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1, Introduction

The process A7~ mn is one of the rare exceptional

. processes involving ‘a spinning particle, the description of which
is particularly successful in the Veneziano mode1/1'2/. In view. of
this success an extension to off-mass-shell values of the momenta

may also be attempted. The amplitude for three (on-shell) pions

"and the axial-vector current has been studied in a number of pa-

pers/ 3’4’5/. We want to mention in particular Suura’s work/5/ where

coupling of the axial-vector current to all the appropriate daughters
of the #~ A, trajectory is taken into account, As emphasized by
Nath et al./ 6/ , the further extension of the amplitude to off-shell
momenta of one of the pior:ss is not an easy task. In fact, the so-
lution they present has a_poie at zero axial-vector currentk momen-
tum squared p2=0 , This pole then invalidates the soft pion de-

termination of the ¢ term, too,



The soft pion result for the ¢ term may be preserved impos-

2 x/

ing the condition, that the p2=0 residue should vanish at s=u=m T
»Hovx‘/ever, the unphysical p%Z=0 pole can be eliminated only for '
5=“=“‘r27 and, necessarily remains for other values of s

The origin of this pole is that the amplitude has to satisfy the ~

andu ,

PCAC equatlon for arbitrary values of the vamables.

In thls paper we obtain a model for the <1r|A 6 Ayle >

amplitude, which has all the good properties of off-shell Venez1an‘oe

type amplitudes - e,g, it has only the appropriate poles in all the.
variables - and satisfies the PCAC equation exactly. Due to the
proper pole structure of the amplitude the soft pion determination

-of the o term remains valid, The basis for this off—shell extension

. in two mass variables is the successful off--shell extension of sca-

/2,8/

‘lar amplitudes . Therefore the <] & A o AAI 7>

well as thé o term we take from ref, ? . Our approach is dlfferent

from that of ref, / / , where only the lowest poles in the mass va-

riables are taken into account,

In Sect, 2 for convenience we review at - first kinematics,

crossing relations, the off-shell 77~ 77 amplitude;aifid write down
. the PCAC equatlon. Then we show that the expression obtamable
<m | A 6 Ay | 7> ’

provided the PCAC equation is satlsfied at

from the amplitude in the soft plon limit ‘is "'ne-

cessarily transversal
(the‘ soft ‘# kmematlcs, too, Thus the current algebra = soft 77
determination’ of the pion matrix element of the 1sospm current ‘mo~

del mdependently vields a transversal expressmn. "In Sect 3° we".'

' hst the properties and outline the derlvatlon of our model for the C

<n’ {A A /\'”>

the -n"' electromagnetlc form factor obtamed by the soft ' me-

thod, The expression for F”(t)

x/

is given in terms of some un-

For notations see Sect, 2,

amphtude as’

" amplitude, Sect, 4 contalns a dlscusswn of ’
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known functions, which shows that the earlier derwahons of F( t)

5/

in the Vene21ano model/ depend on arbltrar-y assumptions, We

~ dso give a proof that the Adler-Weisberger relation for the na-nn

amplitude ensures through the PCAC eq; model independently the

correct normalization of Fn (v)y Finally in Sect. 5 we discuss

the amplitude Aymsanm off-shell in two pion masses, (keeping the

Ay }mor_nehtum on the .}nass-shell). The final result of Sect., 3 is

given in the Appendizx,

2. Preliminaries

We define the off-shell amplitudes as

i £jn 4 —ipx ) 1N An :

T(- )=fdxe T<aqjIT(d A (x)d A (0 i

e q’k ] ( M X ] /\( ))Inq|> (1)
~iljn . .4 Tiex

T ( ) J=ifd xe <nq][T(A (x)aA (0))|nq1> (2)
H=q pq’k

where i,j,n,{ - are isospin indices, q ,p , q’, k denote the

£,
momenta, A# is the axial-vector current.

