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1. Introduction 

The process A I TT ➔ TT TT is one of the rare exceptional 

processes involving a spinning particle, the · description of which 

is particularly successful in the Veneziano mode/
1

•
2

/. In view of 

this success an extension to off-mass-shell values of the momenta. 

may also be attempted. The amplitude for th~ee (on-shell) pions 

· and the axial-vector current has been studied in a number of pa-
~ 4 ~ ~ pers ' ' • We want to mention in particular Suura's work' where 

coupling . of the axial-vector current to all the appropriate daughters 

of the TT - A I trajectory is ta.ken into account. As emphasized by 

Nath et a1/6/, the further extension of the amplitude to off-shell· 

momenta of one of the pions is not an easy task. In fact, the so

lution they present has a . pole at zerp axial-vector current momen

tum squared p 2 = 0 • This pole then invalidates the soft pion de

termination of the u term, too. 
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The soft pion result for the a term may be preserved impcis..: 

ing the condition, that the p
2

""0 residue should vanish ·at s =u =m
2
~ x/. 

However, the unphysical p 2 = 0 pole can be eliminated only for 

5 = u = m ;;. and, necessarily remains for other values of s and u • 

The origin of this pole is that the amplitude has to satisfy the 

PCAC equation for arbitrary values of the variables. 
A 

In this paper we obtain a model for the < 11 I Aµ a A ,\ I 11 > 

amplitude, which has all the good properties of off-shell Veneziano

type amplitudes - e.g. it has only the appropriate poles in all the· 

variables - and satisfies the PCAC equation exactly. Due to the 

proper pole structure of the amplitude the soft pion determination 

of the a term remains valid. The basis for this off-shell extension 

in two mass variables is the 

lar amplitudes/?' s/. Therefore 

successful off-shell extension of sca-

well as the 

from that of 

the <111 l A µa\ Al 11> amplitude as· 

a term we take from ref/
7 

/. Our approach is different· 
/9/ .. . . 

ref • , where only the lowest poles in the mass va-

riables. are taken into account. 

In Sect. 2 for convenience we review at fir.st kinematics, 

crossing relations, the off-shell 1111 ➔ 1111 amplitude arid write dowri 

the ·pcAC equation. Then· we show that the expression obtainable 

from the <11 I Aµ a \hi. A I 11 > · amplitude in the soft pion limit is'·· ne

cessarily transversal, provided the PCAC equation is satis~ed at 

the soft · 11 kinematics, too. Thus the current algebra ._ soft 11 

determination of the pion matrix element of the . isospin· current mo

del independently yields a transversa·l expression. In .. Sect.' 3 we 

- list the properties and outline the derivation of our model for the 

<11. l Aµ aA AA I 11'> amplitude. Sect. 4 contains. a disctission of 

the 11 . electromagnetic form factor obtained by the soft 11. me-

thod. The· expression for F (t) 
11 

is given in terms of some un.:.. 

x7 :g'or notations see Sect. 2. 
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known functions, which shows that the earlier derivations of 1:') t) 

in the Veneziano mode/
4

,
5

/ depend on arbitrary assumptions. We 

also ·give a proof that the Adler-Weisberger relation for the 1111 ➔ 1111 

amplitude ensures through the PCAC eq, model independently the 

correct normalization of F ( t) 
11 • Finally in Sect. 5 we discuss 

the amplitude A 111 ➔ 1111 off-shell in two pion masses, (keeping the 

A 1 momentum on the ·mass-shell). The final result of Sect. 3 is 

given in the Appendix. 

2. Preliminaries 

We define the off:-shell amplitudes as 

e j D 4 -lpx /L e . A n 

T ( . , ) = J d X e < 71 q' j I T ( a A (x )a A. A (0)) I 11 qi> (1) 
qpqk µ . 

i e j D 4 -lpx e A n 

T ( , )=ifd xe <11q'jjT(Aµ(x)aAA_(O))j 11qi>, (
2

) 
/L·qpqk -

where 1, J , n , e are isospin indices, q , p , q' , k denote the 

momenta, A/Le is the axial-vector current, 

The invariant decomposition of T µ is as follows 

T/L = pµT1 +k l 2 +(q+q'\ T3 (3) 

The isospin decomposition is 

i e j n 
T( )=8e8 A+8 Be B+8 Be C 'k I Jn lj n In j q p q (4) 

i e j n 
T ( )=8 e8 A +8 Be B + a Be c µ q p q 'k I Jn µ IJ n µ In J µ (5) 
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. where A /l = Pµ A I + 

hold. ~or .. B µ and 

ans of s = ( p + q ) 
2 

k /l A 
2 

+ ( q +q ') /l A 
3 

~nd similar. eqs. 

C /l • All the invariants are of · course functi-

( )
2 ( , 2 2 2 

, t = p - k , u = p-q . ) , p and k 

The crossing relations for the amplitude T ( 

well as e ➔ n crossing ) are: 

➔ j as 

A ( s, t , u, p 2 , k 2 ) "' C ( u , t , s , p. 2 
, k 2

) 

2 2 2 2 
B(s,t,u,p ,k )=B(u,t,s,p ,k) 

A ( s , t , u , p 2 
, k 2 

) = C ( u , t , s , k 
2
,. p 

2
) 

(6) 

( 
. 2 2 ) ( 2 2) B s, t, u, p , k = B u, t, s , k , p . 

