Дубна

E4-5350

ААБОРАТОРИЯ TEOPETUムELKOD' ОМВМКИ
H. Schulz, H.J. Wiebicke, R.Fülle, D. Netzhand, K. Schlott

A GENERALIZED
DWBA MODEL APPLIED
TO THE ${ }^{24} \mathrm{Mg}$ (dp) ${ }^{25} \mathrm{Mg}$ REACTION
AT $E_{d}=13.5 \mathrm{MeV}$
1970

H. Schulz, H.J. Wiebick e, R. Fülle, D. Netzband, ${ }^{*}$ K. Schlott *
 A GENERALIZED
 DWBA MODEL APPLIED
 TO THE ${ }^{24} \mathrm{Mg}(\mathrm{dp}){ }^{25} \mathrm{Mg}$ REACTION
 AT $E_{d}=13.5 \mathrm{MeV}$

Submitted to Nucl. Phys.

[^0]
I. Introduction

The most widely used method for descriking stripping reactions is the distorted wave Born approximation (DWBA). In the DWBA the transition is assumed to take place directly from the entrance to the exit channel without any excitation of internal variables of the target and residual nuclei. But if there are low-lying collective states the inelastic excitation may woll play some role. In such cases the usual DWBA can hardly describe the measurements. Therefore, it is necessary to include inelastic excitations by generalizing the distorted waves. To this problem many works have been related ${ }^{/ 1-6 /}$. In particular Iano and Austern ${ }^{/ 3 /}$ / expanded the stripping amplitude in terms of the deformation parameter. They were able to investigate the interference of the direct and indirect transitions without calculating the generalized distorted waves.

In previous papers ${ }^{/ 4,7 /}$ the generalized clistorted waves have been calculated by means of a coupled channels procedure. In a forthcoming paper $/ 8 /$ a detailed comparison of this method with that of Iano and Austern and with experimentel data will be given. A methodically very similar consideration was made by Iano, Penny
between 5° and 175° at $\mathrm{E}_{\mathrm{d}}=10.1 \mathrm{MeV}$ with high resolution for 44 angular distributions represented in arbitrary units. At the Rossendorf cyclotron 10 angular distributions between 5° and 160° were measured with Li -drifted detectors at $\mathrm{E}_{\mathrm{d}}=13.5 \mathrm{MeV}^{/ 12 /}$. Further references are quoted in $/ 10 / / 11 /$ and $/ 12 /$.

The angular distributions measured in Rossendorf belong to the transitions leading to the levels displayrd in fig. 1. This level scheme was taken from $/ 13 /$. Only for the weak transitions the errors reach about 10%, for the others they are within the diameters of the circles in the figures. Tte calibration error of the absolute value amounts to about 20% for each point.

The closed lying levels were not resolved. These levels are joined in fig. 1. by brackets. But from $/ 10 /, / 11 /$ and $/ 12 /$ it is known, that the transitions to the $3 / 21 / 2^{+}[20 c], 3 / 21 / 2^{-}$[330], $7 / 21 / 2^{-}$[330], and $1 / 21 / 2^{-}$[330] levels dominite in the multiplet (see table 1.). The groups leading to the states at 3.399 MeV and 3.408 MeV were never resolved in angular distribution measurements of the (\mathbf{d}, p)-reaction.

3. Optical Parameters and Scattering I)ata

As it is well known the theoretical differential cross sections are strongly affected by the optical parameters. A critical examination of the theory used to describe the (d,p) -reaction can be carried out only if the uncertainties in the parameters are removed as far as possible. Therefore, the optical and deformation parameters have to be adjusted from the experimental data of the elastic and inelastic scattering of deuterons and protons. For this purpose the code KASTOR (written by H.S. and H.J.W.) was used. It
is described in detail and applied to experimental data in $/ 8,14,15$ /. This code takes into account all the orders of the deformation parameters β_{2} and β_{4} and allows to fit all at once several differential cross sections; belonging to the ground state rotational band. It makes use of the adiabatic approximation $/ 16 /$ and containes no spin-orbit coupling.

