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Recently a theory of anharmonic crystals was developed 

which allows to take into account.in the lower order pert~rba­

tion theory all the higher order anharmonic terms in a self­

consistent manner ( see [I]-[3] and the references cited in 

[J] ), In(4]-[6] a. simple model of the crystals- the linear 

chain with nearest neighbour interaction was investigated. 

Although t~s model is very far from.the real three-dimensional 

crystals, its .investigation permits us to discuss qualitatively 

some properties of the· three-dimensional crystals. Also in this 

case we can obtain a. simple solution which helps· to clarify 

some aspects of the theory, 

It was shown in [4]- [6 ]that the chain under small 

external tension becomes unstable at sufficiently high 

zero-point energy or at sufficiently high temperature, It was 

shown also in [4] that the damping of the self-consistent 
I 

phonons is sufficiently small even near the instability 

temperature and consequently the most simple pseudoharmonic 

approximation [2] can be used, This allows to simplify the 

calculations essentially and investigate the properties of 

the a.nharmonic.linear chain in a wide range of temperature 

and coupling constant. This investigation was made in [6] for 

the case of small external tensions. 

In present paper we consider the properties of an 

anharmonic linear chain in the case of the arbitrary external 

tension in pseudoharmonic approximation, Some preliminary . 

results were reported earlier in [~ In Section 2 we obtain 

a self-consistent system of ~quations for the determination of 
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the properties of the anharm~nic chain. In Section 3 we 

investigate the behaviour of the~self-consistent equation in 

.the high temperature limit and we introduce the oonoeption of 

the instability temperature and the critical temperature. These 

quantities are oaloulated in Section 4: In Section 5 we discuss 

the results. 