If k 
2 

is on the mass shell (k
2 =m: ) also have ( i ➔ n crossing): 

C ( s , l , u, p 2 , m 2 ) ;,, B ( s , u, t ,p 2
, m 

2 
) , (6') 

77 Tf 

In case of T /l only i ➔ j crossing yields restrictions for 

the invariants, which are (suppressing the mass variables) as 

follows: 

A (s,t,u)=C (u,t,s) 
I ,2 I ,2 

A ( s , t, u) = -C (u , t, s ) 
3 3 (7) 

B (s ,t,u)=B (u;t,s) 
1,2 I ,2 

Il 
3 

( S , l, U ) = - B 
3 

( U , l , s ). . 
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On the k 2 mass shell ( k 
2 
= m: _) the following relations. ( i ➔ n 

crossing) are also valid for the residue of the invariants: 

. 1 
C 

1 
(s , t , u ) = B 

1 
( t , u , s ) + ? [ B 2 ( t, u , s ) + B3 ( t , u , s ) ] 

1 (7') 
C

2
(s,t,u)-=- 2 [B2 (t,u,s) +3B 3 (t,u,s)] 

C (s,t,u)=l.[B (t,u,s)-B (t,u,s)l. 
3 2 2 3 

Thus there are two independent amplitudes for T , and. six for T /l 

{we choose B I and· C 1 ). 

The amplitude · T we taken from ref_/
7 

/, thus 

2 4 3 ,2 1 2 2 1 2 2 
B =if m 2(2rr)a 13.r(-.-a(p))P(p)r(-

2
-a(k ))P(k )x 

77 77 0 2 

1 ~ 
x 2 _[V(t ,u)+ V(t,s)-V(u,s)] 

' 2 4 3 ,2 (1 2 2 1 2- 2 C =if m 2(211) a {3
0

T' - -a(p ))P(p) f'(-
2 

-a(k ,)P(k ). x (8) 
7777 2 . . 

x .!. [ V ( t , u ) + V ( ·u , s )- V ( t , s ) ] , 
2 

2 

where fJ o= 2 gpmr 

on, ( p ( 2 ) 4(211 ) 
6 

'P(p2) is an arbitrary non- singular functi-

m77 =1) ' 

y ( s, t ) = f' (1- a ( s)) r (1- a (t)) 

r (1- a (s) - a ( t )) 

is the p - f t rajector) 1.of,, with and a ( s) = ;t + a ' ( s - m: ) 

a slope a '= .!. ( m 2 _ m 2 )- t 
2 p 77 

• We have assumed that the 11-A 1 
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trajectory is given by a ( s)- i ; The eq. (6') is valid even for 

k 
2 

I, m: • T /l and T are connected by the PCAC eq. 

i r j n i r j n rn 
T( )=fT ( )-·I ( ,2 2 t) 

/l I q ' q ' ' 
qpq'k qpq'k 

(9) 

where 

f n 2 2 4 -lpx f ,\ n 

I (q',q ,t >=-ifd xo(xo)e <11q'jl[Ao(x),a A,\ (0)]l11qi> (9') 

is the a 
2 2 2 term ( q ' = q = m

11 
) 

Expressed in terms of the invariant amplitudes eq. (9) 

yields the following eqs. 

2 s+·u-2m; 
8 

u 
B p + B2 2 +B3 _:_-=B(s,t,u,p 2,k 2 )-B(m2 ,t,m 2 ,0,t) 

1 2 71 71 

2 s+u-2m; s-u 2 2 
Ctp +C2 -----+C3 -=C(s,t,u,p ,k) 

2 2 

(10a) 

(10b) 

(On the LHS we have suppressed the variables). Here we have 

assumed that the a term can be calculated from eq. ( 9) in the 
i r j n 

p/l ➔ 0 limit, setting rim P /lT ( 
p/,l➔ O /l 

) =0. 
q p q, k 

By a similar. procedure one can get the pion electromagnetic 

form factor the amplitude T /l 

i r j n m 

T /l ( ) =- £ r < 11 q, j I v (o) I 11 qi > • (11) q pq'O n m /l 

where V µ is the isospin current (we have used the usual current 

commutation rules) and the pion form factor F / t) is defined as 

8 

1 
i 

. : ·:.l .... ~ .... ., ·-
~ ·.•. ;1 .. j 

l 
l 

( 

'j 

ii 
.1 

· 1 : 

-I 
. 'f 

.. ) 

I 
\ i 

F 11 ( t) 
<11 q'i IV /lk (0)J 71 qj >=-i.t Ilk (q+q')µ 2(211 )

3 
(12 ) 

We want to point out 

versal expression (Le. eqs. 

· eq. ( 9) is satisfied for k /l =0 

that eq. (11) automatically yields a tram 

(11) and (12) are consistent) provided 

too. In fc:1.ct, T,, ( i r j : ) is · 
'. ,- q pq 0 

transversal, and has the isospin structure implied by eqs. (11) 

and (12), if at k
2 

=0 , t = p
2 

C ( m 2 , t , m 2 ) = B ·( m 2, t, m 2 ) = B ( m 2 , t , m 2 ) = 0. 
I 11 11 I 11 11 3 11 11 . (13) 

The thrid eq. follows from crossing symmetry (eq, (7)), while B 1 = 

=C 1 =0 follows from eqs. (10a), (10b), as the RHS of these eqs. 

are zero in this limit and B 2 ,3 , C 2 , 8/ are not singular. Thus the 

difficulty of re~/
5

/ -<11 IVµ I 11 > turns out to have a longitudir-.al 

component, too - appears, bes:ause the expression· for T g· iven 
• /l 

in this ref. is valid only on the mass-shell, satisfies the PCAC eq, 
2 2 

only at k = m 11 • 

We also want to emphasize that eq. ( 1Oa) obviously forces 

BI to have non Veneziano-type terms, too, as the second term 

on the RHS is clearly not · Veneziano. 

