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. /1 2/ 
In the · previous papers ' the authors developed a theory 

of nuclear rotation,· taking into account the ·three-dimensional kine­

matics. 'The . similarity of this theorY- with RPA {the random phase 

approximation) for ·vibrations/3/ ·suggests the possibility of solving 

the old probierri of a rrlcroscopic description of coupling between 

different modes in nuclear spectra. Here the authors present their 

philosophy on this topic, which generalizes the RPA for vibrations 

and their previous description of ntJclear rotation/ 1• 2• 4~ Possible 

applications of' this philosophy will be given in the following pa-

. pers • 
. ' ' 

We ~ite the Hamiltoninn of an even-even nucleus· in the 

second quantized form 

-~ 

IJ (1) 

in ·~ts Hartree-Fock basis, e being the H.F.energies, !i - hole sta­

tes and "tJ.ke '"vtJ,kf -:v 1J.fk· the interaction.'We denote the 
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true (spherically symmetric) ground state by-1 0> and the H.F. ground 

state {eventually axially deformed ) by I >,. 

Let us consider the .lineqr spa:ce N built on a set of low-

lying eigenstates of different nature, say, up to a definite energy. 

The states may belong to fu.e same nucleus whose H.F •. ground 

state is given by I > or. to its odd-even or odd-odd neighbour. 

Another linear space S of linear operators R + (transition opera-

tors) is defined so that the space of all R+,IO> coinc.ides with N 

We prescribe some commutation, anticommutation, or ~ultiplication 
relations between . the R + operators and proceed to find a few ope- . , 

. t 

rators r +c.;. s C S such that any R + is a polynomial·. of r + 

Suppose now that we find a subspace ... M C N. and .. a corres-. 
• . . 1 

pending subspace P ~ s C .P C S ) , such that R+l - > form a· 

space coinciding with N and R 1- > t;; N if 1-> c:;. M and R+~. P •: 

For instance, S rriay include. all products of r + with powers up 

to . ., and I - > = R:l- I 0 >with R + containing powers of r + up. to 
' . . ' 

.\ • In this ~xample the operators R+<;. P contain powers 'of r + 

up to f.! =· 'f/ - .\. 

Suppose further that a simple model Hamiltonian h .. h ( p, R, R·~ ·I ) 
is known which · •. is easy to diagonalize in the basis R+ i 0 > ••· 

1Here p are free parameters, · I -some well-knoW!! operators such · 

as the total angular-momentum and R+ t;; . S the tr~nsition·. opera-

tors whose relation to the quantities included in II . is 'an object 

of ,the theory. We impose on h the condition, according to which 

the parameters p may be chosen so that 

H I - > h I - > (k) 

for any I ·- > · c:;. N • If the space N is limited. .and the number 

of parameters is large enough this can be easily achieved •. The 
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best choice of h corresponds to the smallesf number of parame­

ters. In fact, one prefers to work with as fe_w parameters as pos­

sible, thus leaving only a few eigenstates in M and N • But then 

one chooses h so that (2) ~nd the following equations for R+ · 

which are exact for N and M. are valid approximately for much 

larger spaces M ':> M · and N' ) N .• This is expected to improve the 

_ accuracy of practical solutions of these equations. 

Now, let us take an arbitrary state I .-- > <=- M • Since r +<=-s C P 

(in particular, P s is als<;> possible) it follows that r + I - > ,;; N , 

r I · - > <;. N and therefore 

<-j[H,r+]-<-1{ h, r+] 0 . (3) 

From this it follows 

<- I. [ Q, [II, r+ J -:[ h, r+] J '1 . - > 0 (4) 

for any linear operator Q • Note, that <?nlY the diagonal matrix 

element of (3) ·is' missing in eq~ (4). In some special cases equa­

tiqns (3) 1 ( 4) · are known: from the author's th~ory of rotation/4 / 

. (eqs.- (3) and' from Rowe's formulation/3/ of RPA (eq. (4)) • 

. Eqs. (3), (4) together with the relations b~tween I and R+ 

(e~g. 'com~utation rel~tions of the angular momentum with R+ ) 

can be used to determine r + . and p • In general, they do not 

define r + and R + completely, · but only the. effect of R+ ,;; P on 

the' states :1- > G. M • Eqs. (3), (4) are exaCt,. but their applicability 

rests upon the knowledge of :1- > • Although, it is not clear how to 

ch~OS? r:.. > the II.F; . grou~d state I > might be. well known. 