The deuteron scattering data were taken from ${ }^{/ 12 /}$. The first O^{+}and 2^{+}state in ${ }^{25} \mathrm{Mg}$ were measured also at $\mathrm{E}_{\mathrm{d}}=13.5 \mathrm{MeV}$ with surface barrier detectors using the thin detector technique and an enriched target. Since the 4^{+}group is sitting on the proton edge and was not clearly separated from the second 2^{+}level, a search for the deformation parameters β_{2} and β_{4} was impossible in any cize. Therefore, the experimental scattering data were fitted at fixed values of β_{2} and β_{4} found by the proton scattering on ${ }^{24} \mathrm{M}_{\xi}$ and sicussed below. The obtained optical parameters for the deformed Saxon-Woods potential are compiled in table 2. The radii r_{v} and r_{c} were used as fixed parameters. The experimental data and the results of the fit are shown in fig. 2. Besides the missing, peak at 115° in the elastic scattering and some smaller differences; for the 2^{+}level the experiments are fitted quite well with reaisonable parameters. The missing peak could be obtained for $\beta_{2} \approx 0.3$ only but entailing that the inelastic scattering at larg ϵ angles comes completeiy out of phase.

At the incident energy $\quad E_{d}=13.5 \mathrm{MeV}$ the proton centre mass energy depending on the Q-value reaches from 14 up to 17.5 MeV . For $\mathrm{E}_{\mathrm{p}}=17.5 \mathrm{MeV}$ Grawley measured the elastic and inelastic scatlering of protons on several 2 s 1 d nuclei $/ 17 /$. His data for the scattering on ${ }^{24} \mathrm{Mg}$ were analysed by de Swiniarsky et al. ${ }^{/ 18 /}$ with a coupled channel calculation. They found
proton parameters which fit Grawley's data excellently, as shown in fig. 3. The curves in fig. 3 were calculated with the code KASTOR. The used parameters are compiled in table 2. The fig. 3 illustrates the influence of β_{4}. We believe that the proton parameters found for ${ }^{24} \mathrm{Mg}$ hold for the outgoing chiannel (${ }^{25} \mathrm{Mg}+\mathrm{p}$) of the (d, p) reaction too, all the more as Antropov et al. ${ }^{14 /}$ were able to reproduce the inelastic deuteron scattering at $\mathrm{E}_{a}=12.1 \mathrm{MeV}$ on all Mg isotopes with optical parameters ver.r similar for each isotope.

The same deformation parameters β_{2} and β_{4} extracted from the inelastic proton scattering on ${ }^{24} \mathrm{Mg}$ weje used for the deuteron scattering and for the (d,p) reaction too, because the available 2^{+}and 4^{+}states in the inelastic protion scattering permit to adjust the deformation parameters β_{2} and B_{4} much better than in the inelastic deuteron scattering.

4. Calculation of the Stripping Differential Cross Section

For the comparison with the experimental data the angular distributions of four rotational bands in ${ }^{25} \mathrm{Mg}$ vrere calculated with the computer code POLLUX. This code written by H.S. and H.J.W. calculates the differential cross sections of one-nucleon transfer reactions on deformed nuclei. The generalized distorted waves were obtained by a coupled channels procedure using the adiabatic approximation and taking into account indirect contributions by inelastic excitation of the low-lying rotational levels of the target and final nuclei. A more detailed description of the code

POLLUX is made ir ${ }^{19 /}$. There can be found comparisons to the results of other motels and to several experimental data too.

