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I. Introduction

The dynamic properties of a classical liciuid may be described
relatively simply in two extreme cases. The first is when the con-
sidered perturbations are slowly variable in tirne and space, and
the other, opposite case, is when the times claracterizing the
investigated processes are of the order of the period of atomic
thermal vibrations. In the first case ordinary Frydrodynamics is
applicable, whereas in the second use is mad2 of many different
quasicrystal models based on the similarities between liquids and
crystals/ 1—4/. The applicability of hydrodynamics is limited by the
condition that there is local equilibrium in regions which are small
compared with the wavelength, This is why classical hydrodyna-
mics must be replaced by relaxational hydrodynamics already in
the ultrasonic region, the latter taking accoun. of the frequency
dependence of the kinetic coefficients 5_6/. In “he very high fre-
quency range ( o= 10'' to 10" Hz ) the tydrodynamic descrip-
tion cannot be applied. It should be said here that attempts have
been made recently to extend hydrodynamics to the range of high

frequencies and wavelengths comparable with atomic distance/ ‘ .

These attempts, however, are intended to provide a model of



correlation functions rather than to give a microscopic descrip-
tion of a liquid, Th= applicability of the quasicrystal models is al-
so limited, but from the low frequency side.

With respect o perturbations of a frequency of the order of
1013 sec and more a liquid behaves like a solid, The diffusional
displacement within a time of 10_13 sec is small and may be neglec-
ted, This circumstaice constitutes the basis of most quasicrystal
models, At frequencies o < 1012 Hz , when the period of the
investigated density oscillations is of the same order as the
characteristic time o>f diffusional displacement, the quasicrystal
model approximation is very coarse, Thus, there is a rather broad
interval of frequencies and wavelengths, known as the transitory
region, where neitrer the hydrodynamic, nor the quasicrystal
approaches are wvalid,

Note should be made of the (jualitative difference between
perturbations of the liquid in the hydrodynamic region and those
in the region where quasicrystal models are applicable. Hydrody
namics treats coope rative excitations, which together represent
a macriscopic charge in density. Here, the microscopic properties
of the system only determine the kinetic coefficients, and it is
not possible to examine an atom by itself, On the other hand,
within the framewcrk of a quasicrystal model coopemtive excita-
tions having a wavelength of the order of interatomic spacing
are examined, Cooperative excitations in this region can be said
to be the resultant of the vibrations of the individual atoms., These
vibrations are synchronized in such a way that they depict a den-
sity wave, Such perturbations are analogous to phonons in crys-
tals, the only difference being that in crystals there is space sym-

metry, whereas in 4 liquid there is none, Perturbations of the



phonon type in liquids are commonly known as quasiphonons, but
sometimes the term "zero sound" is used. The latter term is adop-
ted from the quantum theory of liquids, We shall be dealing here
with cooperative excitations of the second kind so the notion of
quasiphonons is somewhat more appropriate in our case., The intro-
duction of phonons in the crystalline lattice theory is a convenient
way of describing atomic displacement, In a liqid, however, quasi-
phonons give only an approximate picture of the complex character
of atomic displacements. This is why the definiion of quasiphonons
in terms of atomic displacements is quite intricate, The natural way
of defining quasiphonons is linked with the interpretation of experi-
mental data from inelastic scattering of slow neutrons in liquids.
Such experiments show that in the distribution of coherently scatte-
red neutrons there are singularities similar to phonon peaks in the
case of crystals, Thus, it is convenient to define quasiphonons as
singularities of the scattering function S(k*,w)/gl.

