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I. I n t r o d u c t i o n 

The dynamic properties of a classical liquid may be described 

relatively simply in two extreme cases. The fit st is when the con­

sidered perturbations are slowly variable in tine and space, and 

the other, opposite case , is when the times cr aracterizing the 

investigated processes are of the order of the period of atomic 

thermal vibrations. In the first case ordinary rydrodynamics is 

applicable, whereas in the second use is mad·~ of many different 

quasicrystal models based on the similarities between liquids and 

crystals/l-
4

/. The applicability of hydrodynamics is limited by the 

condition that there is local equilibrium in regions which are small 

compared with the wavelength. This is why cl<tssical hydrodyna­

mics must be replaced by relaxational hydrodynamics already in 

the ultrasonic region, the 

dependence of the kinetic 

quency range ( w ,. 10 11 

latter takin' accoun of the frequency 

coefficients S-G/. In ·he very high fre-

to 10 13 Hz ) the 1-ydrodynamic descrip-

tion cannot be applied, It should be said here that attempts have 

been made recently to extend hydrodynamics to the range of high 

frequencies and wavelengths comparable with .:~.tomic distance/ 7/. 

These attempts, however, are intended to provide a model of 
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correlation functiom; rather than to 8,ive a microscopic descrip­

tion of a liquid. Th? applicability of the quasicrystal models is al­

so limited, but from the low frequency side. 

With respect :o perturbations of a frequency of the order of 
13 

10 sec and more a liquid behaves like a solid. The diffusional 

d . 1 t "thi t" f 1o-13 . 11 d gl 1sp acemen WI n a 1me o sec IS sma an may be ne ec-

ted. This circumsta 1ce constitutes the basis of most quasicrystal 

models. At frequencies w < 10
12 

Hz , when the period of the 
"' 

investigated density oscillations is of the same order as the 

characteristic time :>f diffusional displacement, the quasicrystal 

model approximatibn is very coarse. Thus, there is a rather broad 

interval of frequencies and wavelengths, known as the transitory 

region, where neitr er the hydrodynamic, nor the quasicrystal 

approaches are valid. 

Note should be made of the qualitative difference between 

perturbations of the liquid in the hydrodynamic region and those 

in the region wherE~ quasicrystal models are applicable. Hydrody 

namics treats coope ·ative excitations, which together represent 

a macriscopic charge in density. Here, the microscopic properties 

of the system only determine the kinetic coefficients, and it is 

not possible to examine an atom by itself. On the other hand, 

within the framewc rk of a quasicrystal model cooperative excita­

tions having a wavelength of the ::>rder of interatomic spacing 

are examined •. Cooperative excitations in this region can be said 

to be the resultant of the vibrations of the individual atoms. These 

vibrations are synchronized in such a way that they depict a den­

sity wave. Such pErturbations are analogous to phonons in crys­

tals, the only difference being that in crystals there is space sym­

metry, whereas in d liquid there is none. Perturbations of the 
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phonon type in liquids are commonly known as quasiphonons, but 

sometimes the term "zero sound" is used, The latter term is adop­

ted from the quantum theory of liquids, We shall be dealing here 

with cooperative excitations of the second kind so the notion of 

quasiphonons is somewhat more appropriate in our case. The intro­

duction of phonons in the crystalline lattice theory is a convenient 

way of describing atomic displacement. In a liq-lid, however, quasi­

phonons give only an approximate picture of the complex character 

of atomic displacements. This is why the defini ion of quasiphonons 

in terms of atomic displacements is quite intricnte, The natural way 

of defining quasiphonons is linked with the interpretation of experi­

mental data from inelastic scattering of slow ne --ttrons in liquids. 

Such experiments show that in the distribution :>f coherently scatte­

red neutrons there are singularities similar to phonon peaks in the 

case of crystals. Thus, it is convenient to define quasiphonons as 

singularities of the scattering function S( k ... , w / 81 • 

Quasiphonons, like phonons, are charade ·ized by the dis-

persion relation w (k) and lifetime r • The function w(k ... ) has 

been found experimentall)
9

/ and theoreticall)l-
4

/, and for a num­

ber of liquids its behaviour is known, qualitatively at least. The 

value of lifetime r and especially its de pender ce on frequency 

is known much less accurately. At high frequencies quasiphonons 

can be computed quite well from definite excitatlons, what agrees 

excellently with neutron scattering experiments. When the frequency 

approaches the transitory region the lifetime of :he quasiphonons 

should become shortened due to the increased role of diffusion, 

In the transitory region the zero sound waves !;hould be strongly 

attenuated and, finally, in the hydrodynamic region ordinary sound 

propagate in the liquid instead of zero sound. Despite the fact 
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that this picture seems to be quite natural, it has not yet been corro­