4.1. The Single-Particle Function for Transferred

 NucleonThe bound state function of the transferred paricle used in the code POLLUX is calculated in a deformed single-particle potential of the Sayon-Woods type and expanded in terms of spherical basis function; $R_{n 11}(r) / 19 /$

$$
\begin{equation*}
\phi_{\Omega}=\sum_{n \ell_{j} \Lambda}^{\sum} C_{n}^{(\Omega)} R_{n} \ell_{j}(\tilde{r})\left(\ell_{s_{n}} \Lambda \Omega-\Lambda \mid j \Omega\right) Y_{\ell \Lambda}(\hat{r}) X_{s_{n} \Omega-\Lambda, ~} \tag{1}
\end{equation*}
$$

where $Y_{p \Lambda}(\hat{r})$ are the spherical and $X_{S_{n}} \Omega-\Lambda \quad$ the spin functions. The expansion coeficients $C_{n}^{(\Omega)}$, depend on the deformation and were obtained with the aid of a computer code written by Gareev and Ivanova ${ }^{\mathrm{x}}$ /

The radial basis functions $R_{n} \ell_{j}(r)$ were numerically calculated with the potertial parameters $r_{0}=1.25 \mathrm{fm}$ and $\mathrm{a}=0.65 \mathrm{fm}$. The potential deep $\quad \mathrm{V}=47 \mathrm{MeV}$ was adjusted to give the proper neutron binding entrgy $\quad E_{n}=7.33 \mathrm{MeV}$, A spinorbit strength of $\quad V_{\text {so }}{ }^{\circ} 4 \mathrm{MeV}$ yielded the right energy level scheme. Obviously, the deformation parameter for the single-particle wave function shou d have the same value as extracted by fitting the inelastic scattering data. To avoid the uncertainties which could arise from this adequacy the deformation parameter in
$x /$ We are inclepted to Dr. F.A. Gareev and Mrs. S.P. Ivano va for making their code available to us.
the single-particle wave function has been varied. The coefficients for $\quad \beta_{2}=0.45$ and $\beta_{2}=0.35$ are shown n table 5. A hexadecupole deformation β_{4} was not considered. We see that the deformation dependence of the $C_{n} \ell_{j}$ is weak and with the exception of the $\mathrm{C}_{2 \mathrm{~s} \mathrm{~s}_{1 / 2}}$ [211] the deviation for the most important coefficients is smaller than 10%. Therefore, we nave given only for the band $1 / 2^{+}$[211] the curves belonging t_{1}) the both values $\beta_{2}=0.45$ and $\beta_{2}=0.35$. For all other curves the value $\beta_{2}=0.45$ was taken.

For a comparison Nilsson's coefficients ${ }^{/ 20 /}$ in the ℓ_{j}-representation at $\beta_{2}=0.3$ and those calculated by Rost's coupled channels code /20/ and given by Dehnhardt ard Intema ${ }^{/ 13 /}$ are also quoted in table 3. As is seen the values of the corresponding coefficients are mutually very similar. That can be expected because in the light nuclei the oscillator potential as well as the Saxon-Woods potential are a good approximation to describe the single-particle levels.

Rost's code is able to consider quasi staionary states and $\mathrm{in}^{113 /}$ the coefficients of these states with $\mathrm{N}=4$ from the
g-shell are given also. Because of the strong energy distance they are not important. The negative parily rotational band $1 / 2^{-}$[330] has an excitation energy of $\mathrm{E}_{e x}=3.4 \mathrm{MeV}$ and the spherical basis states of the 2p 1f - shell are partly not bound in the potential with the parameters given above. Therefore, a comparison of the coefficients with those of the Nil:sson model is difficult. Nevetherless, the most important states are bound and have very similar coefficients.

4.2. Compariscn with the Experimental Data and Discussion

In calculating the theoretical differential cross sections no parameters have been varied. Also no renormalization of the theoretically precicted curves to the experimental data was made in the correspon ling figures 4-6 and 8. Instead of it in table 4 are compiled the interesting ratios of calculated to measured differential cross sections at two angles in the forward and backward angle region. These ratios have the same uncertainties of 20% as the experimental data.
4.21. The $5 / 2^{+}$[202] Ground State Band

