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1. Introduction 

The. simple Bohr rotational mode/
1

/ is found to be extremely 

useful in analysing experimental rotational spectra in odd-mass 

. ' ., '. deformed nuclei especially after Kerman/2/ has .developed a proce

·dure of taking into account· the Coriolis force. It is known that 

· .. in order to bring into agreement the calculations in the Kerman 

. , . scheme and. the exp~rimental data it is necessary to decrease 

.,._. 

essentially the values of the single-particle matrix elements < .,• > . t 
between the states belonging to the same spherical subshell13 /_ 

Phenomenologically this renormalization of < it. . > is accounted for 

by the decrease by 20-30<>/o of the rotational parameter l / 2 ~ 

entering the Coriolis term in the Hamiltonian/
4

/_ 

The Coriolis coupling of particle-hole states . can be weaken-

ed by the decreasing the energy gap t,,, , appearing due to the 

pairing interaction/sf. However, ~ram the physical point of view it 

is difficult to justify the strong weakening of the pairing force in 

odd-mass nuclei. EarlieJ
6

/ we indicated that the regular renorma..:: 

lization of <it.> may result from the static centrifugal interaction 

of an odd nucleon with the particles of an even-even core and 
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lgave th_e quasiclassical estimate of the appropriate polarization 

factorx/. 

The present paper is devoted to the investigation of static 

polarization effects in .rotational motion arising from the centrifugal 

and spin-spin interactions of an odd nucleon with the core, From 

the physical point of view these effects are completely analogous 

to the well-known effects of the spin polarization in magnetic mo

ments/i,s/. In the subsequent sections of the paper the Hamilto- , 

nian of the intrinsic motion. including pairing and static centri

fugal interactions is diagonalized. The intrinsic wave functions 

are then used in the diagonalization of the Coriolis force matrix. 

Finally, the effect of the spin-spin interaction of an odd nucleon 

with the core is taken into account and its contribution to the 

polarization factor is estimated. 

The application of the theory to concrete nuclei and the 

discussion of numerical results will be presented in the second 

part of this paper. 

2 •. Rotational Model 

We assume that in a deformed nucleus the intrinsic motion 

(for a fixed orientation of the nucleus) which depends upon the 

nucleon coordinates in the body-fixed· system, and the collective 

rotational motion may be approximately separated. According to 

this the total angular momentum. 1 consists of two parts,. the colec

tive rotational momentum R : and the intrinsic one r formed . by 

a single or a few. nucleons moving i~ orbitals close to the Fermi 

surface. 

x/ One of the authors (N.P.) expresses his gratitude to Prof. 
A• Bohr .who drew his attention to the fact . that this effect was 
overestimated. In the present paper necessary corrections have 
;been introduced. 
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The total Hamiltonian. of an axially-symmetric nucleus consists 

of two parts 

H ff lntr + ff rot (2) 

where ll1ntr describes the intrinsic motion of nucleons in 

a certain axially-symmetric average field and II rot has the 

form ('ft = 1 ) 

H 
rot 

(3) 

➔ 

Here R 1 are the components of the angular momentum R and ~ 

is the effective moment of inertia. Thus, II rot describes the rota

tion of the axially-symmetric rotor about the axis perpendicular 

to the nuclear symmetry axis (R 3 = 0 ) • With the help of (1) 

H rot can be written in the form 

0 

H rot = H rot + II j + H c (4) 

0 1 2 . 2 
H rot = 2f (l - I a (4a) 

2 2 
> - <,· · - i > 1 + - ' 
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He 1 

2,1 
2 C\ j 1 

- (] -] ) ( i 
+ - + 

+l·j ]=--1-..![CI+I)(j +i) 
2 2 2j 2 .. . + - .. + . -

i - ) ] 

with the usual notations 

I± I 1 ± ii 2 , i ± = i 1 -t. ii 2 

In eq. ( 4) the term H ~ot depends only on the total angular 

momentum I and its projection on the nuclear symmetry axis 

(4c) 

(5) 

I 3 ~ K . In the general case, the term H 1 represents the centri-

fugal interaction of particles induced by rotation. This interac

tion and related polarization effects are considered in detail later 

on. 1'""inally, II 
O 

is the Coriolis force which acts on particles 

in the rotated coordinate frame. 