Quasiphonons, like phonons, are characterized by the dis-
persion relation w(l?) and lifetime r ., The function w(k*) has
been found exper‘imental.b/g/ and theoreﬁcaﬂ3/1_4/, and for a num-
ber of liquids its behaviour is known, qualitatively at least. The
value of lifetime r and especially its dependerce on frequency
is known much less accurately. At high frequencies quasiphonons
can be computed quite well from definite excitations, what agrees
excellently with neutron scattering experiments, When the frequency
approaches the transitory region the lifetime of he quasiphonons
should become shortened due to the increased role of diffusion,

In the transitory region the zero sound waves should be strongly
attenuated and, finally, in the hydrodynamic region ordinary sound

propagate in the liquid instead of zero sound, Despite the fact



that this picture seems to be quite natural, it has not yet been corro-
borated theoretically. And so, the study/ 2/ partially takes account

of quasiphonon attenuation due to diffusion. It was found that with
decreasing frequency the lifetime r grows continuously right up

to the applicability limits of the model used. Taking account of
quasiphonon decayr due to anharmonicity also does not appear to
provide the requirzs dependence of r on o , for from the theory

of anharmonic crystals we know that at low frequencies r= —1
(3]

In this paper we present a mechanism of quasiphonon attenua-
tion which leads t> their disappearance in the transitory region,
The model is described in detail in Sec, 3., We shall only note
here that its rang«e of applicability is not wider than that of other
quasicrystal models, that of Habbard/z/. However, in contradistinc-
tion to the results of ref./z/, in our approach the lifetime of
quasiphonons at small ® becomes shortened with decreasing o .
In Sec. 2 the genzral formulae for the scattering function S (K, o)
are given, The derivation of S(k, &) is given in Sect. 3,4 and 5,

while Sect, 6 presients the results obtained,

2. Dynamic Structure Factor S(k, w)

The two~differential neutron scattering cross section for
a liquid is determned from the momenta of incident and scattered
neutrons l:, ancl l:z, the cross section for the interaction of
neutrons with target nuclei o, and a factor which depends only on the
properties of the liquid, namely, the dynamic structure factor. The
cross section for coherent neutron scattering with a momentum
change of k and energy change of hw can be written in the

form



dao' y k1 >
{ e——— } =—41”— o S(k,w), (1)

do dQ coh kz coh

where S(l:,a)) is the dynamic structure factor, othe-wise known as
scattering function, introduced by Van Hove 8/ . As had been men-
tioned in the Introduction the properties of cooperative excitations
are determined by singularities of the function S(k,»); hence, our
first task is to derive this function. Coherent neutiron scattering is
conditioned by scattering on density fluctuations, 7“herefore, there
is a straight relatioship between the dynamic structure factors and

the time-dependent correlation density function,

S(l:,a))=—l—- fdte“‘“<n(l?,t)n(—k,0)> . (2)
2zN
Here,
n(k,t)= 5 e'FTilY (3

is the Fourier component of the density of the paricles, T ()
is the radius vector of particle i at instant t |, and N is the
number of particles in the system,

When solving dynamic problems it is more ccnvenient to cal-
culate not the correlation function <n(l:,t) n(—_l;,t)i> but the func-
tion of the response of the system to external perturbation. If a weak

external field,
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lkr—-iwt

Vext =Ue (4)

acts on the system, then the change in particle density due to
this field can be found by means of formulae of the linear respon-
se theory, (

~lwt

<8n(;,t)>=x6(,m)Ue , (5)

where x (k, ») is the complex susceptibility. The imaginary part
of the function x(l:, o) is called simply susceptibility, and is
defined by the mean value of the density operators in the follow-

ing manner:

Imy (K, 0)=x “k,o)= ﬁ— [dtdet <[n(k,t),n(-k0)>> (6)

The symbol <[...]> denotes the mean value of the commutator
taken over the uiperturbed ensemble, The relationship between

the correlation function <n(l:, t) n(—l:,O)> and the commutator corre-
lation function <[n(l:,t) n(—E,O)]> is established by the fluctuation-

/2]

and/6/ it is possible to link up the dynamic structure factor with

dissipation theorem. With the help of this theorem and formulae

susceptibility x"(l:, ®). In the classical approximation this rela-

tionship has the form



> X"(ﬁ,w)
S(k, w) = ———o (?)

nfro

where n is the mean density of particles = le ,T being tem-
B
perature and kg the Boltzman constant.
Using formulae/5/ and/7/ we get
R 1 <8n(k,t)> i <sn(k, t)>
Stk,w) = Im{ ( }= Im{ ————-——(—--—————— (®
nfrw Ue—iwt nBrow? Ue-tot

This last expression for the dynamic structure factor will prove
>
to be convenient in the following, Calculation of S(k,0) is brought
~>
down to calculation of the mean value of the quantity <&n(k,t)> .