borated theoretically. And so, the study/
2

/ partially takes account 

of quasiphonon attenuation due to diffusion. It vvas found that with 

decreasing frequency the lifetime r grows continuously right up 

to the applicability limits of the model used. Taking account of 

quasiphonon deca;r due to anharmonicity also does not appear to 

provide the requir ?S c:Ependence of on w , for from the theory 

of anharmonic crystals we know that at low frequencies r = _j_. 
UJ2 

In this pape1• we present a mechanism of quasiphonon attenua-

tion which leads t :> their disappearance in the transitory region. 

The model is de~;cribed in detail in Sec. 3. We shall only note 

here that its rang•~ of applicability is not wider than that of other 

quasicrystal models, that of Habbard/
2

/. However, in contradistinc­

tion to the results of ref.f
2

/, in our approach the lifetime of 

quasiphonons at small w becomes shortened with decreasing w • 

In Sec. 2 the gen?ral formulae for the scattering function S (It, w) 

are given. The derivation of S (k, w) is given in Sect. 3,4 and 5, 

while Sect. 6 preo>ents the results obtained. 

-+ 
2. D yna.mic Structure Factor S ( k, w ) 

The two-diffE!rential neutron scattering cross section for 

a liquid is deterrri ned from the momenta of incident and scattered 
-+ 

neutrons k 1 and k 2 , the cross section for the interaction of 

neutrons with target nuclei a, and a factor which depends only on the 

properties of the .iquid, namely, the dynamic structure factor. The 

cross section for coherent neutron scattering with a momentum 

change of k and energy change of h w 

form 

6 
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d
2

a 
I = _L 

coh 4 TT (1) dw d n 

where S ( k, w) is the dynamic structure factor, othe:"Wi.se known as 

scattering function, introduced by Van Hove /B/. A!: had been men­

tioned in the Introduction the properties of cooper<l.tive excitations 

are determined by singularities of the function s ( r, w ) ; hence, our 

first task is to derive this function. Coherent neutJ·on scattering is 

conditioned by scattering on density fluctuations. ';'herefore, there 

is a straight relatioship between the dynamic structure factors and 

the time-dependent correlation density function, 

1 

2rrN 

Here, 

f d t 
i w t e 

n(k,t)= I 
i 

-+ 
< n (k, t) n ( -k, 0) > (2) 

-+-+ 

e 
tIt r 

1 
( t I 

(3) 

is the Fourier component of the density of the par :icles, l 
1 

( t ) 

is the radius vector of particle i at instant t , ·'l.nd N is the 

number of particles in the system. 

When solving dynamic problems it is more ccnvenient to cal-
-+ -+ 

culate not the correlation function < n ( k, t ) n (-k, t) > but the func-

tion of the response of the system to external pert~bation. If a weak 

external field, 

7 



V ext = U e 

->-> 
!kr-lwt 

(4) 

acts on the systEm, then the change in particle density due to 

this field can be found by means of formulae of the linear respon­

se theory, 

-+ -+ 1 t 
< 8 n (k, t) > = x (k, w) U e- w , (5) 

-> 
where x (k, w ) is the complex susceptibility. The imaginary part 

... 
of the function x ( k, w ) is called simply susceptibility, and is 

defined by the m•~an value of the density operators in the follow­

ing manner: 

..... -+ i l(.r.) t -+ -+ 
lm X (k, •u) = x "(k ,w) =- fdt e <[n (k, t),n(-k,O)]> (6) 

2N . 

The symbol < [ ... ] > denotes the mean value of the commutator 

taken over the u 'lperturbed ensemble. The relationship between 
-> -> 

the correlation function <n(k, t) n(-k,O)> and the commutator corre-

lation function<(tt(k,t) n(-k,O)]> is established by the fluctuation­

dissipation theorE·m. With the help of this theorem and formulae/
2

/ 

anct/
6

/ it is possible to link up the dynamic structure factor with 

susceptibility x "(k, w ) • In the classical approximation this rela­

tionship has the form 
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-+ 
S(k,w)= 

x" <k. w) 

nf3rrw (7) 

where n is the mean density of particles f3 = k 1 T , T being tem­
B 

perature and k 8 the Boltzman constant. 

Using formulae/sf and/7 / we get 

-+ 1 <on(k,t)> i 
1 

<on(k-+,t)> 
S(k,w)=---Iml 1=---Im -----1() 

n{3rrw ue-lwt n{3rrw 2 Ue-lwt 8 

This last expression for the dynamic structure factor will prove 
-+ 

to be convenient in the following. Calculation of S ( k, w ) is brought 
-+ 

down to calculation of the mean value of the quantity < 0 n ( k' t ) > . 