• The term ff [ntr is assumed to be e~plicitly independent 

of the total angular momentum I Since H 1 , is independent 

of the angular momentum ] 

part of the Hamiltonian, 

it can be included in the intrinsic 

The eigenfunctions and the eigenvalues of the intrinsic 

motion are characterized by the quantum number K CI a = i a = K 

( H lntr + H j ) ¢ K == :& K ¢ K • (6) 

From · the invariance of the intrinsic Hamiltonian under time rever-

6 



sal if follows that the eigenvalues ·~ K are degenerated with 

respect to the sign of K • Let us define the time-reversal opera-

tor T byx/ 

T ,I,. ,I."" = (-1) K+t/2 
'l'K - 'I' K rp -K (7) 

where ¢_K is defined as in ref./lo/ 

(8) 

Here R 1 is the operator of rotation through an angle 11 about 

the 1 -axis, the phase (-1) f characterizes the parity of the state. 

The complete symmetrized wave function can be written in the 

form 

where 

21 + 1 

16112 

Cl 
K 

21 + 1 

1611 2 

I ¢ DI (-1) 1+f+ K 
K MK+ 

(9) 

(9a) 

. x/'l'he phase of spherical harmonics 'Yem is assl,\m~d to be 
the same as that used by Condon and Shortley(see, e.g. ref. /9/~") 
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,l ci 
K are the amplitudes of Coriolis mixing of states with diffe-

rent K • The sum in eq. ( 9) . runs all the states with K .< I 

The normalization condition for the amplitudes 

I 
K 

( C ~ ) 2 1 .. 

3. Intrinsic Motion 

(10) 

We consider the intrinsic motion of nucleons in an axially 

symmetric average field (described with, e.g. the Nilsson or Saxon

Woods potential). For the sake of simplicity we assume at first 

that the nucleons interact only by means of pairing residual forces. 

The Hamiltonian of the system in the second quantization repre

sentation is written in the form 

II in tr 

II sp 

H pair 

H sp + If pnir 

I ( f v - ,\ ) ( a ~ a v +. a ~ a v"" 
V 

-G r+ f' , f' I 
V 

a"" a 
V V 

(11) 

(11a) 

(11b) 

Here, f v - ,\ are the single-particle energies reckoned from the 

chemical potential of the system, ,\ ·, which may be found from the 

condition of the particle number conservation; 

8 
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the particle creation and annihilation operators in the I 11 -> state 

respectively (the state :1 ;: > = Tl 11 '> ). The -pairing force strength 

G , is assumed to be different,. for protons and neutrons. The 

centrifugal interaction, H 1 , is also taken into account in the 

intrinsic motion. In the second quantization representation this 

operator reads 

1 _!_ "<:' ( (T) 
.. T .F' 

2j 4 T=±I 

with definition 

- I 
1111' 

< II :1 j + T j 
+ 

) 2 

a , 
II 

(12) 

(13) 

With the conventional phasing of states defined by eqs. (7) and (8) 

the matrix elements in (13) possess the following symmetry proper

ties: 

<vl.i++rj 

The last matrix elements 

with K = I /2. The matrix 

i.e. ( i (+) ) 2 = ( . (-) 
,\,\ , I A,\ , 

in (14) 

-T " ( T) = T " (T ) 
.I v,{J" I 11 '11 

• (r) 

=Tjfr11' 

(T) 

= j II '{J 

exist only between 

elements for T = ± I differ 

) 2 • 

9 
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We pass to the quasiparticle representation by means of the 

Bogolubov canonical transformation 

a 
V 

a {7 

UV av' 

u a 
V V 

+ V 

- V 

V 

V 

a+ 
V 

a+_ 
f7 ' 

(15) 

, where u and v 
V V 

are the transformation parameters. Introducing 

'the quasiboson operators 

A er', ·- a a "',, + r a"' a vv V V V V 

8·en, + • - a +. a. ,- T a"' a -;::;:,, vv V V V V 

(16) A er', = av a ·, -r a"' a -:::::., vv V V V 

nen,eeea+a,,,, +r at a 
VV V V V V 

and using eqs. (14)-(16), one can write the operator Fen in the 

form (the phase is arbitrary) 