2. ~!!=£~~.t~!!L~2!~2L!;SIEf!:ti.2~-1n 

~~~!:!!!,2ni_gJpprox;hm~lli!L 

Let us consider a linear chain of length .·L 

J' 

., 
which 

consists of' N+ .L identical atoms with the mass M • \'/e 

take into account only the nearest neighbour interaction which 

described by the interaction potential denoted by 'f ( R.,- K.,_.) • 

It is convenient to introduce the equilibrium separation between 

the neighbouring atoms and the relative displacement operato~s 

by the following definition: 

"Rn- R."_':: < 'R.,-1<.,_. >+ .(.(.,- .c..c...,. 4 =. l + u .. - -<..<.., • ., (I) 

The equilibrium separation t in the one-dimensional 

oase can be obtained from the equation [J] 

1'= ~ < ~" lf ( 'R ., - 1<. .,_ 4 ) > 
which shows, that the average force acting on the arbitrary 

atom in the equilibrium position is equal to zero. 

Applying the method which was formulated in [2] a 

self-consistent system of equations for the investigation of 

a linear chain was obtained in [6J • It was shown that tho 

renormalized frequency of vibrations.takes the form: 

4 
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: 4/(G,t) 'J.kR.. 
~ ?-c.....,-= 

./<1 .2-

.f(e,l.) - t (J) 

is the harmonic frequency of the vibrations and f 
stands for .the harmonic strength constant. The pseudoharm.onic 

strength constant j(e,l) can be written as : 

,._ 

f ( e, Q.) = i_ 'f 11 
( l) , (4) 

where we introduce the. self-consistent potential: 

,....., oo ( -) . .S \~S) ( ) 
fO)=<lf('R .. -~ .. -i)>=-~ .s~~ ~J. !.f ce). 5 

. . . .S=o 

The mean squared. relative displacement 'of the neighbouring 

atoms can be written as: 

;} = < ( u..,- u,._i t" > = _!_ ,2_; ~:... C.o i.l._ '-<.j~ • (6) 
Nf 1<. .2 c.v~ .ze 

In addition to the temperature e= k 'T the properties 

of the linear chain are determined also by the length of the 

chain L = N£ or by the external tension 7 . According 

to ( 2 ), (5) these parameters satisfy the following equation: 

(7) 

which is the thermal equation of state for the linear chain. 

The caloric equation of state is obtained from the 
' 

. internal energy which is given in our approximation by the 

equation [6] : 

.i £ = 
N 
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In this way we.~ve.a closed system of equations (J)-

. (8) which determined the properties of the anharmonic linear 

chain in the pseudoharmonio approximation •. This self-consistent 

system of equations is determined by the self~oonsistent 

potential (G) which can b'e obtained if the potential <f'( R) 

is. known. Let us take the Morse-potential as a model ~ne: 

lf(R) = ]) I [ e: ~tR-~)- 1J
2
- 1 J (9) 

We ~ote here after [I] , that the deviation of a Lennard -

Jones (I2-6)int.eratomio potential from the Morse-potential 

with o.. -r. = 6 in the domain of the thermal expansion of 

the lattice is rather small. Therefore we shall take further 

~~o .= 6. Applying (5),(9) we get the following expression 

lor the self-consistent potential 

I"J (l ) l .. 
·l('(i,~)=]) { e'2. ;:-l e_.2.~- .2_ e.-'(-:;;:-l)e'J/2..}; (IO) 

where ";}= a.'-i:i!-= 36(¢1-r.'-). 

Let us consider the case in which the external tension 

is fixed : 'P = canst. but contrary to [5]@] we don't 
. I 

suppose that I> is small. The length of the chain depends 

on the temperature of the system if we keep the external 

tension fixed. The equilibrium separation of neighbouring atoms 

l can be written as follows: 

l (e)= go + s e = -ro { ~ -t ~ ~ + d~ 1 , (II) 

where lo is the equilibrium separation at 1' = 0 which 

can be determined using equations ( 7), (Io). It is convenient to 
6 



introduce the reduced tension -p-~t = 7' ( -r.. /D) • ( We. note 

here, that in [4]-[6] was used the dimensionless tension 

r> =. ~/ .2..) • Then the equation ( 7) taking into aooount (IOh 
(II) _reads: 

8
l Sl 

""'/ -6"7"" '1( -'7. --pn = 0 e. 10 e. e (I2) 

Using equations (Io),(II), (I2) the pseudoharmonio 

strength constant Ol. according-to (J)j(4) can be written 

as follows: 
Sl El 

01.2.= f < j e) = e 'i1 e..~ 6 -r. f .z e ' r. -~] = 
(IJ) 

.::: -p* l { -~ 1-2-a 2."P"~ -'<J'l 3 + .z... e. + e. -+--:3 e._ J. 
Solving the ·last equation for "(t we get: 

0(_2..-:- r (I4) 

~ = tV\. t o<. l.- ~* r 
Consequently the expressions for the self-consistent potential 

(IO), the equilibrium separation of neiehbouring atoms (II) 
and the internal energy (B) can 'be. written as. follow~ 

(I5) 

[ 
/J 0(2.-

J ' + .J_ .l.V\ 
1 . 12.' 

(()(. 2._ (I6) 

(17) 

, : 

7 



Let us replace the sum over 

in equation (6) • Taking into 

(6) as ·a.n equation for lXJ l 

Tr/J.. 

I< , by integral over ~= 'k.a/2. . 
acoourit (I5) we can rewrite 

A o< ~( ot) = j c1 lf ~~ ~ C-ote, eX ...?.:: .... 'f 
.2."C" 

" 
where c...,)o&. = ( 4//1\1) 