The invariant decomposition of Tv# is as follows

P Ty +k Ty +laeg), T, ‘(3‘) |

The isospin decomposition is

il ja Vo8 )
T(qpq;k . 12 jnA+51 BZn B.*._Bln 581 C (4:)
T (iz‘jn )=8 ,8
= A
qpq ;k le jn p,+5u BZn Bp, +>51n BZJ C,u’ (5)



-~

N:Wh'ére Ay=vy Ay +'k”f\2 +(q+q ',)“ A, and similar .egs,

hold for B , and C, . All the invariants are of course functi-.

ons of s =(p+q)? cr=lp=K)% u=(p=q ") ° , p. and K2 . t
The crossing relations for the amplitude T (i3 as |~

well as f.»n crossing ) are:
Als,t,u,p? (k?) =Clu,t,s,p%,k?) : ' )
B(s,t,u.p2 K )=B(u.t,s,p2.k2 )

Y - (6) \

A(Sct.U’P 'k )=C(u9tys9k ;P)
B(svl’ui P2'k2 )=B (“$ t,s 1k2vp2)-

If k,z is on the mass shell (k* =m; ) also have( i-»n crossing):
C(Svt!uypzymz)sB(S!uvtop 2:m2 )- (6’)
. T ™
In case of T, only i »j crossing yields restrictions for -

the invariants, which are (suppressing the mass variables) as
. follows: ) . : ' {
Al,2(s,t,u)=C1.2 (u,t,s)
A (s,t,u)==C (u,t,s)
3 a (7)

B\l,2(s ,t,u‘)u’-—-B1 2(u;l,,s)

s A _Ba (s,t.u)=—B3 {u,t,s).

2
On the k* mass shell (k =m727 ) the following relations. ((i-n.

: Acrossing)‘ are also valid for the residue of the invariants:
: 1
C, (s,t,u)=B (t,u,s) +-§~[B2(t,u,s)+ B, (t,u,s)]

Cz(s.t.u)=-13[82(t,u,s)+3Ba(;,u,s)]f : : (77’)

C, (s, "“)=";‘[Bz(hu,s )-8 (1,u,s)]. bf',,‘

Thus there are two independent amplitudes for T , and six for T#' .
(we choose B, and C; ), .

The amplitude T we taken from ref./7/, thus
.2 4 3,2 1 ' 1 '
B oaifymy 2020’ B T (5.-a(PDP (T (5 -a (NP (k") x

x%-'[V(t,u)+ V(t,s)=V(u,s)]

C=if? m!2em’a BT(S ~alp®) P(p) P (L -a (kNP x (8)

X %[V(t,u)+V('u,s)—V(tv,s)],‘

o Bpmm . ’
~ where B =2 —L_e_ ,P(p?) is an arbitrary non-singular functi-

_L-a(a)TA=a)

V(s,t)
‘ I‘(l-a‘(s)- a (t) . :
and a(s)= '21',*,‘1,'(5'“"':) is the p-f trajectoryjlo/,t with .
" a slope a’= _2L(mp2 -_m"2 v . We have assumed that the n-A



trajectory is given by a (s)—f21— . The eq. (6') is valid even for

k24 m"’” . T, and T are connected by the PCAC eq.
if jn iljn fn

TC )= T, ( )-i2 (g% q%01), (9
qpq’k qpq’k

where

gn ~ip
p (q',zq 2,! )=-ifd4x5 (xq)e

x ) A

<7 q'j[[Ay(x),9 Ax (O)]zqi> (9
. 2 2 ,
is the ¢ term(q’ =4q =m2)

Expressed in terms of the invariant amplitudes eq. (9)

vields the following eqs.

9 s+u—2m "2 S—u ‘
Bip +By,—— +By—e— = B(s,t,u,p’k”)=B(n’,t,m*,0,t) - (10a)
oo T
2 S+u=2m2 S—u '
Cp + Cg—stt - =C(s,t,u,p’k?) (10b)

(On the LHS we have suppressed the variables), Here we have

assumed that the ¢ = term can b%- calculated from eq. (9) in the
P, 0 limit, setting  fim p*T , ( ! i
b0 B qpq’k

- By a similar. procedure one can get the pion electromagnehc

form factor the amplitude T

il jn ) m -
T, ( - ) =e <wq’jl VvV, (0)]|7qi>,
[ q pq'O nf m [ ] : (11)
ere is the isospin current (we have used the usual current

commutation rules) and the pion form factor F”(t)

oo

is defined as

Lo
2
JoosTo
3 Pr S

. P

F, (1)

(q+q7)
Ty 227 )®

- <mq ||V (0)|nq] > ==jf

Hk " | (12)

We want to point out _tha.Lt eq. (11) automatically vields a trans
versal expression (i.e. eqs. (11) and (12) are consistent) provided
iZ ] n )
‘ , o qpq°0 .
transversal, and has the isospin structure implied by egs, (11)

and (12), if at K =0 ,t=p?