Fen F en + F .e!l 
B A 

Fen = l M ·, [j en, 9en, '"'.".i e;_> 
B v.v~>o vv vv vv w, 

Fen = _l l 
A 2v,v'>o 

L , [ · en , ( A en+, 
vv I vv vv 

+ j er) 
~, 

- + -A en + r A en. ) ] 
VV ' VJ.I' 

10 

e<n ] 
vv' 

+r A<n 
vv{ ) + 

(17) 

(17a) 

(17b) 



where 

Mvv' = uv uv, + vv vv, (17c) 

L vv , = u V V V , - UV , V V 

In the independent quasiparticles approximation the Hamilto- _ 

nian ( 1i) hps the form x/ 

H O = U lntr 0 
+ H 

sqp 
(18) 

' /),2 
u 0 =·2 I ( l -.\ v2 

V V •V G 
(18a) 

:;j' 

H I E· B c-> 
sqp V V vv (18b) 

(18c) 

We look now for the. eigenfunctions and the eigenvalues of the 

total intrinsic Hamiltonian 

J( lntr 
= n,o 
- .. lntr. + H l (19) 

" 

,x/We neglect·. here the pairing vibrations and the coupling 
between qt.1asi~rticles and pairing vibrations. 

11 
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. The cehtrifugal interaction ( 12) generates the excitations 

with K TT = I+ in even-even nuclei and leads to the three-quasi

particle admixtures in low-energy states of odd-mass nuclei. The 

trial wave function for an odd-mass nucleus may be chosen in 

the form ( K > 0 ) 

rpK N a+ +-1 I 
K K 2 T 

I I [RKK'() + en+ 
K ',\,\ ',/K, AA , r a K , AX,\ , + 

(20) 

KK' -+ ( + 
+oK,l/2oK,'l/2R,\,\,(r) aR',AA1, + 

-(T) 

+ (analogous terms with operators A AA ' ) } II 0,> ). 

,. < •• ~ 

Here NK and R~,' are variational amplitudes, IO> the quasiparticle 

vacuum. The blocking effect is taken into account in all the sums in eq. 

(20) (,\,\ ',/ K '). The bosons described by the operators A k>.>, 
are assumed to have the total projection of angular momenta 

and parity K TT = I : The three-quasi-particle admixtures have the 

same total K quantum number as the one-quasiparticle has in 

the wave function ¢ (i.e. K ' = K + I ). 
K -

·· Later on we employ the following approximate commutation 

relations 

) , + 
[ A (T A (T > } ~ 28 

vv'' ,\,\' . TT 

[ aK 
(r)+ 

Au, "' 0 

(o O -TO O )· 
VA VA, VA, V ';\ 

(21) 

12 
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and exact ones 

[A.<.r>, 
1/V 

B Cr'> 
' ,..AA, ] + 

] . 

-
Similar relations can be easily obtained for the operators A 

and B 

(22) 

The normalization condition for the wave function (20) reads 

<¢+ <p ·> 
K K 

+ I 
r 

K K' 2 
I I I ( R,\.,\ , ( r ) ) + 
K 'X,\ ',/K' 

(23) 

I-Ere and below the terms arising from the coupling of quasipartic

les · to bosons A~>, are not written explicitly but it is assumed 

instead that summation over ( XA ') includes the states with K = 1/2 , 

Employing relations (21) and (22) the following expressions 

for a number of matrix elements are obtained 

+ <<p K H sqp 

KK' 2 KK' 2 
x [ ( R " , ( r)) + 8 I 8 , / CR,., , ( r)) 

IV\ K,1 2 K ,I 2 IV\ 

13 



~ ,.-., 
. '· . r.::: 
•.1~, .. •. 

< ¢ + F ( T) F (T) ¢ ·> "' 
K B A K 

2r .N I 
K K, 

M [·~r> <l><r> KK , , .I KK , , KK, 

• (T) (T) 
-BK,t/2 8.K',1/2 I Kit' <l>KR' 

where 

<I> ( r) 
KK' 

I 
.\,\'~K' 

R KK, ( r) 
.\,\ , 

. en L 
I'.\,\ , .\,\ , 

<I> ( r) 
KK, 

- I RK~ , ( r) · < n , 
,\,\ ~ K , ,\,\ , I ',\,\ , L ,\,\ , 

<,1,.+ ( F(r> ) 2 ¢ '>~2r I 
'f"K A K K' 

[ <I> (T) 2 
KK' +BK,1/2 

Cr) 2 

BK', 1/2 <I> Ki'' 

+ (terms not including the variational amplitudes). 