Subsequent calculations call for considerations based on models.,

3. Relaxational Model of Quasiphoron Attenuation

The model which we shall use here is ktased above all on
the possibility of separating the displacement of the atoms of the
liquid into vibrational and diffusional displacem=nts and the assump-
tion that the correlation between them is small, In accordance with
the basic assumptions of the model we shall vrite the radius vector

?1( t) in the form ﬁl(t)+ﬁ,(t), where l_i,(t) is the particle’s
equilibrium position vector, which is slowly variable in time, and

ﬁ,(t) is the displacement of the particle relative to this equilib-



rium position. Here, contrary to the slandard quasicrystal model,
the equilibrium position of atoms are assumed to be time depen-
dent, This kind of approximation was used in ref./2/ when dealing with
a norn-stationary dizordered system, Other assumptions concern the
diffusion mechanism, We shall assume that a weak external field
may bring about a change in density due to vibrational motions,

but does not affect the diffusional movements of the particles, Phy-
sically speaking, this is associated with the jump mechanism of
diffusion, i.e, the ejuilibrium position of an atom remains stationary
until a vacancy agpears in its nearest neighbourhood,

We shall try to find the relationship between the diffusional
and vibrational dis»slacements in the following manner, Let us consi-
der the distribution of particles relative to a certain chosen particle.
If the chosen parti:le is at rest, then the equilibrium distribution of
the particles surrounding it is described by an even correlation
function g(r).When the chosen particle is displaced by a \.fector
then the distribution of the surrounding particles changes by the
value 6 g(r) a . We shall assume that diffusional displacement
is what causes the relaxation of this perturbation, The above listed
assumptions requir> some more elaboration, It will be convenient
to do this later on. Now, we proceed to the calculation of the quan-
tity <on(k,t)>.
f3/

In accordanc > with definition we have

-y > > > > >
...11(R1+ ul) —lkR! _lkRI

8n(k,t)=%(e —e ):-—ikxEule . (9)

In this equation we assume that the displacement of the particles,

u, , due to the e:xternal field of Eq, (4) is small, Differentiation

10



of eq. (9) with respect to time and averaging ove- all configura-
tions {R (t)} vields

=d > > —lfﬂ-’l
<sh(k,t)>=-i I (ki )e > -
i

(10)

Let us compare the correlation functions in the rizht-hand side of
Eq. (10). By assumption we have u, > I.{,. Beside:s this, we assu-
med the smallness of the correlation between the vibrational dis-
placements o , (1) and the diffusional displacemernts of the same
particle, ﬁl(t)At.Hence, we get the inequality

> KR

.
5 3
<i e t> > <d (kR )e

and may drop the second term in Eq. (10). We iniroduce the new

variable

> >
ilwt—-1ik R,
>

£ =i (1) — . (11)

and write Eq. (10) in the form

<55(k,t)>=-ii§§<£i(t)>Ue‘”"' . (12)

11



Thus, by virtue >t Eqgs. (7), (3) and (12), the expression for the
dynamic structure factor becomes

>

> k g
S(k,m)=mlm%<fi(t)> . (13)

Let us noticze that the mean value <¢, > does not depend
on the index of the particle because of the homogeneity of the
system, Therefore, it is sufficient to consider the behaviour of
a single chosen particle, the coordinates of which will be labelled
by the subscript 7 07.