3. Model for the Amplitude with the Axial~Vector Current 

and an Off-Shell Pion 

At first we enumerate the properties we expect for the am

plitude T /l 

i) The invariant functions of T /l should have poles at the 

appropriate values of the Mandelstam variables and mass variables 

P 2 k2 
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ii) The residues of the poles in s , ( t, u) should be poly-

nomials in t , u ( s, u ; s, t ). 

iii) The crossing relations of eqs. (7) should be satisfied. 
• 2 

_iv ) The residues of the simultaneous k "" 

( TT mass or higher excited TT mass),
2 

p 
2 

= ( A 
1 

mass or higher ex-

cited A 1 mass) 
2 

poles should have the Veneziano form /
2

/ 

v) The PCAC equation (eq, (9)) should be valid. 

vi) The residue of the k
2 = m ! pole should satisfy eq. (7'). 

") . k2 2 vu The residue of the = m 17 pole should have the general 

form of ref/5/. 

viii) The s (t,u) channel 1=2 amplitudes should not have poles 

in s (t ,u ) {absence of exotic resonances off the mass-shell). 

ix) The leading trajec~ory should factorize (off-shell factoriza

tion). 

In order to construct an amplitude with the above properties 

generalizing the amplitude of ref/5/, in the spirit of ·ref/7 ,B/ we start 

with the following expressions 

2 ·4 a ,2 I 2 2-, 
B -,,if m 2(2TT) a {30 r(--a(k))P(k, x 

µ 11 1T 2 

r ( \ - a ( p 2 )) p ( p 2
) - r <-½ - a (0)) p (0) 

x{pµ 
p. 2 

I 
2x 

x [ B ( s , t )( I- a ( t )- a ( s )) +(s ...... u )- B (u, s) 0- a ( u):.. a (s )) ] + 

2 2 P µ P,\ I 
+[-gµ,\µ(p ,k )--1- p

2
· (µ(p 2 ,k~)-µ(0,k 2 ))] 2 x 

10 

(13') 

I 
I 

I 

j 
I.' . 
I 

\ 

. I 

l 

! 

I 
r 

xf I<,\ (B(s ,t){2a(s)-a(t)-l )+(s<-+u }- B (u ,s)(2- a(u)- a.(s))) 

t(q+q '),\ (B(s,t){l- a(t))- (s ...... u) +B(u,s Ha (u)- a (s))) ]+ 

2 2 Pµ P ~ 2 2 · 2 · 
+ [- g .. i µ ' ( p , k ) + -'--- ( µ ' (p , k )- µ ' (0, k )) ] x 

,...,, p 2 

,\ . 

x [ k ( - B ( s, t ) - 8 ( u , t ) - 2B ( u , s )) + 

+ ( q + q ') ,\ ( B ( s , t ) - B ( u , t ) ) ] I + 
(14) 

2 4 a 2 I 
+ i f m 2 (2 ") a' f3 r ( - - a (0)) P (0) l p B + k B + ( q +q') B I. 

TT TT o 2 µt µ2 µa 

2 ( a ,2 I 2 2 C = i f m 4 2 2 TT ) a fJ r ( - - a ( k )) P (k ) x 
µ 11TT O 2 .· 

I 2 2 I r(
2

-a(p )P(p )-r( 2 -a(0))P(0) 
I 

XI p 2 X 
µ p2 

11 



x [B (s,t}(a(s)+a (d-1)-(s-.u) +B(u,s}(I- a (u)- a (s))] 

2 2 Pu P,\ 2 2 2 1 
+[- g .. i µ(p ,k )+ -~ ( µ (p ,k )-µ (0,k ))Jx - x 

,..,. p 2 

,\ 
x[li (B(s,tHI+a(t)-2a(s))-(s---. u )+B(u,s)(2- a(u)- a (s))) + 

A ( + ( q + q ') ( B ( s , l ){ a ( l )- 1) + (s.-• u ) + 8 ( u , s )( a s )- a ( Q))) ] + 

(14) 

+[-g µ'(p2,k2)+ ~ (µ'(p2,k2)-µ'(0,k2))Jx 
µA 2 

p 

, ,\ ' 

x [ k (B {s , l ) - B ( u , l ) + 2 B (u, s)) + 

,\ . . 

+Cq+q') (-B(s,d-B(u,t))JI+ 

2 - - -
+if

2 
m 

4
2(21r)

3
a' .Borc.!-a(O))P{O)lp C +k C. +(q+q') C ,. 