(25) 

] + 

(26) 

ment 

Introducing the Lagrange multiplier WK to ensure the require

( 23) we derive the variational equations for the amplitudes 
, x/ 

. NK and R ~r (r) 

x7The contribution frorri terms ( F ~) · ) 2 in II J is not taken 
into account in eqs. (27). Approximately the same energy shift 
of all one;_quasi-p:1rlicle levels 1 results from these terms 
which, however, are assumed to be included in the average field. 
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- ,. ~ --- -,-: ~ .;, d .----.- ' . . ~ ---,-·---

i·"''\' 

N (E W ) l l }: M ,[•Cr> <I>cn 
K K - K + -

2
d -

2 
K,K l KK ' KK ' -

J K ',r 

-OK, 1/2 

+ N ,.en M 
K · KK, 

"" 

0 

KK' ] 0 

KK ' ( T) 

I RX,\ , ( T) [ E,\ + E,\ , + EK , - w K ] + -h -½ i ,\,\ , ·L ,X,\ , X 

x[<I>Cr~-N 
KK' K 

M ] I o 
KK ' K, 1/2 

0 
K \ 1/2 

"'0 

(27) 

- From (27) the equation for the energy shift E K -WK of one

particle levels associated with the three-quasi-particle admixtures 

and the expressions for the amplitudes R KK ,( r) can be derived 
',\,\ , 

15 
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, I 

.en M 
KK ' 1 1 KK' KK ' . 

n <r>=- -NK s· s ',\,\, 2 2 +. KK, 

. en M =, ., KK, KK , 
KK -- ..!. N . . 

. en L 
1 'XA' 'XA' 

E-,\ + E,,\, +EK, -WK 

. en ·L 
1'XA'. 'XA' 

• n.M ,er> - 2 K 2s + s.KK, E·,\ t E,\ ,+EK, -WK 

the function S KK , being defined by 

·a =-1 !, 
cJ KK ' - 2 ',\,\ ',fo K ' 

,2 L2 
.1 'XA, 'X.\ , 

E,,\ + E ,\ ., + EK ,- w K 

Now the eigenvalue for the intrinsic Hamiltonian (19) reads 

'li, K Uo + WK• 

4. Renormalization of Single-Particle Matrix Elements 

(29) 

(30) 

(31) 

(32) 

The wave functions (20) can be used for the calculation 

. of the matrix elements of operators . j + + r j_ entering the Coriolis 

coupling term (4c). By means of eqs. (21), (22), (29) and (30) one 

obtains 

< ,1,+ Fen ,I, •> 
'f'K 'flK, I.en M R (K,K') 

KK' KK' J 
(33) 

16 



• 1. . .• ~ .t ' 

<ct,;;, F(T)cf, ·> 
K K' 

.i c n M R ( K , K ') 8 8 . 
KK' KK' j K,1/2 K ',1/2 

(34) 

where the matrix elements of the polarization matrix R l are de

fined by 

R (K,K') 
j. . N N ,I I -

K K 

j KK' (35) 

~ KK, and j K 'K being given by (31)~ 

Thus the centrifugal interactions lead to the reduction of the 

one-particle matrix elements i ~~ , and the decoupling parameters 

i <;~ since R l (K,K' )<I for the state_s with WK<E,\+E,\' +EK' 

(the lowest solution of eq. (28), which corresponds to the state 

with small three-quasiparticle admixtures). 

In the quasiclassical approximation when the following 

conditions are fulfilled 

I 

E - W 
K' K « E ,\ + E ,\, 

EK - WK,« E,\ + E,\' 

(36) 

and the blocking effect is neglected we obtain for the function j KK ~ _ 

17 



! 
,i 

.'J KK , . .'J K 'K "' 
1 
2 

I 
M, 

• 2 
IM, 

E,\ 

L2 
'M , 

= '..'J 
+ E ',\, 0 

(37) 

Apparently .'J 0 represents the contribution of particles interact-

ing through the centrifugal force to the effective moment of inertia , 

(the sum in (37) runs over the st.ates contributing to the intrinsic 

.angular momentum j ). The quasiclassical expression for R l 

now can _ b~ written 

Ri (K,K') ., 1 -
2.'J 

0 

2 .'J + .'J = R i 
(38) 