1/J.. is the maximum value for the 

(IS) 

vibrational frequency of the chain in harmonic approximation, 

). = (7r D/ c..;.,_) is the dimensionless coupling constant and 

7: =(e/~.~.)is the dimensionless temper~ture. 

It is worth-while to note, that the self-consistent 

equation (Is) determines the properties of the anharmonic 

linear ohain : when A, 'i:' and -p-tt are given, from the 

equation (IS) we can get the renorma.lization of the fr.equenoy 

~ , which according to (I6), (I7) determines tho. length 

of the chain and its internal energy. It is easy to ·see that 

,all the equations obtained here for 7>-M_g 1 coincide with 

those of paper [6]. 

J. ~ll:-f~];~~lli:_!gualls!!L.!~..!~ill:gh..~!!ll?~~!~ 

:g~ 

Let us cdnsider now the self-consistent equation (IS) 

in the high temperature limit ('t" ~ .J.) .• In this case (IS) can. 

be rewritten in the following form: 

J.. -r ~ ·j I (1ToL. )~ 
0( ~ ( <Jt ) : I 1 1-+ :2:"4 ?;T* + .. ~ ' (I9) 

where we introduce the reduced temperature T"*:(G/D}::: '1::11/;t.. 

Taking into account only the first term in the r.h.s. of (I9) 

and using (I2), (IJ)? (I4) the self-consistent equation can be 

8 



written as follows: 

1='(';1): ( ~- J-r1'r~ ~ t e,'J- :; ... (-1- :;~ ~) = 0,. (20) 

We point out here that (20) has different number'of. real 

solutions depending on the --p-~t) -r" values. The physical 

solution is that one,which coincides with the harmonic solution 

if the anharmonic terms tend to zero. The harmonic solution is 

given by 

.2 T'#t 
= (2I) 

,a. 
ex. 1. .. , ... 

The dependence of the physical solution of equation (20) 

on the reduced temperature T'lf and reduced· tens:!:on 'P"' 

is given in Fig. I. If the tension (1>.,.~ 7,11 ) · and tempera­

ture ,[ T 1f ~ ~-It ( "P") J ·are sufficiently low the equation 

(20) has real solutions, the smallest is the physical one. The 

temperature 'Ts.,. (p1t) is determined by the coincidence of 

two real solutions : .Aa, (~1\ ). ~.a.(~") • ·Consequently the 

instability temperature 1:;-M ( "P.,..) determined by this 
-~ 

condition can be obtained by solving the following system of 

equations: 

.!= ( ~) = 0 ) F' (~) == o (22) 

For T~ > ~ ~ ( "P'*) the solutions -<a1 and ~.z. 

become complex conjugate. In the region 'P-if<o and 

T""' > ""G" (~) the equation (20) has complex conjugate solutions 

9 



only and consequently the linear chain has no stable state. 

The same situation is occured at all temperatures if ~~~o 

·and J?* / sufficiently high. But when "P* ~ O in addition 

to complex conjugate solutions there are also real solutions 
- .:, 

~3 -" .l;J-, • The smallest of them is the physical o~e. In 

this case at the temperature T-tt.=. ~~ (?"") the. state 

of the chain changes by jump from the state sl ( a.t 7"',$ ~"') 

to some new, state S.:z. which is stable at temperature 

Tj(, ~ 1;""('?,..) · • At the instability temperature . ~'*(p*) 
the length (I6) and the internal energy: (I7) of the chain take 

a jump and their · derivatives - the coefficient of the 

linear thermal expansion and the specific heat at constant 

pressure- tend to infinity as T'*- ""T;~('P*) 

In the region of sufficiently high tension or temperature: 

1'~.} .~~ or T.,.. ~ ~* the equation (20) has always 
.I 

two real solutions, the smallest of them is the. physical one. 

The .critical ~emperature -r;:~ and the critical tension ~*. 
are determ:rned.by the coincidence of .three real solutions of 

the equation (20): · .-l;j,( ~'11 ?._*); ,u ( -r:.,. ?.,11) ::: "-~ (T-* '"'f.-ll) 
. ·. · . I . d.l. c; I ,' d ;) ' 1 c. ~ 

consequently they can.be obtained from the solution of the 

following system o:f' 'equations: 

F(.ca)::.o Ft(~) = o 

In this region 1' 'II ]! ~-It 
' 

F"(.<a) =o. • 
(2J) 

. T1t -"' or ~ I, the chain 

is always stable and its physical quantities - the internal 

energy and the length -.are smooth functions of tho temperature 

and the tension. 

IO 



Thus, the analyse of the solutions of the self-consistent 

equation (20) gives a oonveni'ent method for the determination . 

of the instability temperature ~ ( '?*) and the critical 

temperature ~' • According to (22) the instability tempera­

ture is obtained as a sjmultaneous solution of the equation 

- (IB) and its derivative 

'Tr/:z. 

). f "J{ol) + 0(. .~l (oL) 1=- .2.~ J d. tp ;~;,..:. •• /· '-P ~J, _,_ ( oc: ~;'f) .(24) 
• 0 

·According to (2J? the critical temperature is obtained as a 

. simultaneous solution of the equations (IB), (24) and the second 

derivative of (IB): 
71/.t.. 

A ~4(a~) + ot .cl (ot.) J = .2. (f,J' j cJ'f ;~:,4.. 3'1' c. t,("' ::; 'f) ~.l,- 3 (."'~_;'f), (25) 
() 

where the function ;1;1 (oL) is given by the equation (I4). 

The results of numerical solutions of these systems of 

