\right)_{L}=0.12$ and by two orders of magnitude larger tran $\left(\gamma_{x 0}^{2}\right)_{L}=0.014$. In the same paper it was found that $\left(r_{x 2}^{2}\right)_{i}=2.44$ and $\left(\gamma_{x 1}^{2}\right)_{i}=0.35$ for transitions from the resonance with $I^{\tilde{\mu}}=4^{-}$in ${ }^{148}$ Sm to the twomphonon state 4^{+}end the one-phonon 2^{+}states. These data indica-
te to the fact that in some cases there are largz alpha widths for the transitions to the two-phonon states.
7. An important information on the structure of h1ghly ext. oited states may be obtained from gamma transitions to the lowlyling states. In ref. ${ }^{7}$ one calculated the reduced probabilities of the EI and MI transitions from the highly excited states to the ground, one-phonon and two-quasiparticle states in eveneven spherical nuclei. It is shown that the gamma transition to the ground state goes from the two-quasiparticle component of the type particle-hole of the wave function (6). The gamma transitions to the one-phonon states involve a large number of components of the wave funotion (6) compared to the transitions to the ground states.

The gamma transitions from the highly exciled states to the two-quasiparticle states involve a large nurber of the components of the wave funotion (6). The selection rule requires that one or two quasiparticles in the higlly excited state be on the same subshells as the quasipart:ioles in the final states. Owing to these selection rules it may be expeoted that the reduced probabilities for gamma transitions to the two-quasipartiole states will be smaller than those to the one-phonon and ground states.

Using the exoited state wave function (6) Let us analyse whioh processes may be correlated with one another. The correlation of two processes proceeding throughout the same state takes plase if the main contribution to both processes comes from the same components of the wave function of this state

The performed analysis showed that there must be oorrelam tions between the following quantities:l) the reduced neutron widths $\left(\Gamma_{n c}^{c}\right)$, and the reduced probabilities for the EI transitions to the single-quasiparticle states in odd-mass nuolei and to those two-quasiparticle states of the even spherical nuolei in whi sh one quasiparticle ocoupies the level corresponding to the ground state of the nuoleus whioh oaptured the neutron; 2) tie reduced neutron widths ($\left.\Gamma_{n c}^{0}\right)_{i}$ and the reduced EI and MI transitions to the single-quasipartiole and twoquasipartiole (one quasipartiole of which is on the level of the Fermi sur:ace of an odd $A-I$ nuoleus) of deformed nuoled.

The examiles of suoh oorrelations were given in a number of papers, fo: example, in ref. 12 .

There arı no correlations between $\left(l_{n c}^{7}\right)_{i}$ and MI transitions in spheri:al nuclei, ($\left.-\Gamma_{0}\right)_{i}$ and $E I$ and MI transitions to the two-quisiparticle proton states and to those twomquasiparticle neut::on states not a single quasiparticle of which lie on the lerel of the Fermi surface of an odd $A-I$ nuoleus.

We consicler the correlations between the reduced alpha widths ($\gamma_{x n \cdot L}^{2}$ and the reduced neutron widths. ($\left.\mu_{\text {no }}^{c}\right)_{i}$. an well as between $\left(\gamma_{\alpha n}^{2}\right)$; and the gamma reduced widthe from the same resolanoe L. The oomponents $b_{J}^{i 2 n}\left(j_{v}, j_{i}\right)$ of the wave funotion of the highly excited state of an even-eren nucLous enter the expressions for $\left(\Gamma_{n c}^{c}\right)_{i}$ and $\left(\gamma_{\alpha 0}^{2}\right)_{i}$ whioh indioates the existence of the correlation between these processes. However, the alpha deoay to the ground state involves also a number of four-quasipartiole oomponents and a far larm
ger number of the two-quasiparticle oomponents shan in the neutron capture. Therefore the correlation between : , fxo and ($\Gamma_{n 0}^{0}$) oan take place only in some cases.

The reduced probabilities of alpha- and EI transitions from the resonanoe to the ground states of even-even nuclef contain the quantities $6_{j}^{2 n}\left(j_{i}, j_{2}\right)$ where j_{0} related to the subshell which is occupied by a quasiparticle in tie ground state of an odd N nucleus A-I. The quantity $\left.0, i, J_{2}\right)$ together with the factors $\psi_{j_{c}} u_{j_{2}}$ enter the matrix element of the alpha-decay and with the factor ($\left.火, j_{2}+i \mu_{\mu_{2}}\right)$ in the matrix element of the EI transition. In the case $j=j_{0}$ it may be approximately assumed that $\chi \sim=2 F$. Therefore the extstence of the correlation between both processes is possible. However, the expression $\left(\gamma_{\alpha_{0}^{2}}^{2}\right)$, contains rany other oomponents of the wave funotion of the highiy excited state.