C 

In that event all the matrix elements < I + ·> (including· the de

coupling paramet~rs) are reduced by · the- same fcict~r R l 

5. The Coriolis Force 

Using the representation (13) one can write the Coriolis 

term ( 4c) in tl-e form 

H 
0 

1 

2.'1 
! I 
2 T=+l 

r (I +rl 
+ 

) Fen (39) 

. Now for diagonal matrix element of (39) in the st.ate (9) it is easy 

·to obtain 

.<IM :1 H O :1 IM•> I c! C~,<IMK:111
0

:I IMK' > 
KK' ' 

(40) 

18 



where 

<IMK I H :1 IMK' '> = - _!__ 
• 0 . 2S 

1 

2 

+ (T) 
T I < ¢ K .F ¢ K , > X 

T=+I 

[y (I -K) (I +K + 1) 8K',K+1 +~ V CI+K)O-K+l) 8 , 1+ . 
K ,K-1 (40a) 

( ) 1+f+1/2 
+ -1 8 1· . K, 1 2 

+· (T) 
S , I (I + 1 /2 ) < ¢ ;,; F ¢ , > 

K ,1 2 · A K 

Having in mind the results (33) and (34) we came to the conclu

sion that the centrifugal interactions weaken the Coriolis force~--

In the quasiclassical approximation the polarization effects can be 

accounted for by the use of· the renormalized effective moment 

of inertia for the Coriolis force 

1 

2s eff 
R l. (41) 

Assuming S « :s we obtain. 
' a . 

'!he latter result was obtained by A. Boh/
11

/. 
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6. S_gin-Polarization Effects 

Additional renormalization of the matrix elements < .i + •> 

may arise from the spin-spin interaction of particles/a/. It ;ccured 

that the most important contribution to the polarization matrix comes 

from the monopole part (in angular variables) of this interaction 

which can be taken to have the form of the model Hamiltonian' 

Knn =Kpp e:e K •>0, Knp = 0) 

1 
~ (Ten ) 2 (43) Ha= -K T 

' 4 T=+ 1 

( n • P) 

with the notation 

T en= ~ < v[ a +ra :1 V' 1> a+ a V , (43a) 
vv, + - V 

where a "" a + ia 
• + X - y 

are the Pauli spin matrices, the matrix 

elements- <v:[ a + ra :[ v '•> e:ea<r) , are assumed to have the symmet-+ . - vv 
ry properties ( 14 ), K is the strength parameter. 

Employing the wave functions (20) one can diagonalize the 

total intrinsic Hamiltonian J{ Int, + Ha . Omitting the details of 

calculations we give here the final results. The secular equation 

for W K now takes the form 

20 



X ------+K 
2S+S(K) 

KK' 

X 
S ( l J 

K KK' 

I+K s<i> 
KK' 

where 

d (K) 

J KK' 

s ( J) 

KK' 

X KK, 

S KK, E 

- s KK' -

- s , 
KK 

- .1. }: 
2 ',\,\ f' K' 

[ 2 + 8 • 
UKK' K, t/2 

8 
K ',t/2 

1 + K S KK, 

2 

X KK, 

2s + s KK, 

2 

a M , ;.X,\ , L,U , 

E ,\ + E,\ , +EK ,-WK 

21 

2 
a "' 

KK' 

2 
KK' 

] X 

] X 

(44) 

(44a) 

(44b) · 

(44c) 

(44d) 



~ The summation in j KK, and XKK, extends over the states invol

ved in the centrifugal coupling, while no such restrictions are 

imposed on the summation in S KK ,. The mixing of the centrifugal 

and spin- spin interactions leads to the mutual renormalization of 

'the corresponding polarization sums S KK, and jKK, 

(44a) and (44b)). The matrix element of the polarization 

(see, eqs. 

matrix n~ 
is now given by t 

H a ( K , K ') = N N , I I -
j K K 

aKK' 2~ 
-.-[ 

I KK' 2~ + ~(K) I 
l KK, 

2~ K X K 'K 

+ 
2f+ j (~)/ l + K SK 'K 

· K K 
; 

j(K) 
KK' 

2~ + j CK) 

KK' 

K 'XK,K, 

+ K S 
KK' 

l I 

+ 

d ( K) , 

.J K 'K 

2~ +j(K) 
K'K 

(45) 

