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I, Introduction_
L

Reoently a theory of anharmonic crystals was developed
whioh allows to take into aocount in the lower order rerturba-
tlon theory all the higher.order anharmonlc terms in a self-
oonsistent manner ( see LI]—[JJ and the references cited in
[J] ). In[4]-[6] a simpie model of the crystals— the linear
chéin with nearest neighbour interaotion was investigated.
Although thls model is very. far from the real three—dimensional
orystals, 1ts investigation permits us to discuss qualitatively
'aome properties of the: three-dimensional orystals. Also in this
case we oan obtain a simple solution which helps to clarify
some aspeots of the theory.

It was shown in [4]- [6]thé.t the chain under small
external tension beccmes'unstable at - sufficiently high
zero~poiﬁt energy or at sufficiently high temperature, It was
shown al?o in [@] that the damping of the self-consistent
'phcnona 1s suffiolently small even near the.instability

" ‘temperature and consequently the most simple pseudoharmonic

- approximation [2] can be used. This allows to simplify the

‘caloulations essentially and investigate the properties of
the anharmonic.linear chain-in a wide range of temperature
and coupling constant. This investigation was made in féj for
the case of small external tensions,

7 In present paper we. consider the properties of an
/anharmonic linear ohain in the case of the arbitrary external
tensicn in pseudoharmonic approximaticn. Some. preliminary .
results were reported eariier’in [7} In Section 2 we obtain

a self-conslstent system of equatlons for the determination of
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the properties of the anharmonic chain. In Section 3 we
‘investigate the behaviour of the self—oonsistent equation in
the high temperature limit and wg introduce the conoeption of
the instability temperature and thé oritical temperature. These
quantities are caloulated in Seotion 4. In Seotion 5 we discuss

the results.

2. Self-Consistent System of Equations in

Pseudoharmonic. Approximation »

*

Let us consider a linear ohain of léngth 'L. : wﬁichf
‘consistsbof N+ 1  identicel atoms with the mass M . Ve
take into aocoount only the nearest neighbour interaction which
described by the interaction potential demoted by P (R, - R...) .
It is oonvenient to introduce the eduilibrium séparation between
the neighbouring atoms and the relative displacement operato;s

by the following definition:

é + UL, - Ay (I)

n

n-4

-R"l - ‘Rn._' = < ‘RH‘ Rn-l >+ Ly~

The equilibrium separation & in the one-dimensional

case can be obtained from the equation [3] :

='-—"'< QR LP(R Rh_‘)> ’ - (2)

which shows, that the average force acting on the arbitrary
atom in the equilibrium position is equal to zero. ‘
‘Applying the method which was formulated in {2] a
self-consistent system of equations for the 1nvest1gatioh of
a linear chaln was obtained in [61‘. it was shown that the
renormalized frequency of vibrations.takes the form:
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where <9, " 41s the harmonic frequency of the vibrations and-f
stands for the harmonic strength conutant. The pseudoharmonic

strength constant ﬁ(e Q) can be written as :

- f(e L) = _%u,o_"(z), - | )

where we introduce the self—consistent potential"

Fe)- <P(Rom Ry =S, 3{7({,‘_'—")‘,&0‘-‘”(@). &

S=xo
The mean Squared‘relative displacement of the neighbouring

atoms can be written as:

o ’ l . .
IR C TP I S L, w, cotd L. (6)

In addition to the temperature ©= kT the properties
of the linear chain are determined also by the length of the
chain L = /\/é or by the external tension P . According
to (2),(5) these parameters satisfy the following equation:

’P=--‘«P’(e>, | -

. which is the thermal equation of state for the linear chain,
The caloric equation of state 1is obtained fron the

cinternal energy which is given in our approximation by the

-equation [6] ¢

/jQE?', ;—;; { Cﬁ(d)-f- hge) E} o : (8)‘



>In this way we. have a olosed system of eqnations ) -
'(8) whioh determined the properties of ‘the anharmonic linear
chaln in the pseudoharmonic approximation. This self-consistent
system of equations is determined by the self—-consistent
potential (§) which ocan be obtained 1f the potential ‘9(72)

1s known, Let us take the Morse-potential as a model ‘ones

'