We write the equation of motion of our chosen particle in the

form

-+

> > 1kR,~lot

W, (t) ==n [dTV V(£ -T)p(r,t)~iUk e . (19)

The last term in Eq, (14) appears because the external field is
present, The furction p(;,t) denotes the averaged distribution
of the particles surrounding the chosen one at the instant t
The exchange o’ the summation over particle coordinates in the
equation of motion by integration with the dis’;ribution function
is an approximalion analogous to the self-consistent field approxi-
mation,

We note here some remarks regarding the behaviour of the
function p (', t). The equilibrium distribution Py (T,t) in the absence
of external fielc! is described by a simple even correlation func-

tion g(r) ,

12




po (T, ) =g (5, (1) =1). (15)

The development of the distribution function with the time is cau-
sed by the displacement of the chosen particle, the action of the
external field, and relaxation due to the motion of the surrounding
particles, The rate of the vibrational motion is. much greater than
that of diffusional motion. It is plausible, therefore, to assume that
the vibrational "subsystem" reaches equilibriunn with the external

field much faster than the diffusional one, We denote the relaxa-

tion times in the vibrational and diffusional "s.bsystems" by 7
and 7, , respectively. Let the distribution function of the partic-
les surrounding our chosen one be p(r,0) =I'[(-r'(0)-r-'), 0]
at the instant when the external field, Eq. (4), is switched on.
Then after a time t , satisfying the condition T, > t > T
the distribution function looks as |

p(Fr6)=F LR, (t) +uy(t)=F—u, (t)cos E(Ry(t =1)}, ¢t 1. (16)

Hence, there takes place a slow relaxation process with the charac-

teristic time r_ leading to the function

> o

glR (t)+u (t)-F-a (t)cosk(R (t)- )], (17)

The function u (t) in expressions (16) and (17) should be defined
self-consistently with the use of Eq. (14).

13



We shall now check the corrections of the assertions made
above in the case of a quasicrystal model, In such model the
equilibrium position of the oscillating atoms, ﬁi , is assumed to
motionless and distributed according to the even function g(? ) .
This kind of assumption corresponds to the neglection of the expli-
cit time dependence of the function on the right-hand side of
Eq. (16) and the pcstulation of expression (17) as the distribution
function p (T,t). Ind2ed, expanding function (17) into a series
with respect to the displacement and taking only the first two terms

of the expansion

p(L,t) = g(ﬁo-i. +Vg(R,~1) ;o(t)(l—oosk(Ro-i’)) +oens

yields with the use of Eq. (14) the expression for the frequency
of longitudinal vibrations in the quasicrystal model,

.

mZ(E')=n1(—l-‘k—v—)2V(?)g(?)(l—msﬁ’:*)d?. (18)

We shall now try tc improve the quasicrystal approximation by
taking account of tke explicit time dependence of the function
F(?, t) due to diffusional motion., In other words, we shall
consider the relaxalion of the distribution function towards the
form (17). For this purpose, we must have a formula for the func-
tion p(:,t). It is a very complicated task to derive the kinetic
equation for a liquic; therefore, we shall use the approximate
method of Singwi ard Sjdlander [10f . A brief outline of this met-
hod, without entering into details, is given in the following sec-

tion,

14
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tion,
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4, The Singwi and Sjdlander Mettiod

Let f(;,i;,t) be an independent particle distribution function
of the atoms surrounding our chosen particle, whareas fy(x,p, t)
its equilibrium value, The time dependence of this function is due
to the motion of the chosen atom, as in Eqgs. (1£) and (16) of the
preceding section. We assume that we can separate the coordinate
and momentum dependence of the equilibrium dist-ibution function

and write

£, (x,p,t) = £(p) £, [x (t)-xI, (19)

where fo(l;) is the Maxwellian distribution with respect to momenta.

The simplest kinetic equation for the functicn f(x,p,t) is

af t*rt g -»> > f(;’l;’t)_f(;’l;at)
(x.p.t) + vV f(x,p,t)= 0 .
Jt T

(20)

and corresponds to a gas of non-interacting particles which are
placed in the field of the chosen atom, The soluion to Eq., (20)
is found by means of the Laplace transformation and has the
form
> 3, > ,
£ ) = E(Rap ) s [ AV [dR71 S I
—o0 2n)
=t (21)

xe MV ET(E) %] (t) .

15



where D is the diffusion coefficient. The methcd of Singwiand
Sjolander consists in the use of the functional form (22) of the
expression from p(X,t) for describing the density of the particles
surrounding the chosen one in a liquid, but the "gaseous" correla-
tion function gos(;,t) is replaced by a more complex form,
g(;,t,_i’v,t’ | X 0) . The latter correlation function 'g ives the probability
that a particle which is at point x° at instant t° will move
to point x within time t—-t’, assuming the condition that the
chosen particle is found at point x; at the instant t . We shall
not write out any concrete expression for this function, but use
the results of ref./lo/ in our numerical calculations.