Our results are shown in fig. 4. The angular distribution for the transition to the $5 / 2^{+}$ground state is described very well up to backward angles. The agreement with the experimental data is much better thian for all other levels. The transitions to higher lying members of the band are stripping forbidden. That means that only indirect terms contribute in the transition amplitude. Therefore, the theoretisal description of the angular distibution of these transitions is a siensitive test for the used model. Two higher lying states wert identified but only the $7 / 2^{+}$could be resolved. The general behaviour of its calculated angular distribution sufficiently corresparids to that of the experimental data. Our prediction is too small by a factor of 0.3 . The slope at backward angles is too strong.
4.22. The $1 / 2^{+}: 211$] and $1 / 2^{+}$[200] Bands

Since the theoretical predictions for these two bands are affected only by the different $\left.C_{n} \ell_{j}^{\prime}\right) \quad$ coefficients and the Q-value it is particularly interesting to discuss them together.
a) The $J=1 / 2$ states: The both measured and all the calculated angular distributions are very similar. That is seen in figs. 5 and 6. The general behaviour is reproduced, but the calculated curves have rather deep tips probably caused lyy the missing spinorbit coupling.

For the comparison between the two band:; we consider the ratios of the corresponding differential cross sestions

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\left(\mathrm{~J} \mathrm{1/2}{ }^{+}[211]\right) / \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\left(\mathrm{~J} \mathrm{1/2}{ }^{+}[200]\right) \tag{2}
\end{equation*}
$$

From Satchler's formalism $/ 22 /$ the cross section is expected to be proportional to $\left(C_{n}^{(\Omega)}\right)^{(\Omega)}$ with $\mathrm{j}=\mathrm{J}$ and the expression (2) becomes to

$$
\begin{equation*}
R_{s}=\left(C_{n \ell f}[211] / C_{n \ell f}[200 .]\right)^{2} \tag{3}
\end{equation*}
$$

in this theory. The difference between the valuts R_{s} and our calculated ones \mathbf{R} illustrates the influence of the other terms with $\mathbf{j} \neq \mathbf{J}$ not considered in ${ }^{/ 22 /}$. For the $\mathbf{J}=1 / 2$ states this influence is small. We obtained at the two values of the deformation parameter β_{2} used in the bound state furction the ratios

$$
\mathbf{R}_{\mathbf{s}}\left(\beta_{2}=0,45\right)=0,50, \quad \mathbf{R}\left(\beta_{2}=0,35\right)=0,47
$$

and for R the samewhat angular depending velues

$$
\left.\mathbf{R}\left(\beta_{2}=0,45\right)=0,28 \ldots 0,23, \mathbf{R}\left(\beta_{2}=0,35\right)=0,45 \ldots\right), 37
$$

These values are very different from the ratio of the corresponding
experimental differential cross sections $\mathbf{R}_{\text {exp }} \approx 3.3$ and our model gives for the $J=1 / 2$ states no improvement in comparison with Satchler's theory. The proportionality of the differential cross sections to $\left(C_{n \ell_{j}}^{(\Omega)}\right)^{2}$ in this case permits to determine the so-called "experimental coeff cient"

$$
C_{2 s 1 / 2}[211] \approx(\pm) 0,75 \text { and } C_{2 s 1 / 2}[200] \approx(\pm) 0,40
$$

which can not be obtained within the usual single particle models. b) The $J=3 / 2$ states: In our measurement the state $3 / 2$ $1 / 2^{+}$[200] is not resolved from the $7 / 21 / 2^{+}$[211] level. However from $/ 10 /$ at $E_{1}=15 \mathrm{MeV}$ and from $/ 11 /$ at $\mathrm{E}_{\mathrm{d}}=10 \mathrm{MeV}$ it is sure that the contr bution of the $7 / 21 / 2^{+}$[211] state is almost negligible in the forward region. That is expressed by the intensity ratios in table i. In figs. 5 and 6 are shown our results. Both measurements look similar and $R_{\text {exp }}=0.9 \ldots 0.8$ is found. The corresponding thecretical ratios R_{s} with $n \ell j=1 d 3 / 2$ are

$$
R_{s}\left(\beta_{2}=(1,45)=1,69, \quad R_{s}\left(\beta_{2}=0,35\right)=1,29 .\right.
$$