Subsequent calculations call for consideration~ based on models, 

3, Relaxational Model of Quasiphoron Attenuation 

The model which we ~hall use here is l::ased above all on 

the possibility of separating the displacement :>f the atoms of the 

liquid into vibrational and diffusional displacem~nts and the assump­

tion that the correlation between them is small, In accordance with 

the basic assumptions of the model we shall vTite the radius vector 

r
1
(t) in the form R1(t)+u 1(t), where R1(t) is the particle's 

equilibrium position vector, which is slowly vadable in time, and 

~ 
1 

( t) is the displacement of the particle rel:l.tive to this equilib-

9 



riurn position. Here, contrary to the sla.ndard quasicrystal model, 

the equilibrium pos [tion of atoms are assumed to be time depen­

ciEc,nt. T'his kind of ar,proximation was used in ref.f
2

/ when dealing with 

a non-stationary di3ordered system, Other assumptions concern the 

diffusion mechanisr,l, Vve shall assume that a weak external field 

may bring i::l.bout a change in density due to vibrational motions, 

but rloes not affect the diffusional movements of the particles, Phy­

sically speaking, tllis is associated with the jump mechanism of 

diffusion, i.e. the E: ::juilibri.um position of an atom remains stationary 

until a vacancy a r:: pears in its nearest neighbourhood, 

We shall try to find the relationship between the diffusional 

anrl. vibrational dis )lacements in the follovv:ing manner. Let us consi­

der the distribution of particles relative to a certain chosen particle. 

If the chosen partide is at rest, then the equilibrium distribution of 

the particles surro:,mding it is described by an even correlation 

function g ( r) . When the chosen particle is displaced by a vector 

then the distributio 1 of the surrounding particles changes by the 
-+ 

value V g ( r ) ~ \Ve shall assume that diffusional displacement 

is what causes thE relaxation of this perturbation. The above listed 

assumptions requir ~ some more elaboration, It will be convenient 

to do this later on. Now, we proceed to the calculation of the quan-
-+ 

tity <orl(k ,t) >. 

In accordanc ~ with definition/J/ we have 

... -11 <R1 + ;; 1 , 

on(k,t)= ~(e 
1 

-+ -+ 
-1k R

1 
-e 

-+ -+ 
-+ -+ -1 k R 

)""-ik ~ u 1 e 1 

(9) 

In this equation WE· assume that the displacement of the particles, 

u 1 , due to the e;~ternal field of Eq, (4) is small, Differentiation 
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of eq. ( 9) with respect to time and averaging ove · all configura­

tions I R 1 ( t ) l yields 

-+ -+ 
-+ -+ -+ -ik R 1 

<on(k,t)>=-i I (ku
1
)e >-

(10) 
-+ -+ -+ 

-+ -+ -+ • -ik R 
I<(ku )(kR )e 1 >. 

I I 

Let us compare the correlation functions in the ri.:?,ht-hand side of 

Eq. (10). By assumption we have u1 » R 1 • Beside;; this, we assu­

med the smallness of the correlation between the vibrational dis-
-+ 

placements u 
1 

( t) and the diffusional displacements of the same 
-+ 

particle, R 1 ( t) ~ t. Hence, we get the inequality 

-+ 
< ti 

-+-+ 
-lk R 

e I> -+ 
>> < u 

and may drop the second term in Eq. (10). We introduce the new 

variable 

u 

and write Eq. ( 10) in the form 

11 

-IW t 
e 

(11) 

(12) 



Thus, by virtue ::>f Eqs. (7), (5) and (12), the expression for the 

dynamic structur·~ factor becomes 

_, 
k -+ 

S(k,w)= Im 2. < ~I ( t) > (13) 
rr{3nw 2 I 

Let us noti:::e that the mean value < ~ 1 > does not depend 

on the index of the particle because of the homogeneity of the 

system, Therefore, it is sufficient to consider the behaviour of 

a single chosen particle, the coordinates of which will be labelled 

by the subscript " 0". 

We write the equation of motion of our chosen particle in the 

form 

-+ -+ •• ... ... -+-+-+ 
u

0
(t)=-n Jdr V V(r

0
-r)p(r,t)-iUk (14) 

The last term in Eq, (14) appears because the external field is 

present, The furction p ( ;, t) denotes the averaged distribution 

of the particles ::;urrounding the chosen one at the instant t 

The exchange o: the summation over particle coordinates in the 

equation of motion by integration with the distribution function 

is an approxima1ion analogous to the self-consistent field approxi­

mation. 