The quasiclassical expression for Ra 
' j 

(see eg. (36)) reads 

na"' 
j' 

1 -

2j (K) 

C 

2~ + j (K) 
C 

-(-
j 

KK' 

22 

2~ 2 K X C (46) 

2~+~(K) 
C 

1+ K Sc 



where ·s : K) XO and s C denote the corresponding quasiclassi- I 

cal limits of ( 44a) - ( 44d). For the matrix elements between the 

states of a single .i -shell the following estimate of the ratio 
(1 • 

(~ can be obtained 
j KK' 

(IKK ' ) "' _l_ (47) 
.i 

KK '· 

H:!nce 

1 :s X ~ 
0 0 

(48) 

The magnitude of K and S O was estimated from the calculation. 

magnetic ;;oments/B/ 

K "' 300 Kev 

(49) 

With the estimates (47) · - (49) it can be shown that the renorma...;. 

lization of :s due to the spin...;spin force is small CS ( K' "' S 
0 

and the spin polarization gives. the contribotion to Ra 
j 

• 2 
I 

23 

C 0 

(50) 



:.•. 

which is approximately 20o/o of that from the centrifugal polarization 

in case of i 13 ; 2 shell (with ;J "" 30 Mev-\ 

7. Equation of Moti~n for c~ 

The equations of motion for the Coriolis mixing amplitudes 

C ~ can be obtained by minimizing the total energy & (I) for 

each spin value 

·e; (I) ss <.IM:[ J{ 
lntr + II + H

0 
+ H : l IM '> a · rot o 

, 2 1 
=Lio+ I (CK) WK +2]"g(I) 

with g (I) given by 

g(I) I (I+ I) - I (C 1 
· )

2 K
2 

+ (-1) i+i/:'tl+l/2) a (I) 
K K 

(51) 

(51a) 

'Ihe gene,ralized not.ion of the decoupling parameter a(]) is intro

duced here 

(-1)
1
+!/2 O+l/2) a(I) aa2;J <IM:[ II,,[ IM'> (51b) 

24 
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We will take the pairing force into account in the static limit· in 

which the energy gap 6. (and therefore, the one-quasi-particle 

energy E V ) is spin-independent. Hence, we neglect the Coriolis 

antipairing effect, arising from the interaction between pairing and 

rotation, which gives in the lowest order in I 0+1) the energy contri

bution B t:,,.1 2 (I + I ) 2 ( B < I ) /i2
/. As. a rule in odd-mass nuclei 

this correction is sma1fr
13

/ as compared with that from the Coriolis 

force, which can be chara~terized by the value of a (I) Cl a O ):I "' 10 

for the rotational bands based on i rn/2 shell states/6/). 

Introducing the Lagrange multiplier w K to ensure the norma

lization condition (10) we obtain the variational equations for C~ 

in the form 

CI 
K + \V K 

I 2 
+ 

2
j [I Cl+I).-K + 

0 +_1/2 ' a R al ( K , K ) ] - w (I ) I + 
Sp 

+ I C ~ ' < IMK I II C :1 IMK' > 0 
KI= K 

(52) 

where a,, P denotes the unperturbed single particle decoupling 

parameter 

e 
a = -{-I) Sp 

. £+) 
J 1/2 , 1/2 (52a) 
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Equations (s2); (44) and (10) now define c,ompletely the spect

ra of quasi~parl:i~le and rotational excitations of a given parity in_ 

odd..:.mass nuclei. 

8, Discussion 

In - the proceeding sections it was shown that the centrifugal_ 

polarization (i.e. the renormalization of matrix element < i > ) ' ' + 

, essentially depends • on the value of ~ KK , (or the value of 

~ 0 in quasiclassical limit), which is particularly large if the 

states originating from a strongly degenerated spherical subshell 

appear near the Fermi surface. It is known that rotational bands '', 

upon such states are strongly distorted by .the Coriolis force/3 ,4 ,5 / · .. , .. . 
Therefore, the correlation between the centrifugal polarization and 

- th,~- : Coriolis coupling of single-particle states is found, i.e. the 

: polari~ation effects are noticeable in rotational bands strongly 

distorted by the Coriolis force, This is just the main difference·· 

,. , . · '-;_.~:-. bebN~en' the -centrifugal and spin polarization which leads to the 
••. l • 

·-' 1- •• \,s~ble renormalization of the spin gyromagnetic ratio . ~ s in all 

·"', . :'\_t;~tes/
7 ,s/. W~ h~pe, that both the polarization effects from the 

_..:·. ·, . 
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•:: centrifugal interactions and the non-adiabatic effects from the 

- 'coriOlis coupling will essentially depend upon a compa.ratiV'ely 

Srrlall number of single particle levels near the Fermi surface. 