For the ratios R we obtained

$$
\mathbf{R}\left(\beta_{2}=0,45\right)=1,1 \ldots 0,6, \quad \mathbf{R}\left(\beta_{2}=0,35\right)=0,8 \ldots 0,6
$$

which agree much better with $\mathrm{R}_{\text {exp }}$ than R_{B}. The difference between the values of R and R_{s} illustrate the strong influence of the indirect cortributions on the $\mathrm{J}=3 / 2$ states mainly caused by the great $C_{2 s_{1} / 2}$ coefficients. The ratios between the calculated and mecsured differential cross sections in table 4 and figs. 5 and 6 show a quite well agreement in the forward
angle region. The opposite sign of the $\mathrm{C}_{2 \mathrm{~s}_{1} / 2}$ coefficients in both bands causes the difference in the fluctuation of the calculated curves according to the experimental angular tustribution.
c) The $J=5 / 2$ states: For the $1 / 2$ [200] band this level was not resolved. The theoretical curves are very different for both bands because the corresponding coefficients $C_{1 d 5 / 2}$ are small and the influence of the $\mathrm{j} \neq \mathrm{J}$ terms is strong. The smooth behaviour of the experimental angular distribution of the $5 / 21 / 2^{+}$[211] is quite well reproduced.
d) The J-dependence of the cross sections: illustrating the J-dependence of the cross sections all calculated angular distributions with the same transferred angular momentum $L=2$ are represented in fig. 7. The curves have been normalized to each other at $\quad \theta_{\text {C.M. }}=25^{\circ}$. As is seen the J -dependence of the cross section is remarkable, and mainly, the results of the consideration of the indirect transitions by means of the generalized distorted waves. It seems to us worthwile to point at the essentially improved agreement attained by the strong it -dependence for the $J=3 / 2$ and $J=5 / 2$ states of the $1 / 2^{+}[211]$ band, for instance.
e) The $J=7 / 2$ state: For the $1 / 2^{+}$[200] band this state is not yet identified. The $7 / 21 / 2^{+}$[211] level was again not resolved in $/ 12 /$. The transition to this state is sxipping forbidden and therefore it would be interesting if it should be resolved. 4.23. The $1 / 2^{-}$[330] Band

A critical investigation of the negative parity $1 / 2^{-}$[330] band is more difficult, because its spherical bas;is states are partly unbound in the single-particle potential given in chapt. 4.1.

The influence of these unbound states seems to be important, but they can not be involved in the present program. The bound basis states have small binding energies which depend sensitivly on the potential frarameters. Therefore the theoretical predictions for this band have more uncertainties as for the other bands. In particular, the 2 pl/2 basis state was not bound in the potential under consideration. But it is important because only the $2 \mathrm{pl} / 2$ state permits the direct transition to the $1 / 2^{-}$rotational level. A test calculation neglecting the $2 \mathrm{pl} / 2$ state yielded a theoretical curve completely diverging from the experimental data. Therefore, we tried t, appreciate the influence of this state by admitting that it is formally a bound state with an energy 0.2 MeV . For this purpose a potential deep $\quad V=55.6 \mathrm{MeV}$ is necessary. To avoid the same difficultios in the calculation of the expansion coefficients the Nilsson coeffi=ients at the deformation $\quad \beta_{2}=0.3$ were used. Our theoretisal predictions are shown in fig. 8. The $J=1 / 2$, $3 / 2$ states have a typical $\mathrm{L}=1$ behaviour. Comparing both curves at small angles we can establish a good proportionality of the cross section to he corresponding coefficients $\left(C_{n l}^{(\Omega)}\right)^{2} \quad$ with $j=J$. That means the indirect terms arising from the lf basis states are small in spite of a very important $C_{1 f 7 / 2}$-coefficient. Comparing cur results with the experimental data we must remember that all states of this band were not resolved in the measurement from other states. The 4.351 MeV level mixing to the $1 / 2^{-}$state has not yet been classified. The 9/2 5/2 ${ }^{+}$[202] level mixing to the $3 / 2^{-}$state is negligible for small angles (see table 1). In the brckward angle region the calculated cross sections are comparable and the sum of both curves give a better agreement with the measurement.