‘eq. (9) is satisfied for k,=0 , too. In :?_'Ct’ T#( is-

2 2Y_R (w2 2y _ 2 3y _ o ' -
Cl(mn‘,t’mﬂ)ﬂBl(mﬂ't’mn‘)—Ba(mﬂ"t’mﬂ)‘0.- . (13)

The thrid eq. follows from crossing symmetry (eq. (7))., while B, =
-C, =0 follows from egs. (10a), (10b), as the RHS of these egs.

are zero in this limit and B, ;, C,5 " are not singular, Thus the

difficulty of ret.? -<n|V“_;n> turns out to have a longitudinal
‘component, too - appears, because the e,xpressioh'for';l‘# given |
~in this ref, is wvalid only on the mass-shell, satisfies the PCAC eq
only at k? ; . '
We also want to emphas1ze that eq. (10a) ob\nously forces
B; to have non Veneziano-type terms, too, as the second term

" on the RHS is clearly not Veneziano.

3. Model for the Amplitude with the Axial-Vector Current’
and an Off-Shell Pion

- At first we enumerate the properties we expect for the am-
plitude T, . :
i) The invariant functions of T, should have poles at the
appropriate values of the Mandelstam variables and mass variables
2 2
p- ., k7.



ii) The residues of the poles in s , (t,u) should be poly-
nomials in t ,u (s,u ;s,t),

iii) The crossing relations of eqs.(7) should be satisfied,

.‘iv.) The residues of the simultaneous k2 =
(7 mass or higher excited « mass),2 P . (A, mass or higher ex~

2]

cited A, mass.)2 poles should have the Veneziano form

v) The PCAC equation (eq. (9)) should be valid,

2

. vi) The residue of the k =m, pole should satisfy eq. (7’).

vii) The residue of ‘the k% m?,‘ pole should have the geheral
form of ref./s/. 4

viii)' The s(t,u) channel I=2 amplitudes should not have poles
in s(t,u) (absence of exotic resonances off the mass-shell),

ix) The leading trajectory should factorize (off-she]i factoriza~
tion). ‘ |
‘ In order to construct an amplitude with the above propertieé
generdlizing the amplitude of ref./s/, in the spirit of'réf./‘?’»g/ we start
withﬂth.e following expressions | A

B, =if, m 22n”a "B T (= = aliPNP(KY x|

F(L-alpP(p®)-T(3 -a PO

{p X
T e T (13)

Y [B(‘s 1= a(1)=al(s)) +(sesu )= B(u,s)(.l— a(u)=a (5))],"'

. pP,P .
+["€#,\F(P2 K )+—E—2)'——(;1 (p 2~—,k".’)—u(0,k2~))]—21-— x
, p2-

10

chan T

x[ K (B(s,t)(2a(s)=a(t)=1)+(sesu)= B(u,s (2= al)~ als))

+(q+q A (Bis,t)(1= a(t) = (sesu) +B(u,s)(a (u)=a (s)) 1+

PuPX

. (#'(p2.k2)—u’(0.k2 N1 x
p

+,[—gw\y'(p2.k2)+
A \ .
X[k (_B(S‘t)—B(u,t)—2B(U,S))+

+lqeg ) (B‘(s.t)—B(u.l))]}? a

' 1 - - -
3 4 3 2 ,
+ifﬂ m 2(27) a ﬁOF(-é-—a(O))P(U)ip# B +k#B2+(q +q )# B 2

C,=if2 m! 2(2n)3a'”50r(_21- - a (KNPK ) x

F(-%—-—a(pz)[’(pz)—r(—;-—a(o)) P (0)

X{ g ) : .. ¥
-pll _ pz_‘ c 2

11



x IB(s,t)a(s)+a(t)=D)=(sesu) +Blu,s)(1=a (u)=a (s)) ]

+[- LY p(p® K% )+ —p}%}i—- (p (p>. k%)= (O,kz))_]x -;— X
. P

x[k'\ (B(s,t)(1+a(t)=2a(s) =(seru)+B(u,s)(2=alu)m a(s))) + '

A
+{q+q) (B(s,t)a(t)=1)+(seru) +B(u,s)(als)=a (W) ]+

(19)

+l=g p’(p?,k2)+ PuBr (n"(p % k%)= (0,k* )] x

UA

2
pS

x[.k)‘(B(s,t)—B(u.t)+ZB(;J,s))+

. A : -
+(q+q") (=B(s,t)=B(u,t)]}+

+if
m

2

. q. - R - ' -
m”‘2(2ﬂ)aa' ﬁ‘,r‘(-zl- -a(O))P(O)»{ pI‘C' +.k# C,. +(q+q')# Csi'

12

.