The effective moment of inertia S is considered· here as 

a para~ete~ the magnitude of vvhich musf be close to that in 

-neighbouring even-even nuclei. (some difference however may 

arise from the difference of the energy gap !!,, in odd-mass and 

even-even nuclei, e.g). 
•,~" 

. We do not to~ch upo~ the dynamics of pairing interaction 

and the effective moment 9f inertia. The·• dependence of !!,, and S 
on the fr~quency' of rotation 'wiu be considered later on when 

solving the dynamical equations given in/
6

/. 
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lJSlTOB n.YI., ,eµtteH r-1 •. 1:J., Di:i~Hi:iT J'l•l'J· 1..:,---i--!-1--i-vu 

nom1i:HI3aUIIOHHbie 3C\1qieKTbl BO BpawaTenbHOM llBll)KeHJlll 

He'-!eTHb!X aTOMHblX 51/lep • I. Teoplrn 

PaCCMOTpeHbl nomlpl!38UIIOHHble 3q1cjieKTbl BO BpawaTenbHOM llBl!)!(eHJIJI 

He'-!e,:Hb!X aTOMHbIX Slllep, B03HIIKalOWl!e OT ueHTJJ06e)!(HOro II CllllHOBOro 

B3al!MOlleilcTBl!Ii He'-leTHoro HyKnOHa C '-IBCTIIUaMII '-lilTHO-'leTHOro OCTOBa. 

3TII B3allMOlleilCTBIIH Ilpl!BO/:(SlT K nepenopMl!pOBKe OllHO'laCTll'IHbIX MaTpll'lflbIJ< 

sneMeHTDB < i .+ > n, cnenoBaTenbHo, . Baa11Mo11e1icT·111S1 Kopnonnca. B KBa.: 

311KnaCCll'leCKOM- np116m!)!(eHIII! nonHpH3aUIIOHHbie scjiqieKTbl CBO/lSlTCSl K nepe

HOpMIIPOBKe ( yBen11-ieH1!1D) scjiqieKTIIBHoro MOMeHTa lrnepUHI! l1pll. B3al!MOlleil

CTBl!ll Kopnonnca. TToKaaaHOj '!TO 3TH scjiqieKTbl Ha116onee cywecTB0HHf,J /lnSl. 

BpawaTenbHbIX nonoc .Ha OllHO'laCTll'IHb!X COCTOSlHIIHX, IICXOllHWIIX 113 Cl!nhHO 

BbipO)!(/leHHbIX ccjiep11'-!eCKIIX nono6ono<ieK ( T.e. B Tex cny,iaHx, Karna c11nh-

HbI Hean11a6aTl!'-1e_cK11e sqiqieKTbl OT B38IIMOlleilcTBl!Sl Kopnonnca). 

IlpenpHHT 06'1.e.QHHeHHoro HHCTHT)'Ta SAepHhlX HCCJ1e.1t0B8HHA. 
~6Ha, 1970 

Pyatov N.I., Chernej M.I., Baznat M.I. E4-5468 
·' 

Polarization Effects in the Rotational Motion of Odd-Mass 
Nuclei. I. Theory 

,• 

Polarization effects in the rotational motion of odd-mass nuclei 
associated with centri:ugal and spin-spin interactions of an odd 
nucleon with the particles of ·an even-even core are considered. 
These .interactions lead to a renormalization of the single-particle 
matrix elements < j t. > and, consequently, the Coriolis · force. In 
the quasiclassical approximation the polarization effects are 
reduced to a renormalization (increase) of the effective moment of 
inertia in the Coriolis coupling. term. It · is shown that these effects 
·are most essential for rotational bands based on the single-par
ticle levels originating from strongly degenerated spherical subshellE 
(i.e. in the cases when the non-adiabatic effects due to the Corio
lis force are strong). 
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