We note h~re some remarks regarding the behaviour of the 

function p ( r, t ) . The equilibrium distribution p ( ;, t ) in the absence 
0 

of external fielc! is described by a simple even correlation func-

tion g ( r) 
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... ... 
p 

0 
(r, t),., g (r

0 
(t) -r ). (15) 

The development of the distribution function with the time is cau­

sed by the displacement of the chosen particle, the action of the 

external field, and relaxation due to the motio '1 of the surrounding 

particles. The rate of the vibrational motion i~. much greater than 

that of diffusional motion. It is plausible, therefore, to assume that 

the vibrational "subsystem" reaches equilibrium with the external 

field much faster than the diffusional one. We denote the relaxa­

tion times in the vibrational and diffusional "s..tbsystems" by rK 

and r 0 , respectively. Let the distribution function of the partie-
-+ ... 

les surrounding our chosen one be p(r,O) :I'[(r(O)-r), 0] 

at the instant when the external field, Eq. ( 4), is switched on. 

Then after a time t , satisfying the condition r 
0 

>> t >> r K 

the distribution function looks as 

-+ -+ -+ -+-+ -+ .... -+ 

p ( r , t ) ,., F [ I R 0 ( t) + u 0 ( t ) - r - u 0 ( t ) oos k ( R0 ( t ' - r ) I , t ] 
(16) 

Hence, there takes place a slow relaxation p~ocess with the charac­

teristic time r 
0 

leaping to the function 

... ... 
.... -+ ........ ... 

g[R (t)+ u (t)-r-u (t)cosk(R (t)- r)]. 
0 0 0 0 

(17) 

... 
The function u ( t) in expressions (16) and (17) should be defined 

0 

self-consistently with the use of Eq. ( 14). 
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We shall now check the corrections of the assertions made 

above in the case of a quasicrystal model. In such model the 
... 

equilibrium position of the oscillating atoms, R 1 , is assumed to 

motionless and disb•ibuted according to the even function g ( r) . 
This kind of assumption corresponds to the neglection of the expli­

cit time dependence of the function on the right-hand side of 

Eq. (16) and the pcstulation of expression (17) as the distribution 

function p ( i, t ) . lnd aed, expanding function ( 17) into a series 

with respect to the displacement and taking only the first two terms 

of the expansion 

... ... .... .... ... .... ... .... .... 
p ( t , t) = g ( R 

0 
- t 1 + V g ( R 0 - t) u 0 ( t )( 1 - ms k ( R 0 - i)) + .... 

yields with the use of Eq. (14) the expression for the frequency 

of longitudinal vibrations in the quasicrystal model, 

...... 

... kV 2 ... ... r :\ ... 
(U 

2 ( k ) = n J ( -- ) V ( t ) g ( t )(1 - ms K t J d t • 
k (18) 

We shall now try tc improve the quasicrystal approximation by 

taking account of tr e explicit time dependence of the function 

F ( i, t ) due to diffusional motion. In other words, we shall 

consider the relaxa1ion of the distribution function towards the 

form ( 17). For this purpose, we must have a formula for the func-
... 

tion p ( t , t ) . It is a very complicated task to derive the kinetic 

equation for a liquic.; therefore, we shall use the approximate 

method of Singwi ard Sjolander /
10

/. A brief outline of this met­

hod, without entering into details, is given in the following sec­

tion. 
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4. The Singwi and Sjolander Method 

-+ -+ 
Let f(x,p, t) be an independent particle distrlbution function 

rti f 
-+-+ 

of the atoms surrounding our chosen pa cle, whereas 0 (x,p, t) 

its equilibrium value. 'I'he time dependence of this function is due 

to the motion of the chosen atom, as in Eqs. (E) and (16) of the 

preceding section. We assume that we can separ'l.te the coordinate 

and momentum dependence of the equilibrium dist ·ibution function 

and write 

.... ... .... -+ .... 
f

0 
( X , p , t ) = £

0 
( p ) f 

0 
[ X O ( t ) - X ) , (19) 

where f
0
(p) is the Maxwellian distribution with respect to momenta. 

... .. 
'I'he simplest kinetic equation for the fundic n f(x, p, t) is 

...... 
a£( x, p, t) 

at 

... -+ -+ ..... 

f
0 

( X , p , t ) - f ( X , p , t ) 

(20) 
-+-+ ........ 

