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of nuclear rotatlon, takmg into account the ‘three-dimensional kine-

In the” prewous papers the authors developed a theory
matics, The similarity of this theory with RPA (the random phase
apprdximatiori’ for‘;\fibrations/ 3/ ‘suggests the possibility of solving
the old ‘problem of a bmicroscopic description of coupling between
differeht'_modes in nuclear spectra, Here the authors present their
philosophy on this topic, which generalizes the RPA for vibrations
and their previous description of nuclear _yrotation/ 1'2f4/. Possible
| applieations ‘of this phil‘osvophy will' be given in the following pa-
. pers, | o V

i We write the Hamiltonian of an even-even nucleus in the
second qu\énfizéd‘vfc;rm

' i - i 1 " + +' .
’H = 15'_; [el'&”-.% Vik, ik ]al_a,,+TiEke\’”'kea, a, aﬂ a, (1)

" in -its Hartree-Fock basis, e being the H.F.eher.gies, k - hole sta-

tes and ;—”.kg =V, =Viy, 0 the interaction,”We denote the



- true (sphemcally symmetmc) gr‘ound state by| 0> and the H E, gr‘ound ; ‘
‘state (eventually axially deformed ) by | > e ' ’ .
Let us consider the .linear space N built on a set of low-
lying e1genstates of different natur'e, say, up to a defm1te energy,
The states may belong to the same nucleus whose H.F. ~ground
state is given by | > or to its ‘odd-even or odd-odd neighbour,
Another linear space S of linear operators R™ (tr'ahsitien opera- -
tors) is defined so that the space of all,3+-r10> co,inclides with N° .
We prescribe some: commﬁtation,‘ anticommutation, or m‘ultiplit_:ation_,,‘
relations between"the RT operators and- proceed to find a few ope-
rators r+C-' s"C S. such that ahy R+ is a polynomialvf of r T,
Suppose now that we find a subspace ..M C N and a corr‘es‘~',1"'
ponding subspace .P{sC.P CS§ ) , such that R - > "for"rvn a’ k
'spacef'coinciding with N and R|-> € N if |+>G-<M_ and Rte, P .

+

For instance, S may include. all products of r with powers up

" to .7 and |-> = R¥ t0,>with R+ containing powers of r* up.to
A . In this example the operators RT& P contain powers of rt
‘up top =7 = A, : : .
Suppose further that a simple model Hamiltonian h h(p R, R 1)
is known which .is easy to diagonalize in the basis R* 10 >,
'Here p are free parameters, ‘1 -some well-known ¢perators such '
as the total angular—-momentum and R €S the tre.ns_1t1on opera-
tors whose relation to the quantities included in 'H is ‘an object
of the theor'y. We impose on- h the cond1t1on, accordmg to wh1ch

the parameters p may be chosen so that

2
5

Hi - > = h |--i > _‘ , | e

for any | -> & N . If the space N is limited‘ and the riumber

of parameters is large enough this can be eas11y achieved, The



.‘_be‘s’tv»c'hoice of h corresponds to the smallest’ number of parame-
ters, In fact, one prefers to work with. as few parameters as pos-
sible, thus leaving only a few eigenstates m M and N . But then"
‘one choo'ses h so that (2) and the following equations - for Rt
.which are exact for N. and M are valid .approximately for much
larger spaces M"OM. and N”.ON., This is expected to improve the
_accuracy of practioal solutions of these equations. -

Now, let us take an arbltrary state | -=> @ M | Sincer G—sCP_
“(in parhcular', _P. s is also possible) it follows that rfl->ce N,

r |"- > & N and therefore
‘ “[11;r+]|;‘>—[h,r+]f|-> =<=]TH, r*]1=<~|{h, r*]1 = 0. (3

From this it follows

< LIQ . )] —lhet11] -5 =0 (4

for any 11near operator Q . Note, that only the diagonal matrix
element of (3) 'is missing in eq. (49). In some special cases equa-
tlons (3) (4) are known from the authors theory of rotatlon/ /-
'(eqs. (3) and’ from Rowes formulatlon/ / of RPA (eq. (4)).

| Eqs. (3), (4) together with the relations between I and R*
.»(e.g./ commutatlon relations of the angular ‘momentum with R* )
can be used to determme r,+.and A p . In general they do not”
defme et and R+ completely, but only the effect of R*¢ P . on
the states 1=> M . Egs. (3), (4) are exact, but their applicability
rests upon the knowledge of |- > . 'A’.lthoug‘h,‘ 1t is not clear how to °
chooslewﬁl"'—.-> the ILF. ~ ground state | s might be. well known,
Inserting into (3) and (4) | >'instead of | - > one comes to appro-

ximate, but plausible equations:



[,e4] > = (hort] [ = <] (etlo< ] Dhetl w0, O

<ttt = Chye*11 | > = 0. o (6)
‘To make these equétions practical a second abproﬁcirhation is néededr 3

one treats r*

as simple oper‘ators, e.g. as lmear combmatlons of -
par'tlcle-hole excitations, In this way one obtams lmear equatlons
for the coefficients of et giving their m1croscop1c ‘structure,

How to. go beyond the second approximétion is known at
least formally. In the .case "of vxbrahons one resorts to the higher "

: orders of RPA/ /. The effect of the. fn'st one, i.e, of the subst1tut1-
on of [ -> by| > is less evident and not eas11y estimated, Our
main point here is that when increasing the spacé' M’ not only
more states are mcluded in the descr1pt1on, but its accuracy is also
improved, Indeed,.let us choose 1=> to be the closest state to | >
in some sense, e.g. with respect to their overlab.‘lncreasing the
space M one can mcrease the overlap and therefore 1mprove the
approx1mat10n, obtammg the full overlap and thus ehmmatmg all
errors due to the substltuhon |- > —»I >if M coinc1des ‘with the i}
space of all states,

This points to the p0551b111ty of usmg successwe approx1ma-’ .
tions as follows, Consider the sequence M,, h,, y Py s v ==l
(v = 1,2,3..) in which the space Ml, and the number of para-
meters P, m '.hv iﬁérease with v, If’the quantities r: and

p, are known one may try to use them in order to findp, . ,r,'f+ i
in a simplified way, Now , since <v | > » 1 for v » = we obtain”

from (4) .



] QLT 0 .fr:]]tlu‘>;,<|[Q.‘[H,;f:]-v[_'hv,r:m >+00) =0
- @

and from (6)

STG e Tolh, * 10> = 0. (@

" Here the primed quantities are soiution» of approximate eq. (8) while
r*. are the_s'olution‘ of the exact equatioh (7). With suitable mathe-~
- matical requirements one wi].l have 0(v )0 (v » « ) and thus:
‘Rx' -R, -bO(v-boo) for'R G-P .
‘ These arguments work when one..uses hlgher orders .of RPA
descrlbmg the anharmomc1ty of v1brat10n, since then one mcreases'
M and mcludes more parameters p in k., Another example '
is the mclusmn of hlgher powers of the angular momentum squared
- in h to descrlbe correctlons to the simple rotatxonal formula/4/.'
However, 1t may not be always the best choice to include states
belongmg to one v1brat10na1 (or rotatlonal) band in M | because
'ith1s does not a].low to improve the overlap. <-| > mdefihitely. It -
might be preferable to describe phenomenologlcally the couplmg of -
. deferent modes by defmmg approprxate operators R and .including
suff1c1ent number of parameters in h = which together with . R+ 4
»should be’; determmed from the microscopic equations (5), (6).
o Let us 111ustrate the scheme outlmed above by two well known .
: examples. In the example. of vibrations' in deformed nuclei vr+A=' R +=
= B¢ S=P=g h =h . B*Band p=hw , B* being the phonon crea-
'tlon operator, such that [B B+]—1 In this case M  .includes only
. .the ground ‘state 10, >, N _contains | 0 > and B+| 0> . However, in.

N * several approximately harmohic vibrational states are involved .



Eq. (6) comc1des w1th the RPA equat1on/3/. As it has been»’poin-
ted out,” one can 1ntroduce addxtlonal parameters accounting ‘for the

anharmon1c1ty of wbratlons.

Rotation in deformed nuc1e1 uncoupled from other modes"is -

deseribed by rt=RS Es, Rgm - being the roton operators with
o : 1
" ‘multiplication properties of spherical harmonics / . In th1e case :
1 73 1 . N
h=—z1 . p = —ﬁ- and M includes$ formally only the ground state ..