1TTT 2 µI µ2 µa 

12 

\ 
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1 

l 
l 
r 
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f 

where 

8 (s ,l) 
rO-a(s)) r(I- a(t)) 

r (2 - a ( s )- a ( t )) 

a ( s),,. .L+ a ' ( s - m 2 ) 
2 1T 

a',,..!.(m 2-m 2 

2 p 1T 

(15) 

) - I as in ref/10/ . . 
µ ( p 

2 
, k 

2 
) and µ ' ( p 2 , k 2 ) are unknown: .functions, the pole strue-

ture of which is however known; 

µ ( P 2 , k 2 ) ,,,_ µ ( P 2, k 2 ) r ( : _ a ( P 2 )) 

µ'(p ~k2)=µ'{p2,k2 )r (!_ - a (p2)) 
2 

and µ (p 2 ' k 2 ) p ( k 2) a ; , ( p 2 ' k 2 ) p (k 2) 

Later we shall use the notation 

have no poles at all. 

-,· ~ 2) .( 2) · = ( ·2 , 2 ) ( I ( 2)) - , ( 2 2 ) p ( 2 ) , =, ( 2 2 )( I ( 2)) µ p , k P p = µ p , K ~ -a · k ; fL p , k p = µ p ,k 
2

-a k 

too. 

It can be easily seen that for a pole contribution to µ ( p2 ,k2 ) 

or µ ' ( p 2, k 2 
) , ( a _ ) the expression 

p2 -M~ 

2 2 PuP,\ 
-g ,\I' (p ,k )+--'"~--(µ(p 2 ,k 2 )- µ(0,k 2 )) 

µ p 2- •. 

reduces to 

µ 

(- g + Pµ p ,\ 
µ,\ l\12 

A 

a 

p2-M 2 
A 

and µ correspond to the two parameters of ref/2/. The ratio 

of the s and d -wave coupling .constants of A 
1 
➔ PTT. decay is 

13 



I 
m2 -m2 gs µ '(p2,k2) 

--= -2 e. TT I 
g m2 2 µ ( P 2, k2) 2 2 2 ·2 

m p =mA ,k =mTT d. p p 

where the At PTT vertex is defined as 

V 
At p TT 

= g t • c + g c • kc p , 
s p A d p A 

with the polarization vectors denoted as c p , t A and the momenta 

( p and A I respectively) denoted as p , k • As will be seen 

later, the ratio of the s and d wave coupling constants of the 

decays of higher excited A1 mesons is give!'} by the same formula, 

(the only difference being that we must set equal p 2 to the mass 

squared of the excited A I ). BI and CI are necessary in 

eqs. (13) and (14) in order to satisfy the PCAC eqs. (10a,b). 
-

At first we discuss the determination of . B 1 • We want to 

choose these functions so as to satisfy the PCAC eq. (10a) which 

yields us·ing eq. (13') the following equation : 

2 
- - s+u-2m - s-u 1 1 
B p 

2 
+ B TT + B - -= r ( - - a ( k2 

)) P ( k 2 
) -. 

l 2 2 32 2 2 

x [B(s,t)(l-a(t)- a (s))+(s ... u)-B(u,s)(l- a (u)- a (s))].,_ 

- r ( .!_) r ( 1- a ( t )) P ( t ) + 
2 

. 1 2 c·2 _ 2) 
+ r ( 2 - a ( k )) P k ) Iµ , ( O, k 

s+ u-2m
2 

2 

14 

1 
- X 
2 

(16) 

J 

1 
7 

x[B(s,t)(2a (s)-a(d-1) +(s .. u)-B(u ,sJC2-a(u)- a(s))l+ 

- 2. s-u 1 ( ( +14(0,k )--[B(s,tHI-n(t))- s ... u)+B(u,s) a(ul-a(s))]+ 
2 2 . . 

(16) 
2 

- 2 s+u-2m 
+µ'(O,k) TT .[-B(s,t)-B(u,t)-2B.(u,s)]+ 

2 

- · 2 s-u 
. + µ ' (O, k ) - [ B ( s , t ) - B (u, t ) ] I • 

2 

The RHS of- this eq. has no poles jn pr , thus it is possible to 
- . . • 2 

choose B I so that they have no poles in p 

that our amplitudes R I satisfy property; i v 

..;. · 1 2 3 , 
B =-/3 B(u,t)+/3 B(s,t) +{3 .. B.(u,s)+b , 

I I I I I 

which ensures 

For B I we assume· 

(17) 

where /3 ! are· at most first order polynomials in s . and u and 

the role of b '1 is to compensate for the non Veneziano term of the 

RHS of eq. (16). The B(u,t) ( B ( s , t) and B ( u , s) ) terms shoulc 

cancel in• eq. ( 16). Here we meet a difficulty, as the coefficients 

of the B ( u; t) (and · B ( s, t )) terms do not cancel. In fact-assuming 

the proper pole structure - it· is easy to see thal for s "'u = m; · 

p 2 .. 0 (i.e. t .. k 2 ) the coefficients of B(u,t)(B(s,t)) cancel only 

on the k 2 mass shell ( k2=mTT2 ) • However, this is not an indication 

that we must give up the proper pole structure, as done in ref/
6

/, 

15 



it means only that the eq. for b '1 should contain some Veneziano

like terms, too. In this way we get uniquely the eq. for b '1 

s+u-2m 2 
. 

b , 2 b' ---- TT b' s-u p + 2 + 3--= 
1 2 2 (18) 

1 2 21 1 2 1 \ =r(--a(k ))P(k )-[B(t,s)+B(t,u)l{--a(k ))-r(-)r{l-a(t,)P(t). 
2 2 2 2 

The solution of the eqs. for f3 1
1 

is now straightforward we have 

determined the general solution of these eqs. 