+ v V f(x,p,t) = 
T 

and corresponds to a gas of non-interacting particles which are 

placed in the field of the chosen atom. 'I'he solu:ion to Eq. (20) 

is found by means of the Laplace transformation and has the 

form 

._. ...... ... 
f(x,p,t) =f

0
(x,p,t)+ f dt' fdx'{ 

t -t' --r--
xe 

.. 
dq 

J-­
(2 11) 

3 
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e x 

(21) 



where D is the diffusion coefficient. The methcd of Singwi and 

Sjolander consists in the use of the functionnl form (22) of the 

expression from p (it, t) for describing the density of the particles 

surrounding the chosen one in a liquid, but the "gaseous" correla­

tion function g 0 
( x ... , t ) is replaced by a more complex form, 

s 
g(;,t,~', t' I it ) . The latter correlation function ~ ives the probability 

0 

that a particle which is at point x' at instanl t' will move 

to point x within time t - t ' , assuming thE> condition that the 

chosen particle is found at point x0 at the instant t , We shall 

not write out any concrete expression for this function, but use 

/10/ . . al t• the results of ref, tn our numertc calcula 1 ::>ns, 

We shall now employ the described metho:i to our problem, 

In accordance with formula (17), we write the e:Juilibrium distribu­

tion (19) in the form 

... ~ ..... .... ... -+ ..... .... .... ..... ( 
f (x,p,t)=f 0 (p)g[R

0
(t)+u (t)-r-u (t)cosk(R (t)-r]. 25) 

0 0 0 0 

The distribution function written in the form (25) means that its 

dependence on time is already taken into account. That is, there 

remains to account for the time dependence of r> ( r , t ) due to diffu­

sional motion, We assume that for this purpose it is possible to 

make use of the function form (22) and only an appropriate corre-
-+ 

Iation function g(x,t,x',t'IR
0
(t))has to be found, Singling out the 

effects caused by diffusion is facilitated by the fact that the func­

tion g (;, t, ;, , t ' I R (t) ) is in the end expreE sed by the corre­

lation function g
8 
(I",~) /

10
/. The latter function i3 expressed in 

Gaussian approximation by the root mean square displacement 

a(t) =< ; 2(t)>.Therefore, if we assume the root mt~an square dis­

placelemt of the equilibrium position in the form 
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-

l
6

0

D*(t-r
0

) 

a (t) 

t > T 
0 

t < T 
- 0 

characteristic of diffusional displacement, the function 

(26) 

g(;, t, ~,, t' I R 
0

( t) ) will ensure the development of a dustribu-

tion function in titne due to diffusion. r in Eq. (26) denotes 
0 

the time of "delay" or "settled life" of the atom in the given equilib-

rium position. Let us note that the introduced diffusion coefficient 

of the equilibrium position D* is not, generally speaking, equal 

to the experimentc.lly measured self-diffusion coefficient. In the 

following it is cor.sidered as a parameter. 

Earlier, we .:tssumed that an external field does not affect 

the mechanism of diffusion. Indeed, that is why we use the solution 

of the kinetic eqLution/
2
0/ without external field, disregarding the 

fact that the external field (4) does act on the system. 

Substitution of the expression (25) into formula (22) yields 

the following sequence with respect to displacements: 

p(t,t)- g(t,t)+ 
t ... 
f dt' f dx e 

- 00 

t.- t, 
T ..0 ...... , ') 

5_ ( X -X , t - t X 
s 

... ... ... -+ ... ... .... 

x V g [ R 
0

( t ') -x '] [1 -cos k ( R 
0

( t ) -t ) ] u 0 (t ) . 

Here, as when dedving, Eq. (9), we assume that u 0 » R
0 

18 
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In accord with ref/
10

/ we substitute the function g~ by g ( x, t , 

x',t'l x
0 

) • Defining the effective potentiai/
1
0/ as 

... .. ... ... ~ ... ... ... ... ... ... 
V V[R

0
(t)-x', t-t')= IV V[R

0
(t)-x)g

5
(x,t,x',t'IR

0
(t))dx (28) 

and the effective even distribution function as 

(29) 

we get from Eqs. · (14), (25), {28) and (29) the final Equation of 

motion of the chosen particle in the form 

2 t- t' 
d t --,-

m -- u (t) =- n I dt' e 
d t 2 0 -oo 

...... = ... -+ 
fdx'V V[R 0 (t)-x',t-t']x 

(30) 

""' "' -+ -+ ... -+ 1( k R (t ) -cut ) 
x Vg[x'-R 0(t'))u

0
(t)-iUke 0 

• 

5. Solution of the Equation of Motion 

We calculate the mean value < e 
0 

> by mears of Eq. (30). 

After integrating both parts over time, Eq. (30), with account 

taken of Eq. ( 11), takes the form 
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t' t'-t'' -+ ::::s .... ... 