Of great interest is the experimental determination of the quantities $\left(\gamma_{x n}^{2}\right)$, and $\left(\Gamma_{n c}^{\nu}\right)$ and the reduoed probabilities for gamma transitions for the same resolanoes. It would be desirable to determine ($\Gamma_{n o}^{0}$), and the prolabilities of gamma transitions for the resonance $I^{\tilde{n}}=3^{-}$with an energy 183.7 eV in ${ }^{148} \mathrm{Sm}$ which has a rather large widih ($\gamma_{\infty 0}^{i}$)..

The performed investigations showed that "he expression of the wave function in the form (6) turns out to be useful for the study of the structure of these states.,

In conolusion I express my deep gratitud: to L.A.Malov, I.B.Pikel'ner, Yu.P.Popor and V.I.Furman for tire help and discussions.
I. V.G.Soloviev. Fhys.Letters, 16, 308 (1965). V.G.Soloviev and P.Vogel. Nucl.Phys., 92, 449 (1967).
2. V.G.Soloviev. Prog. Mucl. Phys., 10, 239 (1968).
3. L.S.Kisslinger, R.A.Sorensen. Rev.Mod. Phys., 35, 853 (1963).
4. D.R.Bes, Cho Yi Chung. Nucl. Phys., 86, 581 (1966).
5. В.Г.Соловьев, П. эогель, Г. Пнклауссен. Нзвестия АІ СССР сер.физ. 3I, 5I: (1967). Л.А. Палов, В.Г. эоловьев. МР 5, 566 (I967)
П. А.:алов, В.Г. ооловьев, у.и.Фаинер. Пзвестия АН СССР сер.физ. 33, I2'4 (I969)
6. V.G.Soloviev. Nuclear Structure, Dubna Symp. 1968, p.101, IAEA, Vienna, 1968.
7. В.Г.Соловьев, Ілеприит ОІभИ, Е4-5I35 (I970)
8. Ф.А.Гареев, С.Г.Ивенова. Сообщение ОИЯИ, Р4-522I (I970).
9. Ф.А.Гареев, С.П.Иванова, Л.А.Малов, В.Г.Соловьев.

Препринт ОИЯМ, ${ }^{3} 4-5470$ (1970)
10. P.Axel. Nuclear Structure, Dubna Symp.1968, p.299, IAEA, Vienna, 1968.
11. K.Seth. Nuclear Data, Section A, 2, 299 (1966).
L. B. Pikelner. Nuclear Structure, Dubna Symp. 1968, p. 349, IAEA, Vienna, 1968.
12. S.F.Mughabghat, R.E.Chrien. Phys.Rev., C I, 1850 (1970).
13. П.П.Попов, М.('темпински. Письма ॠЭТФ I, I26 (I968). J.Kvitek, Yu.I. Popov. Nucl. Phys., Al54, 177 (1970).

П.П.Попов, М.Пшитула, К.Г.Родионов, Р.ए.Руми, М.Стемпински, В. М. фурман. Сообщение ОПЯ I, РЗ-5073 (I970).
I4. П. П. Попов. Совещание по перспективам ис Іользования нейтронной спектроскопии, Дубна, октябр, 1970 г.

Recelved by Publishing lepartment on November 181970.

TAELEI
Fragmentation in ${ }^{239} \mathrm{U}$ of the single-partiole
states near the Fermi surface energy.

5/2-[622],	$\varepsilon\left(3_{c}\right)=0.712$	1/2-[631],	$\varepsilon\left(s_{c}\right)=0,812$	9/2-[7.3	, $¢(7)=$.
$\begin{gathered} 2_{L}-\eta_{F} \\ \mathrm{MeV} \end{gathered}$	$\left(\mathrm{C}_{3}^{2}\right)^{2}$ \%	$\begin{gathered} 2-2 \\ \mathrm{MeV} \end{gathered}$	$\left(\mathrm{C}_{3}^{2}\right)^{2} \%$	$\begin{aligned} & n_{-}-\sqrt[n]{f} \\ & M \in V \end{aligned}$	$(\mathrm{c}-)^{2} \mathrm{~d}$
0	91.7	0.102	88.7	0.245	85.5
1.784	0.6	1.260	0.8	1.559	3.3
1.884	1.4	1.983	2.5	1.639	3.0
2.892	0.4	2.504	1.4	2.249	1.2
2.906	1.4	2.768	1.1	2.298	1.6
3.371	0.5	4.700	0.6	5.992	2.0
Sum	96.0	Sum	94.1	Sun	96.6
4.690	$1 \cdot 10^{-5}$	4.768	310^{-5}	4.401	0.00117
4.722	$1 \cdot 10^{-6}$	4.769	0.14360	4.426	0.00706
4.737	$7 \cdot 10^{-5}$	4.792	0.40573	4.432	0.00014
4.746	$1 \cdot 10^{-6}$	4.801	0.06074	4.450	0.00026
4.765	$2 \cdot 10^{-5}$	4.807	$<10^{-6}$	4.471	0.00089
4.770	$2 \cdot 10^{-6}$	4.808	$1 \cdot 10^{-6}$	4.520	$9 \cdot 10^{-5}$
4.825	$1 \cdot 10^{-5}$	4.818	$6 \cdot 10^{-6}$	4. .33	$2 \cdot 10^{-5}$
4.833	$4 \cdot 10^{-6}$	4.826	0.00055	4.541	$1 \cdot 10^{-5}$
4.892	$<10^{-6}$	4.857	$4 \cdot 10^{-5}$	4.535	$9 \cdot 10^{-5}$
4.898	$5 \cdot 10^{-5}$	4.862	0.00074	4.776	0.00044
4.910	$4 \cdot 10^{-5}$	4.871	0.00011	4.189	0,00971
4.912	0.00821	4.873	$1 \cdot 10^{-5}$	4.625	$6 \cdot 10^{-5}$
4.917	0.08576	4.901	$5 \cdot 10^{-5}$	4.567	0.07692
4.922	0.42494	4.916	$8 \cdot 10^{-5}$	4, 70	0.001 .58
4.930	9.00024	4.934	$<10^{-65}$	+ 584	0.00220
4.931	0.00576	4.935	$4 \cdot 10^{-6}$	4.13	0.00010
Sure	0.52512	Sun	0.61181.	30	0.02976