We turn now to the solution of eq. (18). Again b '1 may 

have only the right position _ poles. The RHS of the eq. vanishes 

if simultaneously t = k 2 , s =u = m; (i.e. p 2 = 0 ). Thus a simple 

assumption like b ' = b ; = 0 leads to a singularity in b ' 1 at 

· p_ 2
,. 0 (as in ref.o/

61) •. Generalizing the experience obtained from 

the pole dominance .solution of the eq., we write the RHS as 

RHS = _l r ( L - a ( k2
)) p ( k 2 

)[ B ( s, l ) - 8 ( m 
2 

, l ) ] + 
2 2 11 

+ ! r(:-a(k 2))P(k 2 )[B(u,t)-B(ID;, t)] 
(19) 

+ B ( mTT
2 

, t )[ r \ : - a ( k 
2
.)) P ( k 

2
)- r ( : --a ( t)) P ( t)]. 

· 2 2 
Now, the first term vanishes if ·s = mTT for arbitrary u , t , k , 

2 
the second for u = m 2 (arbitrary s , t , k ) the third for k 2 = t 

TT 

(arbitrary s , u ). Thus a solution of the eqs. 

16 

1 

I 
1 
j' 
( 

!
) 

i 
' ,,, 

I 
!1 

!: 
1· 
\ 

s-m2 u-m 2 
- -- TT-"'."" TT 3 2 
b p

2 +(b +b )--+(b
2
-b 3 )--=1'(--a(k 2))P(k )[B(t,s)-B(t,m2>]x 

1 2 3 2 2 2 TT 

= 2 = = s-m2 = = u-m 2 3 
b1p +(b 2+b 3)7 + ( b 2-b3) 

2 
TT =r<2 -a(k

2
)) P(kl[ B(t,.u)-B(t,m;)] (20) 

2 
- b2 2 ea k - t ea s- U 2 3 2. 2 3 

( b +-2 )p +b 2 -
2

- + b3 -= B ( m , tHr<-2 -a(k J)P( k )-P (- -a(t))P(t)] 
I 2 TT • 2 

may be easily obtained, writing 

= :!: = = - - -
.b "'b - b = b = b + b =b 

I 23 I 2 3 1 

b2 -
+ - = b = 0. 

2 3 
·(21) 

Then. the solution of eq. (18) is 

:: = 
b '1 = b 1 + b 1 + b 1 • (22) 

Thus we have obtained 

2
. r({ -a(k 2 ))P(k 2 )-r(f-a(t))P(t) 

b '= B(m ,t) 
1 TT t-k 2 

b;=r(!..-a(k2 ))P(k2)..!.1 1 re(s,t)-B{m 2 ,t)]+(s-u)I+ 
2 2 S -m TT 

+B(m 2 ,t)2 
TT 

TT 

r(~ -a(k 2 ))P(k 1 )-r(t-a(t))P(t) 

k 2 
-t 

, 3 2 21 I 2 
b =r(--a(k ))P(k )- I 

2 
[B(s,d-B(m ,t)l-(s.-.u)I. 

a 2 2 s-mTT TT 

17 
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'l'his solution then ensures (or does not disturb) that B I satisfies 

the requirements i - v • 

We note that if .the ,isubtracti~ns" in the RHS of eq. (18) are 

carried out in different order, we get solutions which do not fulfil 

requirement ii, i.e. the residues of the poles in the Mangelstam va

riables are not polynomials, .. Of course, __ we may always add a solu

tion of the homogeneous eq. (if otherwise this fulfils our ·require-

ments) to b '1 
, however, if this solution contains ,resonances it 

must have Veneziano form, so it is already included in our solution, 

as we have determined the general solution for the f3 1 
- s 

- I 
'l'he solution of the eq. for C I can be obtained in a simi-

lar way. Again 

C 
1 

= y 
1 

1 
B ( u, t ) + y 

2 
8 ( s ~ t ) + y 

3 
B (u, s ) + c' . 

I I l 
(24) 

'l'here are no crossing restrictions for y I thus the. general solu-
1 . 

tion contains even more arbitrary functions than the expression of 

the f3 
1 

1 
- s • Although in the eq. for C J non. Veneziano terms· do 

not appear, the eq. of the c \ - s is not homogeneous. 'l'he inhomo ... 

geneous term appears for ,reasons. similar to those which. led to the 

first term in eq. (18). In this way we g~t the eq. 

, 2 , 
ctp + c2 

s+u -2m; , s-u r( 3 a(k 2 ))P(k 2) ....!. X .,;__----+ca-= 2- 2 
2 2 (25) 

x [B(u,t)-B(s,tH 

'l'he (essentially unique) solution of which is 

4 
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i 

c' = 0 

c' =r(2--a(k
2
))P(k

2
)..l.( 1 [B(m 2 ,t)-B(s,t}1-(sou)I 

2 2 2 s-m2 TT (26) 

c' =1(-1.-a(k
2

))P(k 2 ).!.. I __L_[B(m 2 ,t)-B(s,t)]+(s~•u) I. 
. 3 2 · 2 

8
_ m 2 77 

1T 

Again properties i-v of the invariants c are ensured {or not 
I 

disturbed) by the solution eq. (26). 