Still more complicated is the analysis of the $7 / 2^{-}$state, because it is mixed with two other states, the one of them at 4.055 MeV has not been classified and the second one (5/2 $1 / 2^{+}$[200]) in contradiction to the data in talle 1 has the same order of magnitude as the $7 / 2^{-}$state. Nevetherless, the calculation reproduces the general shape of the measured angular distribution. The sum of the two known states (upper curve) agrees sufficiently well with the absolute values of the cross sect on, also.

5. Summary

The experimental material displayed in the present work has given the possibility to investigate all knorvn rotational bands in the final nuclei ${ }^{25} \mathrm{Mg}$. For the analysis of the experimental differential cross sections a generalized DWBA model for onenucleon transfer reactions on deformed nuclei was used. Since we adjusted the optical and deformation parame ers from the elastic and inelastic scattering and calculated the kound state function in the framework of the deformed Saxon-Woods, potential, the general uncertainties at the choice of parameters are reduced so far as possible.

The generalized DWBA model has given differential cross sections which sufficiently well agree with the experimental data, in particular for small angles. For angles greater than 120° the calculated values are generally too small. For transitions with the transferred angular momentum $\mathrm{L}=0,1$, the inflience of the indirect contributions caused by intermediate excitaions of rotational levels is not important and the angular distributions are determibed mainly by the direct terms with $\mathrm{j}=\mathrm{J}$. In siuch cases the de-
viations of our calculated curves from those predicted by the usual DWBA the ory arise from the inclusion of the deformed optical potentials at the calculations of the distorted waves. The transitions with c. transferred angular momentum $L \geq 2$ are more influenced by incirect contributions due to the terms with $1<L$. That leads to a strons; dependence of the differential cross sections on the transferred spin J. In case of the $L=2$ transitions the same dependence has been observed in the experimental angular distributions, so that the agreement between the calculated and measured diferential cross sections could be improved. By the used generalized DWBA model the stripping forbidden transitions can be explained and the single one resolved in the present experiment has been reproduced suffiently well.

Acknowledgement

We are det?ply indepted to Prof. V.G. Soloviev and Prof. J. Schintlmeister or their continuous interest and for the whole hearty support. (ine of us (D.N.) would like to acknowledge the important support by the Ministerium fuer Wissenschaft und Technik in Berlin and by the Joint Institute for Nuclear Research in Dubna.

References

1. S.K. Penny ard G.R. Satchler. Nucl.Phys., 53, 145 (1964).
2. B. Kozlowsky and A.de-Shalit. Nucl.Phys., 77, 215 (1966). F.S. Levin. Phys.Rev., 147, 715 (1966).
3. P.J. Iano and V. Austern. Phys.Rev., 151, 853 (1966).
4. V.K. Lukyanov and I.Zh. Petkov. Yadernaya Fizika, 6, 988 (1967).
5. P.D. Kunz, E. Rost and R.R. Johnson. Phys.Rer., 177, 1737 (1969).
6. P.J. lano, S.K. Penny and R.M. Drisko. Nucl.Phys., A127, 47 (1969).
7. H. Schulz, and H.J. Wiebicke. Phys.Lett., 29B, 18 (1969).
8. V.K. Lukyanov, H. Schulz, and H.J. Wiebicke. To be published in Nucl. Phys.
9. K. Hosono. J.Phys.Soc of Japan, 25, 36 (1968).
10. B. Cujec. Phys.Rev., "136, S1305 (1964).
11. R. Middeleton, H. Hinds. Nucl.Phys., 34, 404 (1962).
12. R. Fille et al. To be published in a report of the Central Institute for Nuclear Research, Rossendorf, GIDR.
13. D. Dehnhard and J.L. Yntema. Phys.Rev., 160, 364 (1967).
14. A.E. Antropov, P.P. Sarubin, B.N. Orlov, H.J. W ebicke, H.Schulz. Proceedings of the XX Conference of Nuclear Spectroscopy and Nuclear Structure, Leningrad (1970).
15. H.J. Wiebicke, H. Schuz, A.B. Kurepin. Procee tings of the XX Conference of Nuclear Spectroscopy and Nuclear Structure, Leningrad (1970).
16. S.I. Drozdov. Yadernaya Fizika, 5, 786 (1965).
17. O.M. Crawley. Thesis, Princeton University, $1 \subseteq 65$.
O.M. Crawley and G.T. Garvey. Phys.Rev., 16(1, 981 (1967).
18. R, de Swiniarski et al. Phys.Rev.Lett, 23, 317 (1969).
19. F.A. Gareev, S.P. Ivanova, and B.N. Kalinkin. Preprints P4-2976 and P4-3451, Dubna (1967).
20. S.G. Nilsson. Det. Kgl. Den. Vid. Selsk., 29, No. 16.
21. E. Rost. Phys.Rev., 154, 994 (1967).
22. G.R. Satchler. Ann. Phys., (N.Y.), 3, 275 (196.3).