AR =D [=FP_ T u ) @

We note here after LI] ’ that the deviation of a Lennard —f
Jones (12—6)interatomio potential from the Morse-potential
with &7, =6 4in the domain of the thermal expansion of
" the lattice is rather small.“Therefore we shall take further
T, .= 6. Applying (5),(9) we get the followiné expression

Zor the self-consistent potential :

30 S (E-1) 2y i) gy
‘]0(0043)=D{e_ ° Q— — Ze_ 7> e }, (IO)
where - a*. @ = 36([‘?/,’;;)'

Let us consider the case in which the_external tension
1s fixed :‘ P = const. but odntnary to [?]J@] we don't
suppose that P is small. The length of the ohain depends
on the temperature of the system if we Keep the external
tenslon fixed. The equilibrium separation of neighbouring atoms

L can be written as follows:

Le)="0.+ 80 =, § 4+ sag+ S, o oan

where l, is the equilibrium separation at P = 0 which

can be determined using equations (7),(10}.It is convenient to



/1ntroduce the reduoed tension P '—P(";/D) ( we. note
' here, tha.t in [4]-[6] was used the dimensionless tension .
P= 'P*/_z_) + Then the equation (7) taking into acoount (IO}
II reads: .
( -4 §_£. 4 -6 ’S.Fl':
P66 e " e (e '_4).'. (12)
, Using equations (10), (II), (I2) the pseudoharmonio
- strength constant O«  aocoording to (3);(4) can be written
a8 follows: o B ‘ /
. YA ,
_.(7(9 ) -Y -6 5}4 -6
Cloe e 12e - 4}=
¢ | @
‘P* { -y ~25 PET; _5,} : .
=T - = + =S
NP e e s 8

Solving the last equation for <y we get:

mri

. OLZ—,' L <I4)

/‘j Zr\. o("-—:P_.)‘ .

Consequently the expressions for the self-consistent potential

(I0), the equilibrium separation of neighbouring atoms (II)

and the internal energy (8) can’'be written as follows :

=D P -
‘{’(2) { o= = } 4 )]
Zﬂ ’ .
e_:’{;{ 04—5‘4} ,
SR ey S
Ly 2 P
’—4-E=-—Q{o<lfn°<"? *} :
Mo A= Telan B T2 (x7)
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Let us replace the sum over K by integral over ‘“‘-P_-. kéfz
1n equation (6) « Taking into acoount (15) we can’ rewrite

(6) as ‘an equation for &L 1

/4% : : - .
A ot A4(ot) = ‘WP coth 24_*::1 e
A4(ot) fot‘{’»s»«-mﬁ"_c— -
where €0, = (4_‘(?//\4) ‘15 the maximum value fox; the -

vi‘brationa.l frequency of the chaln in harmonio approximation,-
by =(T D/w.._) 18 the dimensionless ooupling constant -and.
T=(8/ew, )is the ‘dimensionless temperature. ‘ : ,

It is woﬁh—wh:‘l.le to note, that the self—consistent
equation (IB) determines the properties of the anha.rmonic
linear ohain : when 7\, ¢- and _P* are -glven, from the
equation (I8) we can géfr the renormalization of the frgquency

oy, whioh acoordingvto (16), (17) determines the length

of the chaln and its internal enérgy. YIt 18 easy to 'see that

‘ lall the equatlons o'bta.ined here for 'P"‘éi coincide with
those of paper [6] |

3. Self-Consigl:ent Equation in the High Temperature
' Limit
Let us conslder now the self-consistent equa.ﬁion (18)
in the high temperature limit ('T,' 3 1) . In this case (I8) can.

be rewrlitten in the following form:
ot i) T { NN R :
Aé( )= i+ 3 ‘AT”) B } ’ (19

where we introduce the reduced temperature T (Q/D) ’C'TT/‘\.
'.I.‘a.king into acoount only the first term in the r.h.s. of_(I9)

"and using (I2), (I3), (I4) the self—_oonsistent equation can be
5 «



“ written as follows:

= (- - £ (1 Br)ee

We‘ point out here that (20) has’ different number ' of real

solutions depending on the 'P*‘ ™ va.lues. The physical
solution is that one,which coincides wlth the harmonic solution

if the anha.rmonio terms tend to zero. The harmonic solution is

given by ‘ : - v
: * .. a2 T™* o |
‘55 = T - — R ¢ 29
Tl A+ E PR s -

'.fhe dependenoe of the physical solution of equation (20)
on the reduced temperature T anc.l'reduoed‘; tenston P*
is given in Fig. I. If the tension (P*< P and‘temperaz_
ture [T* < T* ('P")] ‘are suﬁ‘iciently low the equation -
‘(20) has real solutions, the smallest 1s the physica.l one. The
temperature T,*(P*)  1s determined by the colncldence of
‘. two real solutions 4, (T*) - 3,_(;(,'”) . Consequently the =
klinsta’.bil‘ity‘ ternperature T* (P*) det‘erminad“by" this
oondition oan be obtained ‘by solving the following system OJ.

equations'

F(4)=0 F'(9)=°]' (22)

For T > T*('P*) the solutions 44, and 4,
'beoome complex conjugate. In the region © P*<Lo and

T*> ‘T#(-p*) the equation (20) has complex conauga.te solutions
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only and consequently the-: linear chain has no stable state.'
' The same Bituaticn is occured at all temperaturea 17 Pr<o
.end | P¥| sufficiently high. But when P*2© in adaition’
to ocmplex‘conaugate-eolutions'there are also.real -solutions i.ﬁ
Ay L qut, « The smallest of them is the physiCaiLone. Inw/
tnis‘casevat the temperature; T = 7—* (7’*) “the. state
of'tne‘chain changesbbj Jumptfrom the state\ 54 (<1t 7- 7-”)
to some new, state h éa;_ which is stable at temperature
T*>T*(P*) . ‘At the 1nstability temperature T*{ ‘P*)
the length (I6) and the internal energy (17) of the chain take
a Jjump and their derivatives - the coefficient of  the
linear thermal expansion and the - specific heat at oonstant
pressure — tend to infinity as T ¥ — 7:w_(7?*) e
In the region of sufficiently high tension or temperature;
P*> 77* . or T* >
two real sclutions, the smallest of them is the physical one. .

¢* the equation (20) has always.
y

The critical temperature T,*  and the critical tension '72*
are determined by the ooincidence‘of three real solutions of
the equation (20):'@,(7‘ ”*)= 4, ( " Pr) =4, (T,
oonseguently they can bc obtained from the solution of the
following. system of equations-

Flg)=o ; Fli4)=o ; F'(4)=o . (a5

" In this region P2 72* or T™ > 7" the chain
1s always stable and its physical quantities — the internal ,
energy and the length —.are smooth functions of  the temperature

and the tension.
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4, Instability Temperature and Critical Temperature

V Thus, the analyse of the solutions of the self-oonsistent
equation (20) gives a oonvenient method for the determination;
of the instability temperature b; (F”’) and the critical

‘~‘,temperature T, According to (22) ‘the instability tempera~

‘ture. is obtained as a simultaneous solution of the- equation

“. (I8) and 1its derivative
'n'/ 2.

‘Af‘d(ol)}oc g’(d)};— v jd%s»-». ¢ 414." (¢ “”““’) (24)

According to (23) the oritlcal tenperature is obtained as a
simultaneous solution of the equations (IB), (24) and the second
derivative of (18): :

o e - o : .
2 ) + ot 44" ()] = ,z(ﬁ)’jdf sindp ch(E2nF) 44,73 (;-_t:_:_zv),(%)’

where the funotion )3(dJ‘ 1s given by the equation (I4).

| The. results of nunerical soldtions of thess Systemé of

. equations are given in Fig. 2, Fig. 3.+In Fig. 2 the dependence
- of the instability temperature os,.(ék/cuuhon the dimensionless
coupling constant by is presented for some values of -~ P* ,
In Fig.73 the>dependenoe of the instability temperature;on the
reduoed ‘tension is presented for some values of 2 ‘. In voth

Figures the critical curves are denoted by dotted line. Ve

don!t consider here the case of small values of AZ which
: demands ' - additional calculations. It will be,disoussed‘
elsewhere. '

In [5} [:6] we. obta.in the following expressions for the
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instability temperature ) in the case of high (T.’ >4)

and low (’C«i) tempera.ture : o«
-"Q=3—{{+3—_P* | (77)}
T e U2 23 L (28).

| _ (T> 4 ; ‘P"¢4) N _' -
s = A= . e en
e Ve (A=) )\,=z{ )P"} e
(Txil; Prgd) ’

The results of numerical solutions ‘agree quite wall with

asymptotio expressions (26), 27 for - 'P*<<.i .