Eqs. (23) and (26) show non Regge behaviour, It is very in

teresting fo note that eq. (23), which is part of the solution of an 

originally inhomogeneous equation, behaves as - s 0 , while eq. (26) 

which is part of the solution of an originally homogeneous equation, 

behaves as - s - 1 for large s and fixed t • 

Having ensured propertie~ i-v, the'f~rther requirements must 

also be fulfilled. 'l'hese eliminate most o,f the arbitrary functions 

appearing in f3 ! and Y I i , (only two of them remain), as well as 

force µ(p
2
,k

2
) , µ'(p

2
,k 2

) to be i~dependent of k2 • 'l'he full 

solution we give in the Appendix. 

Actually our solution reduces to the general solution of ref_/5/ 

{property vii) only if we set T/ ( p 2 ) =0 • We do not see any reason 
. 1 

for this special choice, thus our solution is more general than 

ret.f5/. 

We want to emphasize the importance of requirement viii. In 

fact absence of exotic resonances in the s and in the t channel 

yields independent conditions, in particular, the latter forces· out 

symmetry properties for the Veneziano-like terms in C 
1 

We note another favourable feature of our model. On the pion 

mass-shell ( k
2 

= m 
2 

) the leading trajectory contributions to the 1T 
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residues of the a ( s) = f poles correspond to only I= 0 particles 

for f even and I = 1 for f = odd. Off the mass-shell this 

isospin selection rule does not follow from Bose statistics, however, 

it is true in our model. Thus our off-shell extension d.oes not in

troduce new leading trajectories. 

The daughter structure of our amplitude is rather complicated. 

Imposing off-snell factorization of the daughter trajectories, we must 

introduce new _particles (some . of which are ghosts). A similar 

situation has been found also in case of the· scalar particle ampli

tude/7 /_ 

4 • Pion Electromagnetic Form Factor 

As pointed out at the end of Sect. 2 the pion electromagnetic 

form factor may be obtained. without any difficulty from T µ. by the 

soft · " method, our expression for T being transversal· in this limit. 
/l 

Thus we get 

a 2 2 ) I F (t) =-i2(2 r.) C3 (m
17

,t,m
17 

p2=t ,k2=0 
1T 

(27) 

which yields 

F (t) =4(21r)
6 

£2 m 4 a' 2 f3 r (.1.-a (0))P(0) B(m 2 , t ). 
17· 1T 1T O 2 . 17 

ire!. - a(t))[µ(t){.!..-a'(t-m 2 ))+2µ'(t)]-
2 · · 2 17 

(28) 
- r (.!. - a (0)) [µ (0)( .!._a' ( t -.m 2 )) +2 l' (0) ] + 

2 . 2 17 . 

+ P(O)r(.l. -a(0))[-41(71
1
(tJ-Tj 

1
(t,0)m 2 )+a'] + 

2 "· 

+ P (O)T ( .!_ - a (0)) a' [ .,. (.!..) - ,/, ·c _! -a ( t )) ] } , 
2 . 'I' 2 'I' 2 
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,\ 

f 
! 

= = - 2 
where /l ( t ) , /l ' ( t) , 1J / t) . , 71 

1 
(t, k ) are arbitrary nonsingular 

functions ( T/ 1,-; J come from the . arbitrariness . of. y 
3 

J ),ip(x) =r tx )/r(x). 

It is clear,. that a pa.rt from the position of the poles, which is as 

expected, we cannot say anything about F 
17 

(t) without further 

assumptions. Thus, e.g. it is not possible to predict the absence 

of the p '(a(t)=2) pole, and the other predictions of ref/5/ do not 

follow either. 

The condition F (0) = 1 is automatically fulfilled, if the off-
" 

shell "" .. "" amplitude satisfies the Adler-Weisberger relation/!~/ 

This has been proved by Geffen191, assuming single " and A 
1 

pole dominance for the mass dependence of the amplitude. The 

proof can be carried out along similar lines without any specific 

assumption on the mass dependence, so the above. statement is 

really model independent. 

In fact in our notations the Adler-Weisberger theorem states 

aA a c i 
a;-=-a:-=-~a.-; as 

as "' 0, 

where the arguments are t = p 2 = k 2 = 0 

take the value of the derivative at s =m ! 

(29} 

( u = - s + m 
2

) and we must 
1T 

which is the required 
kinematics for F 

17 
( 0) • Using eq. (lob) we write 

C
3 

... 2-(C-C p2-c s+u-2m
2 

s-u 1 2-----IL-). 
2 

From eq. (10b) it follows that C = 0 at s = m 
2 

, t = p 2 = k 2. = 0, 
1T 

as c, 1 c2 1 

( u =-s +2m 2 
C 3 are not singular in this limit. So ta.king p 2 = k ~

1
,,o 

1T ) in the limit s ➔ m 
2 we get from the above eq. 
1T 

C -= _.,?_£_ = i - 1-,.. 
3 as ~2n) 3 

which is the required result. 
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We want to emphasize that in the framework of our model 

it is not consistent to compare the Weinberg low energy formula/
12

/ 

for· 171T ->1717 scattering with our expressions. Thus the KSFR rela. 

tion (with the usual Veneziano model modification) does not follows. 