29

j0> while N “includes | 0> and the states |2m> = Ryy [0 > o
" However, ‘N “‘contains several states of the rotationalr‘band‘ for which' i
the simple rotational formula is approximately valid (or even the’ . ;
states of different rotat1ona1 pands having approximately equal mo- .
ments of inertia)' Including higher powers .of 12 in-h , ie. wr‘1t1né4/:,;t:
h=f( I ’) one incorporates the whole band into N . Eq. (6) ceineides
‘with the authors equations in 1,2/ determmmg the microscopic struc—": "

ture of-the rotons.,

Appendix
The following exarﬁples‘ ~ illustrate the variety of POééible g
definitions of r* andsC S . T E

a. The Quasi—Spin Oberators

Let us designate the states in N by an index 7 spanmng
all integers (or half integers) from the interval-T<r < T (2T+1= {N§ -
. being the total number of states in N), The space S is defmed as

the manifold of all the operators

+
R, .- =]r><r”]

or of their linear combinations
) + ) . T-—r2 +
R, =r2r (’TTr,.rzi tr ) (=1) er P,



‘" The space s contams the followmg three - operators

. S :
s, - (—1,)____; R,, (¢ =0, &1 )
, V2T (T+1 )

‘ satlsfymg the commuta’uon relatlon.s of the angular‘ momentum opera-

tor,

b. Transition Operators in anr Elliott~Tyvpe Model

"The quasi—'spin operators may be 1ntroduced formally for any
value of { N }>2 However, if
1 -
INY =(1+p) (‘1‘:‘+vq YAl 45— (p +q ) }
where P+ q.are _pbsitive integers "one may label the states in N
by eigenvalues defining states in the (p,q) representation of the

SU- (3) group, rather than of the SU (2) group considered above, _.

'In this case the 9 operators r: =R} 1y (hj = 123) may be defined.
" so that '
+
2 Ry =0
+ ;. + +
[R,j'Rk ]=P‘12 Bjk - & B¢
The . space so defined is the space of generators of the su,

group contained 1n the group- of un1tary transformatlons of opera-

. tors operatmg in N |,

C. -Phonon and Reton Oberators

If the number of states in N is 1nf1n1te, then labelhng the

’states by subsequent pos1t1ve 1ntegers and def' nlng

00

B+=‘ \/n+l'|n+l><n|‘

n=0



‘one comes to the space s .conta1n1ng the phonon creatxon and
'ann1h11atxon operators B and B - " such that

[BB ] =e = 3 '|n'><‘n".| .

n = L

There ex15ts an another way. of labelhng states thch leads N
to the roton operators/ /. To defme rotons one sphts the states .
from N into multlplets conta1n1ng (22+1 ) states dxstmgulshed by K an
integer m (|m | <€) so that every combination of two 1ntegers (2 m)

(¢ >0) appears in .N only once, The roton operators are deﬁned

by the equation 1,’2 B
* o AR
Rgm ]2'1 m, > 2251 [(221+1)‘(’2E2.+’1)] ( 0 0.0, ) ( ml_m)z( t) ]Vzm >,
o hmy : . . ;

‘ It may be. shown that the operators defined 1n this way commute
and sat1sfy the followxng multlphcatlon relation -

g e ¢

mlmzm

+

T e

Lgmag ¢

) Ry,

In this case the space 's contains the three operators

- *
'Re=1,m

'(}.m .='O' + 1 ) .
’ ‘

References

1. LN, Mlkhaﬂov, E. Nadjakov. JINR prepr1nt,. P4-4923 (1969)
.~ Preprint ICTP, 1C/69/20 (1969). .

2, LN, Mikhailov, E. Nad]akov. CR. Acad.Bulg.Sci., 22, 1221 (1969)
. E. Nad]akov, LN, Mikhailov, C.R, Acad Bulg.Sc1., 3_2 1377 (1969)

International Conference on Properties .of Nuclear States, »Montre—

al 1969 - Contributions, 3

10



3, DJ. Rowe, Microscc)pic Collectivé'Theories,' in ;'E‘undamentals' ;

~in Nuclear Theory", Vienna 1967; .Rev,Mod. Phys,, 40 153(1968)

-4, E, Nad]akov, /IN Mlkhal.lOV. Nucl Phys., _é_J_.Q_Z, 92° (1968) JINR
preprmt P4.3204 (1967) , v

0 m: E. Nad]akov, Y Plperoxrd, D Karadjov, I Slvnev. C.R, Acad,

. Bulg,” Sc1., .22, 639 (1969)

5 T Sawicki, Phys, Rev.,, 126, 2231 (1962) .
I, Da Prowdencm. Nucl Phys., (ﬂ, 87 (1965); A108, A108, 589 (1968)

6 IN M1kha1lov, E., Nadjakov, *JINR preprmt E4—4884 (1970)

Recelved by Pubhshmg Department
on March 2,. 1970

11