T A BLE 2
Fragmentation in ${ }^{239} \mathrm{U}$ of the single-particle states far away of the Fermi surface energy.

1/2+[640], \quad (3 , $)=3,530$		1/2 [[880], $\varepsilon(5.1)=4,424$		1/2+[600], $\varepsilon\left(s_{\text {c }}\right)=5,251$	
$\begin{gathered} \bar{\eta}_{i}-\eta_{f}, \\ \mathrm{MeV} \end{gathered}$	$\left(\mathrm{C}_{3}{ }^{\text {a }}\right.$) ${ }^{2}$ \%	$\begin{aligned} & \eta_{i}-\eta_{i}, \\ & M e V \end{aligned}$	$\left(C_{5 .}^{5}\right)^{2} x$	$\begin{gathered} \eta_{L}-\eta_{F}, \\ \mathrm{MeV} \end{gathered}$	$\left(C_{s_{v}}^{i}\right)^{2}$ \%
1.332	2.7	2.585	16.0	2.650	4.6
1.890	34.4	2.587	5.4	2.937	35.4
2.351	13.8	2.827	11.0	3.058	12.1
2.890	5.4	2.861	14.5	3.097	2.5
4.081	10.6	3.108	14.4	3.285	0.2
4.508	3.3	4.560	1.6	4.680	4.1
Sum	70.7	Sum	62.9	Sum	58.9
4.768	0.00203	4.768	10^{-6}	4.768	$2 \cdot 10^{-5}$
4.769	1.11736	4.769	10^{-6}	4.769	0.00031
4.792	0.09847	4.791	$2 \cdot 10^{-6}$	4.792	$1 \cdot 10^{-6}$
4.801	0.02320	4.801	$1 \cdot 10^{-6}$	4.802	0.86308
4.807	$2 \cdot 10^{-5}$	4.806	$4 \cdot 10^{-5}$	4.804	0.00012
4.808	0.00079	4.808	$<10^{-6}$	4.810	0.01214
4.818	$6 \cdot 10^{-6}$	4.819	0.38851	4.818	$1 \cdot 10^{-6}$
4.826	$18 \cdot 10^{-5}$	4.828	0.25372	4.831	0.09227
4.857	29.10^{-5}	4.857	$4 \cdot 10^{-6}$	4.857	$2 \cdot 10^{-5}$
4.862	$4 \cdot 10^{-6}$	4.861	0.02102	4.860	0.27764
4.871	$7 \cdot 10^{-5}$	4.871	$1 \cdot 10^{-5}$	4.871	0.00080
4.873	0.0005 L	4.873	$1 \cdot 10^{-6}$	4.873	0.00052
4.901	$3 \cdot 10^{-5}$	4.900	0.00211	4.894	3.25660
4.916	0.00637	4.916	$5 \cdot 10^{-5}$	4.916	$8 \cdot 10^{-5}$
4.934	$<10^{-6}$	4.932	0.08336	4.934	$<10^{-6}$
4.934	0.00352	4.935	$6 \cdot 10^{-5}$	4.935	0,00010
Sum	1.252	Sum	0.749	Sum	4.502

TABLE 3
Number of non-rotational
states in ${ }^{239} \mathrm{U}$

TABLE 4

Reduced widths for alpha transitions from the states with $I^{\bar{n}}=3^{-}$in ${ }^{148}$ Sm to the ground and one-phonon states of ${ }^{144} \mathrm{Nd}$

Energy of resonance	Reduced widths for transition to states	
$\epsilon^{\prime}-B_{n}$	ground	one-phonon
eV	$\left.\left(\gamma_{\alpha}^{*}\right)^{2}\right)_{i}$	$\left(\gamma_{x 1}^{2}\right)$
3.4	0.425	1.14
29.7	0.098	0.11
39.7	0.014	0.12
83.3	0.480	0.86
102.6	0.044	0.99
123.4	0.191	0.25
183.7	5.720	-