Jgee

where

Fl=a(s) T'(1= a{t))
B(s,t) = — .
2= a(s)=a (1)
. - . /10/
° (p2;k2) and u”’ (p2.k2 ) are unla’xowri?'.functions, the pole struc-~

ture of which is however known;
¢ (pg,k,2)=;.(pz.vk2_)l" ( —z— '-a('[‘)z_))
w p A =a7 (p 2K )r(;;’i R
.and pp? . K2)P(K?) " (p2,k’2)P(k2) ” have no .p,oles at all,

Later we shall use the notation

E P =R (0 2k a5 TGP (T ) L E (o U Wi -a ()

too,
It can be easily seen that for a pole contribution to “(pz,l?)

or u’(pZk’) ,(

a

) the expression -
p2=ME '

p,P
—gﬂkﬂ(p2|k2)+—y—2_—k""‘(#(p21k2)—#(01k2 ))
- P . ; ” :

reduces to

( Py Py a

- +

S S TE R T
A A

T and p’ correspond to the two parameters of r'ef./ 2/ . The ratio

of the s and d wave coupling constants of A -pr, decay is

13



3
. 2 2 ’ 2
By = -2 mP—mn np k)
gy m? m 2 nlp2,K) pP=m? k2 =ni:

P [ ' A

where the A, p7 vertex is defined as

A =g ¢ <€ +g € ke p,

AIPTT s p A d p A
with the polarization vectors denoted as ¢ p €, and the momenta
( p and A , respectively) denoted as p , k . As will be seen
later, the ratio of the s and d wave coupling constants of the

decays of higher excited A; mesons is given by the same formula,
(the only difference being that we must set equal p ? to the mass
scjuared of the excited A, ). ﬁl‘ and C.l are necessary in’
egs. (13) and (14) in order to satisfy the PCAC eqgs. (10a,b).

- At first we discuss the determination of _f;, . We want to
choose these functions so as to satisfy the PCAC eq. (10a)' which
vields using eaq. (13") the following equation : '

-4"2 - s+u-—2m727 - Sv—\l : ‘ '

1 2 ‘ 2y 1
Blp +B2 2 +B3 > =F(—2'-a(k ))P(k )-i-.

x [B(s,t)(1=a(1)=~ ﬂ(s))+(s->u)-B(u,sj(.1- a (u)-: a (s))]q-”
(16)

-I‘(-;—)F(l-a(t))l’(!)+

2
+F(-—--a(k NPk 1,0,k )_S+_“_g£“_u._1_2.x

“14

«[B(s,1)(2a (s)=a(D)=1) +(swu)=B(u,5)(2=a ()= als) I+

+#(0k ) 2= 1 [B(s,t)(1~a(1)=(swu)+Bu, sXa (w)=a(s) ]+
| (16)
. -9 3
+}:'(0.k2) el -[—B(s.t)-B(u.t)—-ZB)(‘u‘,s)]{- ‘

] HI'(b.k"")—sz-‘-“-'-'[B(s.,: )~ But)]}.

The RHS of thls eqe. has no poles in p2 -, thus it is possible to
choose’ B \ so that they have no poles in P ,  which ensures

that our amplitudes B, satisfy property iv , For ﬁn we assume -
= 1 2 3 , _ .
BI=BlB(u,t)+B‘B(s.t)+Bi.B»(u.s)+‘b“’, - . ‘(17)_

where Bi are’ at most first order polynomxals in s .and o and
the role of b is to compensate for the non Veneziano term of the
RHS of eq. (16). The Ba) ( B(s,t) and B(u,s) ) terms shoulk
cancel in‘eq. (16). Here we meet a difficulty, as the coefficients "
of the B(u;t) (and 'B(s;t)) terms do not cancel., In fact-assuming
the proper pole structure - it-is easy to see that for s =u =m?% "7,
p2=0 (ie. t=k> ) the coefficients of B(u,t)(B(s,1)) cancel only
on the k® mass shell (k2=m ?) . However, thxs is not an indication