Jdt"exp(--,--) f dx'V V[R
0
(t')-x',t'-t"]x 

-oo - oo 

(31) 

~"' ~ -+ ) ltiRtt")-R (t)] lcu(t-t")... / -+lt[R(t~-R-+(t)] lcu(t-t') 
x v g[x'-R (t" ]e o o e ~ (t'~- dt'ike o o e 

0 
-oo 

The integral equation obtained thus may be solved by iteration. Taking 
-+ 

the average of :he iteration series for ( 
0 

for all possible confi-

gurations I 1( ( t ) I yields 

t .... .... .... 
-+ 1 -+ lk[R tt')-R

0
(t)] lcu•lt-t') 

<( (t)>=--- < f dt'ike o e > + 
o m 

t t' 
+__£..._< f dt' f ct"exp(-

m2 -oo -00 

- 00 

t' -t" 
T 

-+ "' -+ 
)f d x' V V[ R

0 
(t')-~',t' -t "] x (32) 

The mean valuE •s in this expression are time independent. The first 

term on the right-hand side is by definition the Fourier presen-

ta.tion of the correlation function g 
8

( I , t ) I or to be more, exact, 

the function 8(t) g
8
(t,t),where O(t) = 1 when t > 0 

when t < 0 I: 
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m 

-+ 1 1 
-+ ll;[;o(t~-;o< 1 >] 

*(k) Jdt'1'ke g ,<V oo -< 
s m 

10J (I-t') 

e > (33) 
ik 

The function g s ( ;, t ) is the probe1bility of the eq 1 tilibriurn center 

becoming displaced by the vector within time 

We tre1nsform the second term on the rigtl_-hand side 

of Eq. (32), going over to the Fourier presentati )n of the func-

tions and 

n t t' t" t~t" dq-+ dq_. -
J dt' J d t" I dt' exp ( ---) Jd x' ( r--1 --2

- q (. V[q .... ,t:-t"lg(q) >< 
m2_""' 1 r ' (lrr) 3 (lrr ) 3 1 2 1 2 

(34) 

-+ 

To obtain a closed expression for <I;> -ve must resolve 

the complex correlation function in Eq. (34). Aft<!r integrating over 

x' and q this function becomes 

> . 
(35) 

'I'he accepted assumption consists in putting the mean value 

of the product of exponents (35) in the form of he product of the 

mean values of the exponential factors, viz., 
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(36) 

Before we d·~fine the limits of applicability of this approxi­

mation, let us note that the coordinate factors in Eqs. (35) and 

(36) are displacem :mts of the equilibrium position of the particle 

within times (t'-t"; , (t"-t) and (t'1-t"). The approximation of 

Eq. (36) is equival:mt to neglection of the correlation between 

these displacement:; of the particle. We now introduce the variables 

r
1 

= (t' -t") r 
2 

= [ t -t ") and r 
3 

=(t'
1
-t ") and consider the 

range of values of these variables G in which at least one of 

the following inequ<llities is satisfied: lr 
1 
-r 

2 
I~ r 0 , I r 

1
- r 

3
1 ~ r 

0 

and lr
2 
-r

3
l :::;r

0 
. H·~re, r

0 
is the delay time. We denote the 

displacement of the equilibrium position within time r 

Outside the region G the displacements of the equilibrium posi-

tion are weakly co ·related because of the chaotic character of 

the diffusional displacements. Therefore, we may write in approxi­

mation 

(37) 
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and the mean value of the product of exponents b!~Comes divided 

into the product of mean values, In the region G the equations 

(37) are not fulfilled, Therefore, in order to have the approxima­

tion satisfied it is necessary for the characteristic dimensions 

of the region G - r 
0 

to be much smaller than the region of 

integration. The dimensions of the latter are dE?termined by the 

presence of the attenuating exponential factor of u- e type g*(k,t)"' 

k2 
"' exp [- -- a* ( t) ] , where a* ( t) is the root mean square displa-

4 

cement of the equilibrium center within time t )irect calcula-

tion shows that at the considered values of V\/Uve number k the 

dimensions of the region of integration are much l<1rger than the 

delay time. 