Instead we may use eq. (29) 1 to fix the normalization, which yields 

l l 
g2 =-- l X 

prm 2f
2 

VTT m2 a'2p2(0)r(--a(0))r(l-a(0)) 
1T TT 2 (30) 

l x--------------
1 + a ' m 

2 
[ if, ( !. )- if, ( ~ - a (0)) ] 

. TT 2 2 · 

Using eq. (30) we get for the u term (defined in eq, (9)) . the fol-
l · . (· . ,2 .2 2) owing expression 1 .. J , q = q = m TT 

m2 l fn TT 

, 2c cL>- v, cd -a con l (O) = - Ofn 2(2 17 ) a I. 
l+a jll if, 2 2 

(31) 
TT 

So 

fn 2 

2 (0) "'-o fn 

. j~ ' 
Thus the Gell-Mann, Oakes, Renne result for the u term 

( which is exact for q :\,,, q' 2= 0 ), follows' independently of the KSFR 

relation, Of · course assuming P (0) "' P ( m ! ) = I ( which is 

a reasonable assumption) the modified KSFR relation may be 

also obtained, 
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', 
.·1 

\f 

l n 

5. Model for the Amplitude witl~ Two Pions Off-Shell 

In this section for comletness we discuss briefly the ampli

tude off-shell in two pion masses (keeping at the same time the A 
1 

on the mass-shell). 

The definition of the off-shell amplitude is 

i f j n -l~x ,\ 
- 4 I µ k 
M( , )=fd Xe <TTjq'jTa A,\(x)a A (0))IAfpt>, qpq k µ. (32) 

where , denotes the polarization of the A 
1 

• Following the re

cipe of ref/
7 

/, we write 

M( 
ifjn 2 4 a 2 I · 2 2 I 2 2 . 

)=if m 2(2TT) a'r(--a(q ))P(q >r(--a(k))P(k)M(s,t,1,1), 
q p q , k 17 TT 2 2 ( 33) 

where we have used the definition 

4 
<irjq',17nkl17iq,Afpe> =-i(217) o(p+q-k-q')M(s,t,u )_- (34) 
out In 

In eq, (33) M denotes the Veneziano amplitude for the process, 

which is, of course, given by the appropriate re.=idt;te of T µ 

We discuss now the Adler condition for M , as it is easily 

seen that eq. (33) satisfies all the other usual requirements. The 

Adler conditions have the following form 

i f j n I n 

M( )=-fd
4
x<17jq'lo(}' )[A (x),aµA (0)]!Afp_c> (35) 0pq'k O· 0 µ 

- In 
= - i :S · (u) 

i fjn n µ 1 

M( )=-fd
4
x<17jq'lo(xo)[Ao(x),a A (0)]jAfpc>. 

'O µ q pq . 
(36) 

=-i i nl ( u ) , 
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The a terms in eqs. (35) and (36) should be equal and also 

i ,1n "' 8 tn 8 le • This conditions al'e not satisfied automatically 

off the mass-shell ( u = q 2 f- m 2 ) • In fact we get using eq. {35) 
1T 

- In 3 2 GA 
~ (u)=i2(21r) a' - f.3 m6 f3 r(L-a (0))P(0)x 

m2 TTTTO 2 .. 
A 

x!8 it P(u)r(.!..)r(l-a(u))t•q'4µ'-
tn 7'.J 2 

(37) 
'· 

l 

-(8 
0

8 ;..8 8
0 

)P(u)r(.!..'r(I-a(u))E. q'4(!:.. -µ') }. 
I I'.. Jn ll t.n 2 2 

the only · differen-From eq. (36) we get a similar formula for I nl 

ce being that the sign of the ( 8 1e 8 ln - 8 11 8 fn) term is opposite. .\ 

{we denote · res µ. ( p :1) = L 
2 2 ' 

and similarly for µ ' ). This means 
p =m A a 

that the 8(x )[A
1 (x) aµAn (O)} 

0 0 ' /L 
commutator contains . besides the 

usual I = 0 term an I = I term, too. { I = 2 does not appear), At 

any rate, the pole structure of the a term is appropriate. 

If we take only one pion off the mass-shell, the Adler con-

dition tells Us. that the amplitude. should vanish at the soft 1T 

point. This condition is readily met by our expressions, as the 

RHS of eq. · (37) has no P<?le at u = m; • Thus there is no diffi-

culty with the Adler condition in this case, as has been observed 

already in ref/
2

/. 

One way out of the difficulty with the "off-shell" a term 

is. to set µ.-2µ' .. o , whicn gives · a prediction for the ratio of the 

s and d wave amplitudes in A 1 ➔ PTT decay~ Using the no-

tation of ref/14
/, we get 

a 
while ~perimentally / 15

/ I......!.. I= 1.62 

it is 0.64 :!: 0.25, 
a L 

Another way is to modify suitable the off-shell amplitude 

eq. (33), To do this we write down the isospin decomposition of M 

24 

' i 
,I 

\' 

( 

- -
l\f = 8 n 8 A + 8 80 B + 8 80 C • 

I I'.. jn lj t.n In LJ (38) 

We must then modify the expression given for A B by eq,(33). 