lel

that we must give up the proper pole structure, as done in ref,

P

15



it means only that the eq, for b’ should contain some Veneziano-

like terms, too, In this way we get uniquely the eq. for b 4

= g = = R U S 2 2 -
. bp™+(b_+b ) +(b =b ) =1"{—-a(k2)P(k?)[B(1,s)—B(1,m I
2 s+u-—2 m_ s=u 3 2 2 2 i L4
b’p +b; +by =
1 2 2 (18) ) .
O ' = 9 = = g.m = = - 3 :
2 o . i byp +(b+b ) = +(b,~b,) = =I‘(?—a(kz))P(kz)[B(t..u)—B(t.mz)] (20)
=I‘(-2—l—a(k NPk ) I8 s) +B(Lw) (1 -a(k” D=T(LIT(-a () P(). 2 - 2 , 7 .
| = bE = ko = 3 o
. 2, 2 = -1 = -u 2 . 3 3
. (b +==)p +b +b =B(m” , O[[(z=ak NP (k=T (5 -a(1))P ()]
The solution of the eqs, for 13,j is riow straightforward we have o 1T P 22 T " ~2 ( -( 2 =)
determined  the general solution of these eqgs. | ) . '
We turn now to the solution of eq. (18), Again b} may may be easily obtained, writing
have only the right position poles, The RHS of the eq., vanishes - - - == = = b—2 = .
: » : : ‘b =b -b =b =b +b =b + — =b =0. (22)
if simultaneously t=k? ,s=u=m} (iie. p2=0 ). Thus a simple 1.3 a3 t 2 3 1 9 E ‘ -
assumption like b/ =b; =0 leads to a singularity in b’; at
. ‘ T . . . 1 .
p?=0 (as in ref, 6/).. Generalizing the experience obtained from . hen. the solution of eq. (18) is T
the pole dominance solution of the eq., we write the RHS as b’ =l:1 +E|+ ii . B ' ' (22)

1 3 2 2 2
RYS = EI‘(—z--a(k NP(k*)[B(s,ty =B (m, ,t)]+ Thus we have obtained
+%—I‘(-g-,a(kz))P(kz)[B(u.t)-B(m:, D1 _ (19) r(3 -a(kz))P(kz)—r(g__a(z))P'(:)

2
‘b "=B(m  ,t)
1 7 E

SBn? O e ()P D= T (2 e ()P,

, 3 2 1 1 ‘ (23)
by, =T (S -a(k® WP(kD o= { ———[B(s,1)=Bm>, 1)1+ (swu)}+
2 2 s—m_ w .
e . . 2 . 2
Now, the first term vanishes ifs=m, A for a:bltrary u Lt y ko : , r(§2. —G(kz))P(k2)—F(-%--a(t))P(t)
the second for u=m’21 (arbitrary s ,t- 4,k } the third for k2., B +,B‘(m” t)2 L3
, ‘ -t
(arbitrary s , u ). Thus a solution of the eqs, '

. i—-—a 2 2 ‘l 1 2 :
ba_r‘( 5 (k" DP(K") 5 {-——-——s_m: [B(s.t)—B(m” )] - (seu)l

16

17



This solution then ensures (or does not disturb) that B, satisfies
the requirements j-v .,

We note that if .the "subtractjdns“ in the RHS of eq, »(18) are
carried Ol;lt in different order, we .get solutions which do not fulfil
.requirement ii, i.e. the residues of the poles in the Mandelstam va-
riables are not polynomials,. Of course, we may always add a sol}.}—
tion of the homogeneous eq.t (it otherwise this. fulfils our ’requit'e—
ments) to b’ R however, if this solution contams resonances it
must have Veneziano form, so it is already included in our solutlon,
as we have determined the general solutlon for the ﬁ .

The solution of the eq. for Ci _.can be obtained in a simi-
lar way., Again '

C o=y "Blu,t)+y Bls,t) +7° Blus)sc . - (29
! t 1 1 1

There are no crossing restrictions for y’ thus the general solu—
tion contams even more arbitrary functlons than the expressmn of
the B ~s . Although in the eq, for C non-Veneziano terms do
not appear, the eq. of the cl -s  is not homogeneous The inhomox

geneous term appears for reasons. 51m11ar to those which. led to the
first term in eq., (18). In this way we get the eq.
~2m2 ’ 1
e’ p2+c’, $+“ m17.,+c, S—“=F(§'-a(k2))P(k 2)'2—")(
! 2 2 Y e 2 (25)

x[B(u,t)=-B(s,t)] o s

The (essentially unique) solution of which is

18

[B(mz.l)-B(S.l)]—?(svu)}

C’: §-7_ 2 2 l
s =T (g =elIPUD 5 s—m? m (26)

c3'=I‘(‘.§.—a(k2))P(k2)_l_{ 1 [-B(mﬁ.:)"-s(s,nn(s‘,u);,
. 2 . . 2 2' " ) .