The other correlation functions appearing in the subsequent 

terms of the series (32) are resolved in the same way as the 

function (35) by successively singling out the autocorrelation func­

tions g* (k, t) . As a result, from Eq, (32) we ge. 
s 

4 i -+ ~ i _,. ...-+ .... i .... -+ 2 -+ <.; >=--kg* (k ,w )+-kg* (k, w) ¢(k, w)-- kg* (k, ll) ¢ (k,w) + •.. 
o m ps m2 m3 s 

The following notation is introduced here 

~ ~ 

g *
8 

( k , w ) = f d t e lw 
1 

g: ( k , t ) ; 

.. 
¢(k,w)=n r 

.. ~--
t, t, -t" d q k q 2 "' ~ , , • r dt" exp (- ---) J--(--1 V[q,t -t J X 

r (2rr)3 k 
dt' 
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The series (28), being a geometrical progression, can be written 

in the form 

... ik ... 1 
>=---g*{k,w) ... 

m s l+cf>{k,w) 
(40) <f: 

~ 0 

The express.ion for the dynamic structure factor which takes 

account of thE relations (13) and (40) becomes 

... 
S(~,w)= 

g* {k, (L)) 
ReI --

8

---- I . (41) 

Further <)n, calculations are associated with finding the 
-> 

form of the function cf> ( k, w ) . We shall show that the function 

cf> ( k, w) can bE expressed by the memory function r ( t ) and the 

harmonic frequency of a quasiphonon calculated in the quasicr)rs­

tal approximati,)n. The memory function is determined from the 

integro-differen:ial equation for the velocity autocorrelation func­

tion K ( t ) = < v ( t ) v ( 0 ) > , i.e., 

:l 
K(t)=- J r(t-t')K(t')dt'. 

0 
(42) 

ct 

In ref./
101 

the following expression for r ( t) was obtained: 

t n -+ -+ 2 "' -+ ... , -+ -+ -+ r {t ) = exp ( - - ) -- f g ( X ) V V ( X -X , t ) g ( X ' , t ) d X d X' 
r 3m s 

(43) 
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Let us change in formula (39) the order of integration over 

t' and t" , and perform the reverse Fourier :ransformation 
"' ... 

of the functions V [ q, t ] and g*s (k, t) We obtain 

00 t n - ... k.v.... "' ... ... ... .... t' .... ( 44) 
¢ (k, w )= J d t J d t'[- Jg(x )(-) 2 V(x-x',t~g* (x', t')dxdx'] ~xp(-- )g* (k,t)e 1 w t. 

0 0 
m k s r 

We now take advantage of the circumstanc? that the integ­

rand in Eq. ( 44) as a function of x has a sharp maxima at va­

lues of the argument appl:'oaching the radius of the solid sphere r 0 

in the interatomic potential. Exchanging the function V ... g(I) (1-cosk;) 
.... .... .... 

by V g(I )(1-cos ki
0

) , and doing the integration over the angles, 

we find 

-+ ... 0() t ... i t 
¢(k,w)=f(k) J dtiJ f'(t')dt'l g* (k,t)e w 

s 

(45) 

0 0 

where 

.... ~ ... .... ....... 
sinki coski sinki 

... 0 0 0 
£( k ) = 1 - 3 ------ - 6 - .... "<'"'"":" ... -- + 6 ---, .... :-::;_.:---, 

Ih~ ( k I 0 )
2 

( k I 0 ) ' 
(46) 

is the result of the angular integration of the function (1-cos ki: ). 

Analogously, we transform the expression for the disper-... 
sian relation w (k) obtained in the quasicrystal approximation: 
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_.-+ 
2 ,.. n (Vk) 2 

-+ -+ -+-+ -+ 
w (k)=- f V(r)g(r)(l-coskr)dr = m k2 

(47) 

-+ n-+ -+-+ 
=£(()- f V 2 V(i")g(r)dr. 

3m 

It was shown in ref.f
2

/ that the latter approximation does 

not lead to any sub!;tantial errors within a broad range of values 

of wave vector k , We define the reduced memory function y (t) 

r<t> =- r<t>; r<o>=_n_ JVV ;<;>g(i}dt. (48) 
r(o) 3m 

Taking account of the equations (41), (45), (47) and (48) 

yields, finally, the expression for the dynamic structure factor 

in the form 

-+ k2 g* (lt,w) 
I' (49) S(k,w)= Rei s 

... ... 
m11{3w 2 1 + w 2 (k ) Q (k, w ) 

where 

-+ 00 t ... tw t 
Q(k,w)= f dt If y(t')dt'lg* (k,t)e (50) 

8 
0 0 
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The denominator in formula (49), which determines the posi­

tion and width of the quasiphonons peaks of the scattering func­

tion, is in conformity as regards form with the der ominator in the 

expression for S (k, w) obtained in ref./
2

/. However, contrary to 
... 

the case in formula ( 4 9), the function Q ( k ,w) is dE ~fined as 

... -> 1w t 
Q(k,w)= r dttgs(k,t)e (51) 

0 

what corresponds to substituting the memory funct on y (t ) 

by unity, This exchange in Eq, (42) for the function K ( t) leads to 

a solution of the form cos w t , i.e, to the autocor1·elation function 

of a harmonic oscillator without attenuation. We may say that 

whereas in ref/
2

/ the atoms of the liquid are con;idered as diffund­

ing non-attenuated oscillators, in this work account is also taken of 

the attenuation of these oscillators. 