We can also obta.in the asymptotic erpressions for the

critical temperature in the case of high temperature (v ».L)

In this case the equations (I8), (24), (25) read :

. -1 )
VRN Salnly S T*+_4_(lT)"..°.‘_L (13 o)
~ _
(= 2y = T REA T
3
i P ’
ﬁh O(-—- i M" ‘ L
foos —— .;-3‘7’(_7_7)_4_&. 24a)
- ) (vd“'g"‘)(d'—_—;)‘ A T
o= ot P @) —o . | .
| 6 (as.)

¥) Ve note ‘here, that the instabilty temperature Ty in[4]—£6]' g

was celled as critical temperature and denoted . by Tc .
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Using (I8 a ), (24 a ) we obtain th'e-ins%abuity temperature

»* 74 : ' .
Ts = L 1—:* - . - (28)
> ’ !
(et ;- 2 )
" The oritical value of the renornaliza.tion parameter . o‘c' - 1s

 given by the solution of-(.25a) which reads i

, % . . : X
ots :’l (1+ 125 . G
The calculations give for the critical tension and critical
temperaturve the following approximative expressions s

eam i BE]. @

24 A
/3 T = o535 {4 =5t (1)
where equations (29), (I8a) and (28) were used. The results

of numerical solutions agi‘ée quite well with the asymptotic
expi'essions (30); (31) for D >2 . ‘

5. Discussion.

In this work the stabzility region of an a.nilarmonic linear.
ohain was 1nvestigated 1in" the case of arbitrary external tension
in a wide range of fémperatu;e. It was f£ind out - contré.ry' to "
{6]- that the instability phenomenon is vé;hished at critical
ftemp’era.t-urg’ T.* and critical tension P* . »

',We make some z;emarks about the physical meaning of the
insfability téfhperature T and the critical tem'oerature T .

<

It is well known, tha.t though the i‘luctuation of the average
position of the atoms in a linear chain is great < "‘~ >/Z~
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~ N >> 1 but the relative displacement of the neighbouring
atoms 1s small s [ (M= 4 y) >]/‘/Z &1 . ‘This faot shows
the - ex:l.stenoe of the short range order in a linear chain, so
that it can be considered as a bou.nd state of N atoms, where
oollective exitations - the phonons — can exist [8]. If the
temperature inorea.ses, the number of phonons increases too’ \
7 whioh means 1ncreasing of the amplitude of - the relative displece-’
ment of the neighbouring atoms. At the temperature T > T
in the self-consistent equation (18) appear oomplex oonjugate
va.lues of the vibrational frequency a.nd oonsequently 1nfinitive :
relative displacement of atoms : [£(y=-ttu)'>] " (7",0) SO
This means, that the linear cha.in becomes ansta.ble in respect.
~to the propagatiion of collective exoitations which destroy the
bound state of atoms in.the ohain. On this ground we may
-cohsider the external tension as some external field whieh in
the case of 'P} P.  1limits the moti‘on of atoms in the linear
~ohain. | ' o L
’ The stability of the chain with fixed length found in [6] .-
isn't meaningless from the physical i)oint of view as in this '
case the tension lnoreases rather rapidly 'with‘ the tex‘nperature P
at T~ T ; P 2 B, and it can stabillze the lattice. Ve
think, that the instability of the lattice at 'ﬁ.xed volumes
found in [I] iseonneoted with the possibility of exchange’ _

. of the atoms situated in the nelghbouring lattice ciltes which

we didn't take into account here. To investigate this problem '7
the hard core part of the interatomic potential should be
oarefally taken into account.

I4




‘,The theory developed here doas not take into account
the damping of the phonons. Its influence on the properties

of the anharmonio linear ohaln will be considered élsewhere.
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