The simplest way is to. add terms of the form f k f(u )+dq+q')F'(u) 

(we do not want to introduce Veneziano satellite terms, as we want 

to modify the amplitude only off the mass-shell). With this assumption . 
we get 

- - 3 6 GA 3 2 } 
A',,,-B'=--f m --2(21r)a'/3r(-

2 
-a(0))P(0)x 

TT TT 2 0 
m 

A • 

(39) 

x~ (3Ek+e(q+q'})P(~)r(½>ro-·a(u})4(/L2 -µ'), 

A' and B' should be added to the expressions obtained for A 
and B from eq. (33). It can easily be seen that this new terms 

do not spoil the good properties of the. original amplitude. Thus 

eqs. (33), (39) d~termine a satisfactory Veneziano type expression 

for our amplitude. 

Finally, I want to thank Dr. z. Kunszt for his help in pre.c. 

paring the manuscript. 

Bµ 

µ ( p2 

B1 

Appendix 

We give here the full expression for the amplitude T /L • 

and C/L are given by eqs. {13) and (14) respectively, where 

,k
2

) , µ'(p
2 ,k 2

) should be replaced by µ (p 2
) , µ'(p 2 ) and 

C are given below. 
I 
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8 = r ( .!_ - a ( k2
)) p ( k 2

) X { 
1 2 

B(s,tH-~+x(7J +rj (m 2 -k 2 ))-y(77 -ij" (m 2 -k 2 
))] + 

· 2 l 1_ 11 l . 1 .11 

+ ( s .. u) + B ( s 'u ) 2 X 7J 1 I+ 

3 2 2 3 r( 2 -a(k ))P(k )-_r( 2 -a(t))P(t) 

+ B ( m 
2
11 , t) -------~------

t-k 

8 =r(.!.-a(k 2 ))P(k 2 ) j 
2 2 

a' 
2 

- . 
2 

µ(O) 1 _ _ µ(O)a' 
B(s,t)[-

2 
-2p (71 +77 (rn 2 -k ))+--l- -2 •a'z)-µ.'(O)+xµ(O)a'+y---l+ 

t 177 2. 2 

r, 2 µ(O) -,( xµ(O)a' 
+(s- u)+B(8 ,u)ta -4p 11 1 ---2µ 0)+ -

2 · 2 
I+ 

+1.r(!.-a(k 2 ))P(k 2
){ 

1
2 

(B(t,s)-B(t ,m2 ))+(s- u)l-
2 2 .s -m 11 

11 

-B (m 2 
, t) 2 

11 

re; -a(k 2 ))P(k 2 }-r(: -a(t))P(t) 

t -k
2 
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'1 
I 

- 1 2 2 
B = r (- - a ( k )) P( k ) l 

2 

B ( ) [ a, 2 ( - ( 2 k 2 )) µ (0) ( I , ) - '( ) µ (0) , ] s, t - - + 2 p 77 -77 m - + - - - a z + µ . 0 + x -- a 
2 1 t -:r 2 2 2 

-co) , 
- (s <-➔ u ) + B ( s , u ) [ .:.. y µ a ] I + 

2 

+ .!..r(J!. -a(k 2 ))P(k 2 )! l (B(t,s)-B(t,m2 

2 2 s-m2 11 
}}-(s,...u)I 

1T 

- 1 2 2 
C 

1 
= r ( - -a ( k )) P( k ) I 

2 

B(s,tH~- x(77 +rj (m2 -k 2 ))+y (77
1 

-rj
1 

(m
2
-k

2
))]-

2 · 1 1 11 11 

- ( s- u ) + B ( s , u ) [ - 2 x 77 ] I 
1 

- ( 1 2 ( 2 C =r --a(k ))Pk )I 
2 2 

_/ 

. ( [ a' 2 ( - ( 2 ) -( ) 1 ( 1 , - , ( - ) , µ(O)a' ] B s,t) --+2p 77 +71
1 

m -k 2 )+µ 0-
2 

-+a z)+ µ. O)-xµ.(Oa-y-
2

-
2 , t TT. 2 

2 1 - ;co)a' 
-(s .. u)+B(s,u) [-a'+4p 77 1 + 2 µ{0)+2µ'(0)-x 2 ~I+ 

+ ½ r ( t -a (k2 
)) P ( k 2 

) I - 1
-

2 
( B ( t ,m 

2 
}- B (t , s )) -( s ._ u ) I 

S-IIJ 11 
11 
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C .. r(L-a(k 2 ))P(k 2 )1 
a 2 

B ( ) [ a' 2 2 ( - ( )) - ( ) I ( I , ) -, ( µ(O) a ' s , t - - p 1 -ri m 2 - k 2 - µ 0 - - - a z - µ 0)- x ..;.._ __ 
2 1 l 77 2 2 2 

• µ. (0) a' · 
+Cs...-.u)+B(s,u)[y ----Jl+ 

. 2 

I 3 2 2 I 2 
+-r(- -a(k ))P(k )1--(B(t,m )-B(t,sh(s .... u)I. 

2 2 s-m 2 77 

The notation is 

x"'s+u-2m 2 

7T 
' y ~ s- u • z 

7T 

~p2+k2-m2, 
7T 

/L ( p 2 ) = µ (p 2 ) r ( 23 _ a ( p 2 )) = r ( .!.._ _ a ( p 2 )) p (p 2 ) µ ( p 2 ) 

' 2 

µ , ( p 2 ) = ; , ( p 2 ) r ( : - a ( p 2 )) "' r ( ~ - a ( p 2 )) p ( p 2 ) ;, (p 2) 

T/ 1 is an arbitrary nonsingular funcu'on of p
2 

arbitrary nonsingular function of p 
2 and k

2 
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