S—m
w

Agam properties i-v of the invariants C are’ ensured (o'r not
disturbed) by the solution eq, (26). .

Eqgs. (23) and (26) show non Regge behaviour, It is very in-
teresting to note that eq. (23), which is part of the soluhon of an
originally inhomogeneous equation, behaves as . s°, while. eq, (26)
which is part of the solution of an originally. homogeneous equation,

behaves as ~g=!

for large s and fixed ; .-

Having ensured propei'ties i~v, the’/f{:lr'ther requirements must
also be Lulﬁlled These eliminate most of the arbitrary functions
appearing in ﬁ and }’i s (only two of them remain), as well as
force u (p?, k ) e (e k%) to be independent of k> . The full
solution we give in the Appendlx.

Actually our solution reduces to the general solution of ref, / 5/
(property vii) only if we set n (p )=0 . We do not see any reason
for this special ch01ce thus our solution is more general than
ref, / 5/

We want to emphasize the importance of requiremé;":t ;\/;iii. In
fact absence of exotic resonances in the s and in the channel
vields independent condltlons, in particular, the latter forces out
Symmetry properties for the Veneziano-like terms in c, .

We note anocther favourable feature of our model On the pion

mass-shell (k% = m2) the leading trajectory contributions to the

19



residues of the a(s)=0 poles correspornd to only 1=0 particles

f e even and 1=1 for ¢ = odd. Off the mass-shell this
or =

isospin selection rule does: not follow from Bose statistics, however,
i

it is true in our model., Thus our off—shell extension does not in-"
i

troduce new leadmg trajectones.

The daughter structure of our amphtude is rather comphcated.

t
Impbsing off-shiell factorization of the daughter trajectories, we mus

introduce new particles (sqme of which are ghosts).'A similar

situation has been found also in case of the scalar parfxcle ampl;-

tude/7/.

4 , Pion Electromagnetic Form Factor
As pointed out at the end of Sect. 2 the pion electromagnetic

' i iffi by the
form factor may be obtained . without any difficulty from T p by

' versal in this limit,
soft = method, our ‘expression for T# being trans V

Thus we get

F () ==i2(2 »)° Cs(m:,t,m:)\ RIS S (29)

which vyields

F @0=azn)’ (% mia’? BT (‘21‘*“‘0))"‘0) Blm 2. ).

{I"(—-—a.(t))[p.(t)(-——a (t— 2))+2;I'(t)]—

T (2 a0 1F O .1_-,, “(1-m? ) 42,7 1+ o
+P(0)F(— —a(O))[ 4‘('11(”—’7 (t O)m2 )+a ]f

. +P(0)F(-—-—a(0))a [l//(—-—)

‘ - g

¢(_2. —a () 1,

.

e

where £(t), g’(1) | 7 (1) ,E,(t.kz)

functions (ql,ﬁ— 1) come from the arbitrariness of. ya’

are arbitrary nonsingular

)2 =T 1x /T,
It is. clear, that apart from the position of the poles, which is as

expected, we cannot say anything about F, 1) without further

assumptions, Thus, e.g. it is not possible to predict the absence ’

of the p "(a(t)=2) pole, and the other predictions of ref./5 do not

follow either,

The condition F_(0)=1 s automatically fulfilled, if the off-

amplitude satisfies the Adler-Weisberger relation/ 11/

shell o7 »7gn

This has been proved by Geffen/ 9/ , assuming single = .and A,

pole dominance for the amplitude. The

proof can be carried out along similar lines without any specific

mass dependence of the

assumption on the mass dependence, so the above. statement is

really model independent,

In fact in our notations the Adler-Weisberger theorem states

dA aC i  JB
= e - '; ::0, 2
ds ds 2‘2:‘1]»3 ds (29).