Formula (49) allows us to calculate the dynctmic structure 

factor and evaluate the lifetime of cooperative exdtations, Nume­

rical calculations were made for argon at :,.. tempE·rature of 85, 9°K. 
... 

The function g: ( k, t ) -was taken in the Gaussian approximation, 

k2 
-> --a(t) 

g* (k,t)=e 4 
8 

(52) 

The function of the root mean square displc.cement of t:l'E 

equilibrium position w (k) -was chosen in the forn (26). The func­

tion w ( k) obtained in ref./
4

/ -was used as the dis oersion relation. 
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The results of calculations of S (k, w) for values of the 

parameter D * = -} D are shown in Fig, 1. When the parameter 

D* is decrea~;ed, the quasiphonon peaks become more clear-

cut, going over at the limit D*-+ 0 into o -like singularities 

of the ordinary quasicrystal model, An in reverse - when D* is 

increased, the J:>eaks become diffused at all values of wave num­

ber k 

5, Discussion 

The derived dynamic structure factor S(k-+ ,w) features the 

following peculiarities.At values of wave number k of the order 
0 1 -+ 

of lA- the fun:::tion S(k, w) has a clear-cut maximum which is 

proof that coopet·ative excitations of the phonon or zero sound 

type appear in the system, When k grows, these excitations 

become attenuate:!, This conclusion is in agreement with the re­

sults of the studies by Habbard and Beeb/
2
(when k-+ 0 decreases, 

the zero sound b also attenuated, while the width of the phonon 

peak, defined in ·ef/
2

/, becomes smaller when k-+ 0. The attenu­

ation of the zero sound, what represents the cooperation of the 

independent particle excitations, was assigned to the disturbance 

of the vibration c ::>herency of the atoms of the liquid at low fre­

quencies because of diffusional motion, In the low frequency range 

there may be hyd ·adynamic excitations, with which we are not 

dealing with in this paper, 

In their work, Habbard and Beeby/2/ state that the theory 

they developed ur.derrates quasiphonon attenuation caused by the 

chaotic motion of ·he atoms of the liquid, In the approach pre­

sented here, this attenuation is apparantly overrated, for a fitted 
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parameter D* has to be i::1.trcxiuced. The diffusion cc>efficient of 

the equilibrium position should, according to physical intuition, 

be close to the diffusion coefficient D , since W:thin long 

times the difference between the motion of the equilibrium position 

of a particle and it itself is insignificant. The necesl;ity of intrcxiuc­

ing the parameter D*< D is connected with the fact that quasi­

phonon attenuation arises not so much because of the behaviour 

of the time correlation functions over long times as over times 

comparable with the pericxi of atomic vibrations relative to the 

equilibrium position. Namely, in this time interval the microscopic 

behaviour of the particle must be described very accurately, 

whereas here the suggested approach is found to be only a rough 

approximation. It is plausible to give a mcxiel of the function 

for example, by assuming the following relations: 

6D*l!-r ) r* > t > r 
0 0 

I 6D (t-r ) t > T * (53) 
a ( t) = 0 

0 t < T 
0 

Here, yet another parameter, r* , is introduced, b~t the correct 

behaviour of the correlation function g* ( k, t )at t.., oo is ensured. 
s 

The qualitative behaviour of the function S ( 17, w ) re nains like that 
-+ 

presented earlier. It is necessary to note also that S(k, w) , being 

a function of w is proportional to I/ w2 at smaU w • Thus, 

the known sum rule, 

-+ 

f S(k,w) dw= S(k ), (54) 
-00 
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where S (k) is. the structure factor, is not satisfied. This is asso-

ciated with thE! approximation (12), which is not true when w < 

< 3x1o
13

sec-:., when the period of atomic vibrations relative ;;, 
"' 
the equilibriurr position is of the order of the delay time. For 

the sum rule (54) to be fulfilled, a theory is needed which would 

take in the entire frequency range of cooperative excitations in 

a liquid. The <iifficulties which are encountered in attempts to 

develop such :1. theory are primarily associated with the complex 

character of fr 1e cooperative motions in the transitory region. 

In conch.. sion, the author takes the pleasure of thanking 

N.M. Plakida fc r helpful discussions. 
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