Inserting into (3) and (4) :1 >instead of 1 - > one comes to appro­

ximate, but plausible equations: 
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[II, r +]I > - [ h, r+ 1 I '> "" < ll II, r+] - < :1 · [ h, r + 1 =· 0 . . . 

. (5) 

<I[ Q,[H,r+J [h,r+]1 > 0 . (6) 

To make these equations practical a second ,approximation is needed: 

one treats r+ as simple operat~rs, e.g. as iine~r combinations of 

particle-hole excitations. In this ~y one obtains .linear equations 

for the coefficients of r + giving their microscopiC ·structure. 

How to . go beyond th~ second approximation is known at 

least formally; In the .case of vibrations one resorts to the higher 

orders of RPA/5 /. The effect of the first one, i.e. of the substituti­

on of I - > by I > · is less evident and not easily estimated. Our 

main point here is that when increasing ~ space M not only 

more. states are included in the description, but its accuracy is also 

improved. Indeed, . let us choose I - > · to. be the closest state to I · > 

in some sense, e.g. with. respect to their overl~p. ·Increasing the 

·space M one can increase the overlap and therefore improve the 

approximation,· obtaining the full overlap and. thus eliminating all 
• I 

errors due to the substitution I - > _.I >if M co.incides with the 

space of all stat~s. 

This points to the possibility of using successive approxima­

tions _as follows. Consid~r the sequence Mil ' hll ' pll ' r: ' I ~>=I v> 
( 11 = 1,2,3 ••• ) in which the space MJ) and U1e number of para- . 

meters p in h increase with 11 • If the quantities r 11+ and 
. II II · 

p
11 

are known one may try to use them in 'order to find p11 + 1 ,r:+t 

i.n a simplified way. Now ., since < 11 I ·> ... 1 for 11 .,. oo we obtain· 

from (4}. 
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r 
l .. 

. + + . + + 
.<vJ[Q;[II,rv 1 -[~v •. r)J:Iv•>=<I[Q,[H,rvl-[_·hv,r)Ji >+O(v)=O 

and from (6) 

<.I' [ ~. [ H' ,+ r . 
v 

- [ h v 

(7) 

r'+]] I > 
' v 0 . (B) 

Here the primed quantities are solution of approximate eq. (B) while 

r: are the, solution of the exact equation (7). With suitable mathe-

matical requirements o;.e will have 0( v ) ... 0 ( v ... oo and thus 
'+ + . . . + 
R~ -Rv:..O(v-..oo) forRvc;.pv 

. These_ arguments work when one uses higher orders of RPA 

descdbing the a~harmonicity of vibration, since then one increases 

M and includes more parameters p. in h • Another example 

is the. inclusion· of higher powers of the angular momentum squared 

in h . to describe corrections to the simple rotational formula/~/ •. 

However, it may not J:'e ·always the best choice to include states 

belongin~ to one vibr,ational (or rotational) band in M , because 

this does not allow to ,improve the overlap <-I > indefinitely. It 

might be preferable to descdbe phenomenologically the .coupling of 

different ~ode~ by defining appropriate operators. R+ and including 

sufficient number of. parameters in h which together with R + 

should be ::determined from the microscopic equations (5), (6). 

Let us iliustrate the scheme.outlined above by two well known 
. + + 

examples. In 'the example of vibrations· in deformed nuclei r = R 
I. 

= B+<;. S=P=s, h = h.w iJ+B and p = h w B + being the phonon crea-

tion operator, such that [ B, B+] = l • In this' case M includes only 
1' .' \ + 

. the ground · sta.te I 0, >, N· contains I 0 > and B I 0 > • However, in. 