where the arguments are t =p?=k?=0, (u=-~s +m#2) and we must

take the value of the derivative at s=m; » which is the required

kinematics for F,(0) . Using eq. (10b) we write

€, =——(C-C p2-C, Sruzmy
s=u 2

N I,::p2 =k2.=0'
. » C, are not singular in this limit. So taking p 2=k 210

(u =—s +2m°
w

From edq, (10b) it follows that C=0 at s=m’

as € , C

) in the limit s-»mir we get from the above eq.
,9¢c . 1

3 ds A2 z)3

which is the required result.
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i i f our model
* We want to emphasize that in the framework of o 112/

it -is not consistent to cdmpare the Weinberg low energy formula ‘.
for mwonn - scattering with our expressions, Thus the KSEFR rela.
tion (with the usual Veneziano model modification) does not follows,

Instead we may use eq. (29)'to fix the normalization, which yields

1 ‘ 1 y
2 =
AT V7 m? a’2P2(O)F(%—a(O))F(l—a(O)) - (30)
X
Tea my [ (5)-y G-aO)]

Using eq. (30) we get for the ¢ term (defined in eq. (9)).the fol-

. . . »3 2 2)
lowing expression (i=j,q "=q"=m

In . mz;T » 1 . i
0)=-5
> =% A2 )’ 1+a'm2[¢<!2-)-¢<§’--a-<0)>1
~ T - (312)
So
K 2
S (0)=~-5 z

tn 2(27)°%

‘ 13 . o
Thus the Gell-Mann, Oakes, Renner/ / result for the -a term
(which is exact for q% ¢’2=0 ) follows independently of the KSFR
- 2 . .
relation, Of course assuming P(0) ~ P(m, )=1 (whlc;h is

a reasonable assumption). the modified KSFR relation may be .

also obtained,

22

5. Model for the Amplitude with Two Pions Off-Shell

In this section for comletness we discuss briefly the ampli-
tude off-shell in two pion masses (keeping at the same time the A,
on the mass-shell),
The definition of the off-shell amplitude is
it jon —l;qx

- 4 ., Ad pok '
Mg pq =fdxe <riaITIA OFA OINtp s, (5

where ¢ denotes the polarization of the A, Followin'g the re-
cipe of ref._7/, we write
- ifjn 2 .3 1 : ’
MO =i mtaem e (L g P (g *I0 (2 ma (DPUIMs 10 ),
] ’, T 4 2 2
ap qk - (39

where we have bused the definition

out in

4 /.
<7rjq'.7rnk|7riq,Afpc> =-i(27) 5(p+q-—k~q')M(s,:, u ).. .(34)

In eq. (33) M denotes the Veneziano amplitude for the process,"
which is, of course, 'givén by the appropriate residue of 'TF Y

We discuss now the Adler cpndition for M , as it is easily
seen that eq, (33) satisfies all the other usual requirements, The

Adler conditions have the following form

= iljn 4 . ' i n ‘_
M(Opq'k )=—f:1 x<mjq8(x A (x),0 A, OIAEpe> (35)
=—i£’n(u)
0 et <n 1 DAY (x),0% O] tp e, (36)
qpq’0 ‘ : : : co
wai T (u),
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The o terms in eqs. (35) and (36) should be equal and also
a1
8,8

off the mass-shell (u= q2# m?) . In fact we get using eq. (35)

. This conditions are not satisfied automatically

- in G )
" () =i2@m) a2 3w B T(l-a ()PO)x
m2 7 w ©° 2 '
A ,
' (37)
fom%jP@)FL%)Fﬂ—aGMc-q%y'—
)P@)T(4="T(-awe. q"4 (5 —p") )

—(81 281n ‘811 SZ

From eq, (36) we get a similar formula for >

ce being that the sign of the (8,98, - 8, &g )

the only'diffe.ren-
term is opposite,

(We denocte" res 2/1..([)9): J‘_’

and similarly for £~ ), This means
a

:::mA

that the B(XO )[A:) (x), 9 ”A; (0)] commutator contains besides the

usual 1=0 term an I=1 term, too, (1=2 does not appear), At

any rate, the pole structure of the ¢ term is appropriate,
If we —take only one pion off the mass-shell, the Adler con-
dition tells us that the amplitude should vanish at the soft =
point, This condition is readily met by our expressioris, as the .
RHS of eq. (37) has no pole at u=m 2
~culty with the Adler condition in this case, as has been observed
already in ref./ 2/.

One way out of the difficulty with the "off-shell' o

. Thus there is no diffi-

term
is to set p-2p°=0

s and d decay. Using the no-

[15/

wave amplitudes in A1 spw
14 a

/ /, we get | —I.| =1.62

it is 0.64 * 0,25, A

tation of ref, while experimentally

Another way is to medify suitable the- off-shell amplitude

"~ eq. (33). To do this we write down the isospin decomposition of M :

- 24

, whicn gives -a prediction for the ratio of the

M =:8lz Sjn A +8” Sen B +Sln' 8& C. : : (398

We must then modify the expression given for A , B by eq.(33).