We shall now employ the described methoil to our problem,
In accordance with formula (17), we write the ejuilibrium distribu-

tion (19) in the form

£ (4,5,t)= £o () gl R,y (t)+ &, (£)=F=a (t)cos k(R ()-F1. (25)

The distribution function written in the form (25) means that its
dependence on time is already taken into account, That is, there
remains to account for the time dependence of ¢ (r,t) due to diffu-
sional motion, We assume that for this purpose it is possible to
make use of the function form (22) and only an appropriate corre-
lation function g(i’,t,§',t'|ﬁo(t)) has to be found. Singling out the
effects caused by diffusion is facilitated by the fact that the func-
tion g(;,t, ;', t”’ lﬁo(t)) is in the end expressed by the corre-

/10/

Gaussian approximation by the root mean square displacement

lation function gs(;,t) . The latter function is expressed in

-
a(t) =< rz(t)>.Therefore, if we assume the root mean square dis-

placelemt of the equilibrium position in the form

17



6D*(t—r ) t>r
0 0

a(t)- (26)

characteristic of diffusional displacement, the function
g(;,t,;’, t’|R o(t)) will ensure the development of a dustribu-
tion function in tirne due to diffusion, 7 in Eq. (26) denotes
the time of "delay" or "settled life" of the atom in the given equilib-
rium position. Let us note that the introduced diffusion coefficient
of the equilibrium position D* is not, generally speaking, equal
to the experimentelly measured self-diffusion coefficient. In the
following it is corsidered as a parameter,

Earlier, we assumed that an external field does not affect
the mechanism of diffusion, Indeed, that is why we use the solution

20/

fact that the external field (4) does act on the system,

of the kinetic equation without external field, disregarding the

Substitution of the expression (25) into formula (22) yields

the following sequence with respect to displacements:

t—t”
T

p(r,t)=g(r,t)+ ;dt’fd;e_

g:(x—x ,t=t7) x
(27)

x Vg [Ry(t") % "1[1 —cos k(R (t)—T)lu,(t).

Here, as when deriving, Eq, (9), we assume that do >> Ro .

18




In accord with ref./ 10/ we substitute the function gg by g(x,t,
xt'| x,) . Defining the effective potential/ 10/ as

6’6[&’0“)-;', t-t']= [ V VIR, ()-X)g (X, t, %, t'|R (t)) d% (28)

and the effective even distribution function as

Py - - -» - 5> > hd
VIR ()-%1= VgIR (t)-%1(1-cos K(R (t)-x)) (29)

we get from Egs.'(14), (25), (28) and (29) the final equation of
motion of the chosen particle in the form

2 ¢ t—t’
- m——— = o>

d nd ’ T -'r_’ ’ ’
m-——d—-—t?-uo(t)=-n [dt'e fdx*V VIR (t)-x",t—t"]x

(30)

- -»>

x 3E[x'-ko(t’)]h°(t)-iufe

>
HER (t)~wt)

5. Solution of the Equation of Motion

We calculate the mean value <¢ > by mears of Eq, (30).
After integrating both parts over time, Eq. (30), with account
taken of Eq. (11), takes the form

19
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> t t
mf (t)= [ dt’ [dt7exp (-

- 00 - 00

—t 5 o > >
—_—) [ dx’V V[Ro(t')—x’,t'—t"]x

T

(31)

~ > A= (] wi-t” ' ”-»1:[1-{ W)-R. )] 1wt
ng[)‘!'—Ro(t Ye o 00" e é"(t - j’dt1ke 0 0 e

The integral equation obtained thus may be solved by iteration. Taking
the average of he iteration series for { o for all possible confi-

gurations {R,(t)} yields

o ”, g ,
5 1K[R (t1=R ()]  ielt—t")
0 0 e

t
<€ (t):-=-—tl;--< [ dt’ike

[y t ¢’ ’r t’ -t 1-’= e N 2, V2
+——< [ dt’' [ «t”exp(————)[dx"V VIR (t )=x’t" =t ] x (32)
m2 _.  _. r
7’ e PP A= ’7; s -
s, R (t-R(0] toi-t)t » ([RED-R (7] to(t=t])
x Vglx“-R (t")]e ° o e [ dty ike e >+,