N ' several approximately harmoruc vibrational states are inv.olved • 

7 



Eq. (6) coincides with the RPA eq~ation/3/. As it has been poin­

ted out, one can introduce additional parameters accounting for the 

anharmonicity of vibrations.· 

Rotation in deformed nuclei uncoupled fro.m other modes· is 

de s~ribed by r + "' R I+m <:- s ; R t m being the rot on operators with 

multiplication properties of spherical harmonics/
1

/. In thi~ · case 
1 ... 2 1 h;,. --;:r I · , p = -d and M includes formally only the ground state 
2J 2J + 

I 0 '> while N includes I 0 > and the. states 12m> "'R2m I 0 > 

However,· N' contains several states· of the rotational band· for which. 

the simple rotational formula is approximately valid (or even the 

states of different rotational bands having approximately 'equal mo-

ments of inertia). Including higher poVIters. of 1 2 
in ·h , i.e • ...,.,;.itin~4;· 

... 2 . . ' ' 
h "' f ( I ) one incorporates the whole band into N . Eq. ( 6) coincides 

· With the authors equations in /1 , 2/ determining the microscopic struc~ · 
ture of ·the rotons. 

Appe-ndix 

The following examples· 

definitions of r + and s C . S 

.illustrate the variety of possible 

·• 
a. The quasi-Spin Operators 

Let us designate the states in N by an index r spanning 

all integers (or half integers) from the interval-T<_r -~ T (2T+l,.(Nl­

. being the total number of states in N ). The space S is defined as 

the manifold ~f all the operators 
+ 

R, r , "' I r > < r ' I 
or of their linear combinations 

R+ 
tT 

,}; 
T T 

I 2 

. T -r 2 + 
(T T r r ltr ) (-1) R 

1 2 r r 
1 2-
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The space s contains the following three· operators 

2T 

::Er 
(-1 ) :R + 

( =·0. ~~- 1r r -!., 1 
v.2T(T+l 1 

satisfying the commutation relations of the angular< momentum opera­

tor.· 

.b. Transition· Operators in an Elliott-Type Model 

·,The quasi..:.spin ·Operators may be introduced formally for any 

value of I N I ~;2. However, if 

IN I ·=(1+ p) (l·+q) 
1 

1 +-z- p + q ) 

where p , · q are positive integers · one may label the states in N' 

by eigenvalues defining states in the ( p, q ) representation of the 

sn ( 3 ) group, . rather than of the su ( 2 ) group . considered above •. 

In this case the 9 operators r: = R'(1 (i,j = 1;2.3) may be defined. 

so that 

::E 
·I 

.= 0 

R + If+ 
, I ' k 

The space so defined is the space of generators of the SU
3 

group contained in the group of unitary transformations of opera­

tors operating in N 

c. ·Phonon and Roton Operators 

If the number of states in N is infinite, then labelling the 
" states by subsequent positive integers and defining 

00 

ln+l><nl 
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·one comes to the space s containing the phonon creation and 

<:mnihilation operators. B + and B · ., such t.hat . 

"" + 
[ B, B ] = e "" :£ l n ·> < · n_ · :1 

n = 0 

There exists an another way of' labelling states which leads 

. to the rotan C?perators/2/, To define rotons ~ne splits the states . 

from N into multiplets . containing ( Zf+ 1 ) states d.istinguished .by · a,ri 

integer m < 1 m : s e > so that every combination of two integers <e. m > 

(e > 0) appears in .N only once, The raton operators are defined 

by-the equation/!, 2/, . 

+ 1-2 e e1 e2 e e 1 e2 . m 2 
R e I e1 m 1 >. ':£ . [ ( 2 e 1 + l ) ( 2e 2 + l ) ] . ( . ) ( )( -1) 1 ~ m 2> • 

m o - 0 0 . 0 Ill m1 -m2 
t.2 m 2 

I~ may be. shown that the operators defined in this way commute 

and· satisfy· the following multiplication relation 

+ 
R e1 m1 

+ eee eee 
Re .,:£ (2e+I><oo o > < 

2m2 em mtm2m 
Rem 

In this case the space ·s contains the three operators 

+ 
Re .. t. m 

(l,m 
t 

= 0. + l ) . 
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