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I. Introduction

/1]

It is well-kknown from experiments' ', that some of transition-
metal oxides are metals at high temperatures, and insulators in ‘
the ground-state, Between them, a phase transition exists at a cri-
tical temperature. In several oxides, this transition point is connec-
ted with the Neel-point T, , and the materials show antiferromagne-
tism (af) in the insulating phase. But also the possibility of non-
magnetic insulators exists in the ground-state, Hereby, the transi-
tion is connected with a lattice distortion ( gd). Both cases, af and
fd are connected .with a gap A  which divides half-filled metal-
lic bands in a completely filled subband and an empty subband. So
the material becomes an insulator/ 2/. Now, the problem of this paper
is to find a quantitative criterion for that, which oxides show af

and which (d in the ground-state.

2. Model

Mattis and Langer/3/ have discussed the role of the ‘electron-

photon interaction in the metal-insulator phase transition. Basing



on their work, a study of the electron-spin interaction is possible,

The model Hamiltonian has the form
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Cre 1+ 3, and S are the operators of electrons,phonons,

and spins, resp, The first three terms are the Hamiltonian of Mat-
tis and Langer, the last terms describe the electron-spin interac-
tion in a usual form,

For crystals with cubic symmetry ( sc and ‘bee ), realized
in several transition-metal oxides, the band energy e¢(k) has the
property ¢(k+Q) = - (k) if Q/«= is a reciprocal lattice vec-

tor and

5 =exp(iQR _)=21 (2

for R, in a (fictive) sublattice A or B . For half-filled bands
(ep=0), Q transforms orle point of the Fermi surface into
another one. Therefore in the sum over q the transition impulse
Q is the most important term, and all other's are only small per-
turbations. This gives the unperturbed Hamiltonian H® , in which the
term Q replaces the sum over q .

The phonon part (with J=0 in (1)) is solved by Mattis and

. . . +
Langer, assuming macroscopic expectation values for aQ and



setting a, =a2=—x\/ N with the variational parameter x ., Ana-
logous to this, here the contribution of the spin term of (1) is
considered, with x=0 and J#0 . So, the unpertubed Hamiltonian

has the form
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3. Free Energy

We use the molecular-field approximation/4/, in which H°
is divided into an electron part H, and a spin part H s +In

Hel S is substituted by

ST mglesiolen s, sPo<sTomo, ®

with the variational parameter M . It follows

H

el

1
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In H  the spin-polarization of electrons is substituted by
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yielding

Ho=-3J0%,8,S, . (2)

o is a second variational parameter.
Now, the Hamiltonian is decoupled, and also the free energy.
But by calculation of F we must consider, that the electron-spin

interaction appears twofoldly, in H_, and in Hy. So a correction

term is necessary and we have

1
F=~F, +F +~-NJSMo. (8
Bing a canonical transformation, H,, can be diagonalized and it
follows
Fel=—% [ de ple) In [ £(umyJe2 +A) £t ez +aD)] (9)

with the energy gap A= -—%—-—JMS, dividing the band e¢(k) in the men-
tioned two subbands, and f(x) =(1 + exp B x)~1 . For F; follows

in a simple manner !

S

F =__g_1.,[s|.( 28+1 gy, )/sh(—-—BJa)] (10)



4, Antiferromagnetism

We have in F three parameters: ; , o and A
(or M ). u is given by the electron density n  with a1 =1
for half-filled bands. o and A are given by minimalization of F
to

A~ JSB (5B ISo) (11)

(with Brillouin's function Bg(x)

) and
de p (
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: 52+A

In a simple approximation we use (see e.g./ 3/)

p(e)=1/2w for —w<e<w, (13)

with the band width 2w and

p=0 outside the band, For n =1
we can eliminate u and the electron polarization o in eqs. (11)
and (12) and obtain the transzendent equation
SA Y d /
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for A only. (14) has the trivial solution A =0 for al T, corres-

ponding to the paramagnetic case, In the low-temperature region

a nontrivial solution exists with A(T) ¥ 0

depending on T , For



T=0 follows A(0)= —;—JS . This second solution corresponds to af
and is the thermodynamic stable solution. The solution A#0
disappears at a second-order phase transition point T, , following

from
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The energy difference at T=0 between af and the paramagnetic

state is

2

/—-——'—"
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w

so the ground-state is antiferromagnetic. For T> TN , af disappears,
and at the same temperature TN we have the insulator-metal tran-

sition (A-0).

5, Comparison

Now we can compare with the result, given by Mattis and

Langer for £ d. We consider

17
a=|8Ey I/16E,, |- (17)

SEQ a is the analogic energy difference between distorted and
nondistorted lattice/ 3/. For a<1 af is the stable ground-state,

for a>1 the ground-state is the paramagnetic case with {d . There-



fore, the ground-state is antiferromagnetic, if

. :
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and nonmagnetic in the other case. On the left-hand side of (18)
we have the phonon parameters g and thw, on the right-hand
side the spin parameters J and S and the band width 2w .
With (18) a theoretical classification of the transition-metal oxides
is possible in two groups:
i) oxides with a distorted nonmagnetic insulating ground-state, and
(ii) oxides with a nondistorted antiferromagnetic ground-state. A com-
parison of this theoretical argument with experiments is not possible
at present, since not all of the parameters, necessary in (18), are
known exactly.

By the way, the above considered model possesses no ground-
state with both af and (d , in agreement with the experiments.
Minimalizing the corresponding free energy one obtains no solu-

tion with simultaneous nonvanishing variational parameters M, ¢ ana
X.
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