The mean values in this expression are time independent. The first
term on the right-hand side is by definition the Fourier presen~
tation of the correlation function g szt )/ or to be more, exact,
the function 6 (t) gs(i’,t),where 6(t)=1 when t>0 and 0(t)=0
when t<0/:

20




™ - 1k[R(t’)— (ty ] 1o (t—t7)
ik *(ko)~—1—<fdt oo e’ > (33)

— 00

The function g ( ;,t) is the probabilitvy of the equilibrium center
becoming displaced by the wvector ; within time t .

We transform the second term on the righ-~hand side
of Eq. (32) going over to the Fourier presentati »n of the func-

tions V(R(t)-—x) and g(R (t)-x):

;/

——fdt f dt"fdt exp(-
m?

-0 -0 -

,f’ dq_’ dq* > y Do P
) fdx’ [[—— —1 2 g« V[q‘,tf—t lg(g)
2 @rn)® t 2 : 2

(34)

> 2L, S, P L, 2 e, 2,
4t s 1g[R (t)=27 1g 2 =R (t™)] k[R (t"1-R _(t1] [R_(t 3R (t"}]
xe' @ TN e 1T 0 e 2 0 e O 0" e 0 0 >,

To obtain a closed expression for <§¢ > w~ve must resolve
the complex correlation function in Eq. (34). Aftor integrating over

’

x’ and q this function becomes

> r> ’ > 72 nd dind 7 nd ’r
g [R (1= R (] 1k[H(t )R o (] te[ R (¢ =R (]

<e € € > .

(35)

The accepted assumption consists in putting the mean value
of the product of exponents (35) in the form of tne product of the

mean values of the exponential factors, viz.,

21



>r2 - A >r> sy > 2r2 , L
1q [Ry(t)=F(t™] 1c[R, (t")-R ()] ik[R_(t")~R,(t™)]
<e V° W e ° 0 ><e o Tt

(36)

sg’:(ql,t'—t”)g: (k, t7-t)g% (k,t; -t’),

Before we define the limits of applicability of this approxi-
mation, let us note that the coordinate factors in Eqs. (35) and
(36) are displacemsznts of the equilibrium position of the particle
within times (t’-t”: , (t”-t) and (t|,-t”). The approximation of
Eq. (36) is equivalant to neglection of the correlation between
these displacements of the particle, We now introduce the variables
n =(t'-t") , r ={(t-t ) and r3=(t'l—t”) and consider the

range of values of these wvariables G in which at least one of

the following inequilities is satisfied: ]rl--r2 I<ry | T 5)| <1y s
and "z"al <r, . Here, 71 is the delay time. We denote the
displacement of the equilibrium position within time r by pf{r).

Outside the region G the displacements of the equilibrium posi-
tion are weakly cor-related because of the chaotic character of
the diffusional dispiacements, Therefore, we may write in approxi-

mation

. . . (37)
<p(1'l )p(r’)>=0(i,j=1,2,3;ir4]')

22




and the mean value of the product of exponents becomes divided
into the product of mean wvalues, In the region G the equations
(37) are not fulfilled, Therefore, in order to have the approxima-
tion satisfied it is necessary for the characteristic dimensions

of the region G -1, to be much smaller than the region of
integration. The dimensions of the latter are determined by the

presence of the attenuating exponential factor of tre type gttk,t)=

>

2

~exp [~ a*(t)], where a*(t) is the root mean square displa-

cement of the equilibrium center within time t |, DJirect calcula-
tion shows that at the considered values of wave number k the
dimensions of the region of integration are much larger than the
delay time,

The other correlation functions appearing in the subsequent
terms of the series (32) are resolved in the same way as the
function (35) by successively singling out the autocorrelation func-
tions g*S (K,t). As a result, from Eq. (32) we ge:

2 i

< > ==
0 m

l?g* (l:,a) )+-—i- lt_’g"‘(lr,a))(;f)(k,a))--——l—l_;g?k (kf())¢2(l:,m) + .
ps m? m?3 s

The following notation is introduced here

> t t t—t” dq  kq 2= - )
é(k,w)=n [ dt’ [ dt” exp( - ) et (2L Cy[qt -t ] x
— 00 - 00 T (277)3 k ’

Tw(t—-t"")

x g(d) g (q,t’-t”) g*(k,t”"-t)e
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The series (28), being a geometrical progression, can be written

in the form

<§0>=—-—ﬂ(—g*(k,m)———-}——;—— . (40)
m 1+¢ (ko)

The expression for the dynamic structure factor which takes

account of the relations (13) and (40) becomes

R ;2 g: (l:,co)
S(3,0) = ——— Rel—2 1}, .
R 1+¢(K,0) (41)

Further on, calculations are associated with finding the
form of the fur.ction ¢>(l:, ). We shall show that the function
¢>(l:,w) can be expressed by the memory function ' (t) and the
harmonic frequency of a quasiphonon calculated in the quasicrys-
tal approximation, The memory function is determined from the

integro-differen:ial equation for the wvelocity autocorrelation func-

tion K(t) =<v(t) v(0)> , i.e,,

t
—Elt— K(t)=~ [ T(t-t)K(t")dt". (42)
C s}

In ref./lo/ the following expression for I' (t) was obtained:

I(t) =exp(_—:--)—31‘“T [gFR)IVEV(E-%7, t)g (X7, t)dxdi" . (43)
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Let us change in formula (39) the order of integration over
t* and t” , and perform the reverse Fourier ransformation

of the functions {/[i,t] , gld] and g* (kt) . We obtain

g ot t n = » g€ =, - PO t’ -+ (%4)'
dk,0)= [ dt [dt'— [g(x)( " )ZV(x—x’,t')g"‘s(x’,t’)dxdx’] exp(——r—-)g*(k,t)e wt,
0 0 m

We now take advantage of the circumstancz= that the integ-
rand in Eq. (44) as a function of x has a sharp maxima at va-
lues of the argument approaching the radius of the solid spherer,

in the interatomic potential. Exchanging the function V*g(r) (l—cosl?;)

by eg(:)(l—cos l?::) , and doing the integration over the angles,
we find
- 5 [ t -5
¢ (k,w)=1f(k) [ dtif [ (")dt"} g* (k,t)e'®! (45)
0 0
where
. sm_l;; cos_i< ;0 sin l::o
ftk)=1-3 o — 6~ +6 —5——— _ 46
r (kr )? (kr )’ (46)

is the result of the angular integration of the function (1-cos kt-; ).
Analogously, we transform the expression for the disper-

sion relation w(k) obtained in the quasicrystal approximation:
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—>"2
wz(ﬁ)=-%f (kaz) V(r)g(f)(1-coskr)dr =
(47)
- £(3) 2 [ VIV()g()dr.
3Im
/2]

It was shown in ref, that the latter approximation does

not lead to any substantial errors within a broad range of values

of wave vector k , We define the reduced memory function y (t)
l—‘ t -’-’,., > -
y(t)=-—(—); re)=-8— (VV,@)gE)dr. (48)
') 3m

Taking account of the equations (41), (45), (47) and (48)
vields, finally, the expression for the dynamic structure factor

in the form

- g * (K,0)
S(K @) = —— o Ref ——o2 1y (49)
mz B o’ 1+w?(k)Q (ko)
where
- o0 t - fowt
Q(k,w)= [ dt [ y(t")dt ig* (k,t)e . (50)
0 0
26
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The denominator in formula (49), which deterinines the posi-
tion and width of the quasiphonons peaks of the scattering func-
tion, is in conformity as regards form with the der ominator in the

/2]

the case in formula (49), the function Q(k,») is defined as

N v
expression for S(k,®) obtained in ref.’”, However, contrary to

oo

Q(E,w)= [ dt tga(li',t)e“‘” (51)
0

what corresponds to substituting the memory functon y(t)

by unity. This exchange in Eq. (42) for the function K (t) leads to

a solution of the form cosot, i.e, to the autocorrelation function

of a harmonic oscillator without attenuation, We may say that
whereas in ref./z/ the atoms of the liquid are considered as diffund-
ing non-attenuated oscillators, in this work accourit is also taken of
the attenuation of these oscillators.