Table 1
Intensity ratios of measured differential cross sections to states unresolved in the present experiment

unreeolved states	angle	$\frac{d \sqrt{5}}{d \Omega}(I): \frac{d 5}{d \Omega}(I I)$			ref.
I: $3 / 21 / 2^{+}{ }_{L}{ }^{2} \mathbf{2 0 0}{ }^{\prime}$	25°	28	:	1	/10/
	30°	18	:	1	
II: $7 / 21 / 2^{+}[211]$	130°	14	:	1	/11/
I: $3 / 21 / 2^{-} 330$	30°	33	:	1	/11/
II: $9 / 25 / 2^{+}[202]$	90°	10	:	1	
I: $7 / 21 / 2^{-}[330]$	25°	40	:	1	/10/
	30°	10	:	1	
II: $5 / 21 / 2^{+}[200]$	110°	2.3	:	1	/11/

Table 2
Values of deuteron and proton parameters found by the elastic and inelastic scattering analysis and used for the calculation of the differential stripping cross section
particle $V \quad r_{v} \quad a_{v} \quad w_{D} \quad r_{w} \quad a_{i v} \quad r_{i} \quad \beta_{2} \quad \beta_{4}$
in MeV in fm in fm in MeV in fm in fmin fm(expt) (expt)

| d | 80.0 | 1.25 | 0.77 | 17.0 | 1.67 | 0.43 | $1.30+0.47-0.05$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllll}\mathrm{p} & 46.0 & 1.22 & 0.60 & 3.60 & 1.27 & 0.64 & 1.22 & +0.47-0.05\end{array}$

Table 3
Expansion coefficients $C_{n}^{(\Omega)} \ell_{j}^{\prime}$ used in the present work compared to those obtained by Rost's code and to the Vilsson's coefficients

$\Omega^{\pi}\left[N_{n_{z}} / 1\right] n l_{j}^{\text {ref. }}$	Gareov/19/ $\beta_{2}=0.45$	Gereev/19/ $\beta_{2}=0.35$	Rost/21/ $\beta_{2}=0.35$	Nilsson/20/ $1_{2}=0.30$
5/2+[202] 1d 5/2	1.0	1.0	0.993	1.0
2: 1/2	0.409	0.498	0.548	0.37
$1 / 2^{+}[211]$ 1d $3 / 2$	0.765	0.731	0.711	0.75
1d $5 / 2$	0.496	0.466	0.425	0.54
2s 1/2	-0.749	-0.724	-0.705	-0.76
$1 / 2^{+}[200]$ 1d 3/2	0.587	0.643	0.665	0.58
1d 5/2	0.0294	-0.239	0.222	-0.29
2p 1/2	-	-		-0.23
1/2- [330] 2p 3/2	0.663	0.632		0.55
$1 \pm 5 / 2$	-	-		0.20
$117 / 2$	-0.734	-0.767		-0.78