The simplest way is to add terms of the form ¢ kf(u)+e(q+q”) “(u)
(we do not want to introduce Veneziano satellite terms, as we want
to modify the amplitude only off the mas‘s—sheil). With this assumption

we get

- G
, ., 3 8 A
A -a-B =—{_ m

3 2 1
v - 227) a 30F(2— -a (0)P(0) x
A .

(39)
1 ) Pl (L ey ack ,

x-2-—(3ck +e (q+q 7)) P(u)I“(-E)I"(l-—a (U))4(? -un’),
A’ and B’ should be added to the exb/r;éssions obtained for A
and B from eq. (33). It can easily be seen that this new terms
do not spoil the good properties of the . original afnplitude. Thus
eqs. (33), (39) determine a satisfactory Veneziano type expréssion
for our amplitude, ,

Finally, I want to thank Dr, Z, Kunszt for his help in pre-

paring the manuscript,

Appendix

We give here the full expression for the amplitude T# .

B, and C# are given by eqgs, (13) and (14) respectively, where
p(p® k%) , M’(p2 k%) should be replaced by p(p?) ,u(p?) and

B, , C are given below,

1
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3 =r(17 —a (NP

B =L —a( )Pk )x! -
1 2 #(0)

+O ( -a’z)+ 2°(0) +x 5

B(s,t)[-:—'+zp2(ql-ﬁl(m§-k?» a]

Bls, )= ux(n +7 (m2=k2N=yln -7 @2 =k )] +
- 2 1 L 4 ‘ L S 1(0) a”
, £ (0) q

! | — (sesu) + B(s,u) =y 11 +

o u s U 2 j .
+(s )+ B(s ) XM be i +-;—F(—g- -a(k NP(K2)S —————(B(t s)=B(t, m ))-—(s«u)}

. 1|
M3 - PO)-T(Z —a )P o ) .
+B(m2”,t) t—k2 - CI=F '2——a(k))P(k ){
A | )
' B(s,t)'[-‘-zz-j- x(T]1 +1-7'1(mfr-k2)) +y (7']1 —51 (m:—kz))]-
B =T (L —a(kzpPn2) i . : S f -
2 2 A ! ; ,
| L ' ~(sw u)+B(s,0) [~2x7 1}
a’ - 70 L1 ’ _ . a@a ‘
B(s,t)[-i——zp (T)1+711(m -k N+ T o a z)—- (0)+x#(0)a+y - 1+ }
o ) e 1 2
| €, =T (5 -a(k* NPk
+(se u)+B(s ,u)[a'-‘4p21;! -’19—247’(0)+‘-’—‘ﬁ—(9-)—1——:] b+

0’

2 B(s, t)[—-E—-+2p (1; +1; (m -—kz))+p(0)—(-—+a z)+ p. “(0)~xp(0)a’~y 5

]

LOLN 1+

—(se u)+B(s,u) [-a’+4p°n, +%—[f(0)+2;7 (0)-x

+ LT (R a (kNP (kD) | e (Bl1,5)=B(t ;m® N +(se u)} -
2 2 S-=m? : s

m

+ 2 T —a @ NPU)Y

(B(t,m? }=B(t,s ) =(seru)}
2 T
s—m”

r(Z'_ —a(k2)P(k?) - r(23 —a (1)) P()

2

T ~B@m? ,1)2
7 t—k
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- 1
C, =1"(2——a(k2))l’(k2)l

B(s.t)[5==2p" (7, 7 (m? ~k2)=H (0 (L ~a %)= 7' (0= x

+(se u) +B(s,u)ly 20 4y,

1 3 2 2
+?r(? —a(k NP(k )

S=-=m
m

The notation is

x ss +u =2m? ,y=s=u, z =p2+k’-m? ,
7

()= EGOIT(F-alp® N=T (5 -ap® NPE*)T(p")

B (p2)=i (p*IT (5 -a(p® N=T (5 -a (p* NP(p2)i” (p*)

s 2
7, is an arbitrary nonsingular function of p ,

arbitrary nonsingular function of p?

28

2
w

and k°

.

L (B(,m )=B(t,s) +(s e a)
Tr .

71

w(0a’

]

is an
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