Formula (49) allows us to calculate the dynamic structure
factor and evaluate the lifetime of cooperative excitations, Nume-
rical calculations were made for argon at w temperature of 85.90K.
The function g’: (l.{.,t) was taken in the Gaussian approximation,

‘k’Z
-—a(t)

* > 4
g, k,t)=e . (52)
The function of the root mean square displecement of the

equilibrium position o (k) was chosen in the forr1 (26). The func-

tion o ( I;) obtained in ref./4/ was used as the disosersion relation,
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The resulls of calculations of S(l:,a)) for values of the
parameter D *= —;—-—D are shown in Fig, 1. When the parameter
D* is decreas;ed, the quasiphonon peaks become more clear-
cut, going over at the limit D*-0 into § -like singularities
of the ordinary quasicrystal model, An in reverse - when D* is
increased, the peaks become diffused at all values of wave num-

ber k .

5, Discussion

The derived dynamic structure factor S(k-.,a)) features the
following peculiarities. At values ofn wave number k of the order
of 12'1 the function S(l?, ) has a clear-cut maximum which is
proof that cooperative excitations of the phonon or zero sound
type appear in the system. When k grows, these excitations
become attenuatel, This conclusion is in agreement with the re-
sults of the studies by Habbard and Beeby/ZZWhen k + 0 decreases,
the zero sound is also attenuated, while the width of the phonon
peak, defined in ~ef./ 2/ , becomes smaller when k » 0. The attenu-
ation of the zero sound, what represents the cooperation of the
independent particle excitations, was assigned to the disturbance
of the vibration csherency of the atoms of the liquid at low fre-
quencies because of diffusional motion, In the low frequency range
there may be hydrodynamic excitations, with which we are not
dealing with in this paper,

In their worl; Habbard and Beeby/ 2/ state that the theory
they developed urderrates quasiphonon attenuation caused by the
chaotic motion of ‘he atoms of the liquid., In the approach pre~

sented here, this attenuation is apparantly overrated, for a fitted
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parameter D* has to be introduced, The diffusion coefficient of
the equilibrium position should, according to physical intuition,

be close to the diffusion coefficient D , since within long
times the difference between the motion of the equilibrium position
of a particle and it itself is insignificant, The necessity of introduc-
ing the parameter D*< D is connected with the fact that quasi-
phonon attenuation arises not so much because of the behaviour
of the time correlation functions over long times as over times
comparable with the period of atomic vibrations relative to the
equilibrium position, Namely, in this time interval the microscopic
behaviour of the particle must be described very accurately,
whereas here the suggested approach is found to be only a rough
approximation, It is plausible to give a model of the function

for example, by assuming the following relations:

6D*‘(4qt—ro) E>t> 1
6D (t—r ) t>r*
0 t<r

Here, yet another parameter, r* , is introduced, but the correct
behaviour of the correlation function g";(l?, t)at t- o is ensured,
The qualitative behaviour of the function S(K, ») remains like that
presented earlier, It is necessary to note also that S(l:, ») , being
a function of « , is proportional to 1/ o at small o . Thus,

the known sum rule,

[ SR, w) dw=S(k), (54)

- 00

29




where S(l:) ie. the structure factor, is not satisfied.This is asso-
ciated with the approximation (12), which is not true when <

< 3x1013sec_:', when the period of atomic vibrations relative to
the equilibriur position is of the order of the delay time, For
the sum rule (54) to be fulfilled, a theory is needed which would
take in the enlire frequency range of cooperative excitations in
a liquid. The difficulties which are encountered in attempts to
develop such a theory are primarily associated with the complex

character of tre cooperative motions in the transitory region,

In conclusion, the author takes the pleasure of thanking
N.M, Plakida fcr helpful discussions.
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