Table 4
Ratios of the calculated to the measured differential cross sections for all resolved members of rotational bands. The ratios were calculated at two angles in the forward and backward region indicated in the figures $4-6$ and 8 by full circles. For the $1 / 2^{-}[330]$ band the deformatior in the single-particle function were taken to be $\beta_{2}=0.3$, for $\varepsilon l l$ other bands the deformanion parameters are as indicated. The values in brackets were obtained using for the theore-
tical cross section the sum of the known unresolved states

Fig. 2. Angular distributions of the ${ }^{24} \mathrm{Mg}\left(\mathrm{d}, \mathrm{d}^{\prime}\right)$ reaction measured by/12/ and calculated by the code KASTOR. The parameters found are compiled in table 2.

Fig. 3. Angular distributions of the ${ }^{24} \mathrm{Mg}\left(\mathrm{p}, \mathrm{p}^{\circ}\right)$ reaction measured by Crawley/17/ and calculated by the code KASTOF. The parameters are taken from/18/ (see table 2). The influence of β_{t} is shown.

Fig. 4. Angular distributions of the ${ }^{24} \mathrm{Mg}(\mathrm{d}, \mathrm{p})$ reaction leading to the 5/2+ [202] be nd in ${ }^{25} \mathrm{Mg}$. The transitions to the $7 / 2^{+}$and $9 / 2^{+}$ states are stripping forbidden. The $9 / 2^{+}$was not resolved from the $3 / 21 / 2^{-}[330] s t a t e$. The curves were calculated with the code POLLUX using the? optical and deformation parameters from table 2 and the expansion coefficients obtained by Gareev and Ivanova/19/ (see table 3). The errors of the experimental data reach, only forthe weak transitions, upto about 10%, they are within the diameter of the circles for the others. The calibration error of the absolute value amounts to about 20% for each point. The full circles mark the two angles fo which in table 4 the ratios $\frac{d_{0}}{d \Omega}$ (theo)/ $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ (exp) are ccimpiled.

Fig. 5. Angular distributions of the ${ }^{24} \mathrm{Mg}(\mathrm{d}, \mathrm{p})$ reaction leading to the $1 / 2^{+}$[211] band in ${ }^{25} \mathrm{Mg}$. The $7 / 2^{+}$was not resolved from the $3 / 21 / 2^{+}[200]$. The solid lines belong to the deformation . parameter for the bound state function $\beta_{2}=0.45$ and the dashed lines to $\beta_{2}=0.35$. For further explanations sef fig. 4.

Fig, 6. Angular distributions of the ${ }^{24} \mathrm{Mg}(\mathrm{d}, \mathrm{p})$ reaction leading to the $1 / 2^{+}$[200] band in ${ }^{25} \mathrm{Mg}$. The $3 / 2^{+}$state was not resolved from the weak $7 / 21 / 2^{+}$[211] level. The upper curve shows the sum of both calculation:s. For further explanations see fig. 4 .

Fig. 7. Angular distributions of the $L=2$ transition; to the $J=3 / 2$ and $J=5 / 2$ states of both the $1 / 2^{+}$[21.1] and $1 / 2^{+}$[200] bands illustrating the strong J -gependence and the dependence on the expansion coefficients $C_{n R_{j}}^{(\Omega)}$ (sfe table 3). The curves are renormalized to each other at $\theta=23^{\circ}$.

Fig. 8. Angular distributions of the ${ }^{24} \mathrm{Mg}(\mathrm{d}, \mathrm{p})$ reaction leading to the $1 / 2^{-}$[330] be nd in ${ }^{25} \mathrm{Mg}$. No level of this band was complitely resolved from ot ier states. The mixing levels are given in brackets. The lowe? curves show the calculation for the pure state of the $1 / 2^{-}[: 30]$ band. The yper ones give the sum of mixing states provided that their Nilsson orbit is known.

[^0]: * Central Institute for Nuclear Research, Rossendorf near Dresden, GDR.