equations are given in Fig. 2, Fig. J. In Fig.· 2 the dependence 

of the instability temperature 't'.s = (e.$ /~Q .. ) on the dimensionless 

coupling constant A is presented for some values of --p>t • 

In Fig. J the-dependence of the instability temperature on the 

reduced tension is presented for some values of A · . In both 

Figures the critical curves are denoted by dotted line. We 

don't consiger here the case of small values of A ~ 2. wh:lch 
demands additional calculations. It \vill be discussed 

elsewhere. 

In [5J [6 J we obtain the following expressions for the 

II 



' *) instability temperature in the case of high ('t' ~J.) 
I . . 

and low ('&"<:.4 .i) temperature : C 

·:>. ,..,.... -".s • 7Te 5.1 + ~. P* _ ..§.. (I!).z. J . l . ..2- ..z~ i\ . (26), 

<roc~ J. -p-x4 -1) 

?; = .l.... [l ().-'), ). 
.s '1Te e "'. A .. = _; { {- (! r pK 1 . (27) 

(1:" « ~ j 'P~_-4 d.) 

The results of numerical solutions agree quite well with 

asymptotic expressions. (26), (27) for . -p.;.<-4 .i .• 

VIe can also obtain the asymptotic expressions for the 

critical temperature in the case of high temperature ("t' »J..). 

In this case the equations (~8), (24), (25) read 

J. "P* 2.n o<--o<. t:,.;., 6 

c o<J.- ~yr. r :: 
. (lT)"" o( 2. ~ 4 -- ---* T.+:i:A;) T 

1. -p-it 't 

l~n ()(..- 6" oL " ( -rr;.z. .( 
. ( ot.~.- ;*t - (o~.~.- ?'it)( ol':. ~*) • . 7it --;\ Til 

'I 
o( cX 4 P* + (P* ):~. 

("B.._) 

(.44 .... ) 

::::.0• 
6 ~G~ 

iJVi;-;~~~;;:7h;t the instabilty temperature 't"s in[4] -[6] 

was called as critical temperature and denoted by '(:"G 

12 



·. 

Using (IS a ), (24 a ) we obtain the instability temperature 

6 

T '* - . .. <X.s 
.s - ( ,. '1>*)( ... 

. ·cX.s-: 7 ~$-

The critical value of the renormalization parameter 

giv.en by the· solution of ( 25a) which reads : 

. _·, .2.­
Ul.c. -

-p-It r: . 
-' ( 1+ ~) .. .2. . ..2.. 

(28) 

<X,· . is 

(29) 

The calculations gi~e for the critical tension and critical · 

temperature the following approximative expressions 

'P*.-v . (. - o, 33"-1 13 (.!.!.. )·.? 
.2.&.t ?!· J 

-* I c.. ~ f3 ~-~~ z o S' :t-S 5-f- {j ("Jz.]· · ' I ..z.~ -1 

(JO) 

(JI) 

where equations (?9), (I8a) and (28) were used. The results 

of numerical solutions agree quite well with the asymptotic 

expressions (JO); (JI) for .A~ 2 • 

In this work the stability region of an anharmonic linear. 

chain was investigated ·in the case of arbitrary external tension 

in a wide range' of tcm:verature. It was find out - contrary to 

[6]- that the instability phenomenon is vanished at critical 

'temperature ~'* and critical tension· '1:.-it • 
We make some remarks about th~ physical meaning of the 

instability temperature "7; and the critical temperature l; 
It ·is well known, that though the fluctuation of the average 

position of the atoms in a linear chain is great :I< .u~ > /£ ,v 

IJ 



N {i;; .» J..
1 
but the relativ.c. displacement of. the neighbouring 

. [ . ~/ atoms is small: <:("".,- .u.,_,)z.>] /l 4'-:i. • This fact shows 

the·existenoe of the short range order in a linear chain, so 

that it can be considered as a bound state of AI atoms, where 

collective exitations - the phonons - can exist [a]. If the 

temperature increases, the number of phonons increases too 

which means increasing of the amplitude of the relative displace­

ment of the neighbouring atoms. At the temperature li ~ ~ 

in the self-consistent equation (IB) appear complex conjugate 

values of the vibrational frequency and consequent~y infinitive 
. - . ~ 

relative displacement of atoms; [~(.u,.-.u ... 4t::)]~~ e :c (7>o). 

This means, that the linear chain becomes unstable in respect 

. to the propagation of collective excitations which destroy the 

bound state of.atoms in the chain. On this ground. we may 

·consider the external tension as some external field which in 

the case of 'P > ~ 
chain. 

limits the motion of atoms in the linear 

The stability· of the chain with fixed length found in [6] 

isn't meaningless from the physical point of vie\'t as in this 

case the tension increases rather rapidly with the temperature 

at T......, ,-; ; "P ~ 1! and it can stabilize the lattice. We 

think, that the instability of the lattice at fixed volumes 

found in [I1 is connected with the possibility of exchange 

of the atoms situated in the neighbouring lattice cites which 

we didn't take into account here. To investigate this problem 

the hard core part of the interatomic potential should be 

carefully taken into account. 

!4 



.~he theory developed here does not take into account 

the damping of the phonons. Its influence on the properties 

of the anharmonic linear chain will be considered elsewhere. 
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