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Introduction’

The high—energy scattering of particles by nuelei givesia’s'.‘
“is known, the mformatlon about the nucleon-nucleon correlat1on
function. An- exact extractxon of this information from experlment
turns out to be extremely difficult since an infinite "system of
coupled equat1ons should be solved (even it if’ is assumed that _‘
the nuclear states are known)., Therefore it is very mteres’qng -
to develop rnethods sufficiently well approximating the exaict,'so—m
Iution in which the seattering. amplitude is more directly co;dnected_
with the desired correlation function. ‘ | ‘

In ref./ 1 it is' shown that the amplitude of elastic ‘scattering .
— of particles by nuclei can‘ be sought by solving a system of two
equati’ons which. is equivalent- to introducing in addition to elastic,
only one inelastic channel taking into account effectively all .
inelastic channels, In this case the pairing correlation function
is expressed through the couplmg potentlals in terms of which -

/2,3/

problem was. formulated. in order to clarify the role of virtual

the effectlve opt1ca1 potent1a1 15 also defmed Earlier

trans1tlons in the nucleus m elast1c electron scattermg. However,

in solwng it the change in the average potential of mteractlon

a similar



. of a par'tlcle with the nucleus in the exc1ted state and the

'exc1tatlon energy were neglected » _' ) 7_ "'.;
_ In the present ‘paper a method ‘s suggested of sol\nng

- the system of two equatlons for: hlgh partxcle energles m the

. case . of the central-symmetmc couplmg potentla.l. An expl1c1t .

hlexpressmn for the opt1ca1 potent1a.l 1s obtamed in. terms of the

. effectlve potentlals of interaction of a partlcle w1th the nucleus,

bwhlch depends on. both the prOJectl.le energy and the effectlve :

"nuclear exc1tat1on energy. The elastic scattermg amphtude, whlch/

" is- also glven, has a s1mp1e form identical with the Foumer—Bassel-

.representatlon of the amplitude, .The obtained results allow to -
treat’ easlly the expemmental data on elastic scattermg of partlc-
 les by nuclei at high energles and thus to obtam mformatlon on

nucleon-nucle on correlatmn functlon.

2. Method of. Solving |

To the system of two equations under consideration
(Vv + poz) ¢,O (r) = Uy lr) l/lﬂ (r] + Upy (r) t/ll (r)

| | | @
.(V2 + Plz) Y. (r) = Uio(r) ¢o(r) + Usi(r) g (1)

there corresponds the following optical potential operator

Ugpe = Ugy + Ugy —oes - Uy, - (2
~ P, + vV -U,+iéd :

Here 'p0=\/2p E - is the projectile mementum; Pi= \/2#(E—€) is
the momentum related to the. effective excitation energy «¢; U _2pV

is the average va.lue of the effectwe prOJectlle-nucleon mterao—



’ tlon/1/ over the ground(n 0) and excited (a= 1) nuclear sta‘te‘s‘:

. u.. 2[1. V stands for the effectxve couphng potent1al .The
'correlatlon funotlon is contamed 1n the second terms of the rlght—
hand s1de of eq. (2) and 1n the momentum representatlon is - .
determlned apprommately by the formula K (q,q") =Ug; (q) Uyolqg” )

We find ‘the optical. potentlal by solv1ng the system (1)
(1n the momentum representatlon) in the hlgh-energy approx1matlon
E >V . To th1s. end_we” write the kelastxc scatterlng amphtude
in the form ‘ o B 8 '
iqr

foo(O) L™ [Uaote) B0 (D) +Uoi) g1 & s, ()

: : . ' N . . —i . "'
where q = po-p LB () =e "y () (=0,1),

n

or 1ntroduc1ng the appropmate F‘oumer representanon (see also/ 4/),:
- - ‘ —- 3 ’
w(0) == L3 fU Aa=71) 6,0 4°r v (@

where , ; ' . T

¢ (r)=5 8(7) = - 3 T, ) e o ()
EN [5,~1"-p-~id ™ Jomllr=r. @n)°

. -

~Then we make use of the exact representation of the functions

U- (x) through the Bassel function

U,n(x) == [ 3, (p3) x,0(p) p dp
. 0

(6)

x (p) =—fm.U (Wpl+1?)
nm 0 n

/The scattemng amphtude f,,(0) defining the total melast1c
cross section can be found by a s1m11ar method



" Note that nowhere we: use a par’tlcularly chosen corrdmate sYstem
‘contrary to the procedure in qua51c1ass1ca1 methods. Here p :
'comcldes formally -with the 1mpact parameter. ‘ v

Insertmg eq. (5) 1nto eq. (4) and taklng into account eq.(6)

L

we get”
.f'oo<9v'>"‘=§"'-fo Mon(a: ) Xoubode dp T ()

where the "local" amphtudes Mon: f Jo(p ]q-ﬂ)qs ('") & satlsfy
the: follow1ng 1ntegra.l eqlatlons
i o, (plq—ﬂ)M (p o0

(’)I a7 .
Ip—fl -p -ié

MOn(pq) =J0 (qp)a()n

- As before,/4/ we solve  eq. (8). at high energies and small scatte-

ring angles. Then

Mo, (ap) =3, (pq) T (p) B
| . | (9)
f55(6) =-.l:. fo.lo (ar) x, (p) L (p) pdp

» and’ the functions Fn’ should be found. from the system' of

equations

. Fn(p) =8n0

%l~

}: ,p')xnm(rp') r (p?) p’ ‘d‘p' . (20)

" The kernel of the'integral equation (10) -

‘ J( -r]) J, ( —7]) .
G (pp’) = [ P2IP 72‘ P ]P a1 FETOE (10,)‘ 7
o - _,5 - N :




" was ihvesi;i(‘gated/f},/ :fc:sr‘-,nzo\:( :

e Sy : 1 ' : S
G, (p,p") =i [ — & ~p" 0 (x ;
o P P.«.» e » [ Pyt ) (p 4 )~’+ (- p,).] s (}1)..-
“For n =/ 0 SRR - ‘
Gn,,('P?P')=l—p—P‘5(, -P)-l-——fJ(pw)J(p w)wdw
. i 00 . R

“or within the *ac‘cv:uracy up to the terms ( A p )2 =(p0--—pﬁ )?
G (p,p) = ,.._71_ [ ‘5 (P; P'); . (A[;,)z 1 (1é)
-m NS : p - p PR EZ . . A .

.’Wlth the account of eqs, (12) and (11) the final form of the

: v,&v,vsystem (10) is

‘ l"oA = 1:_f_+u a T +b T e
T L - (137
Fl =C.F07+d4-r‘l “‘y M ‘ ’ . .

-

where the fbllbwing notation is introduced

‘a =: _.l__ X b = —l— X c = -.._l_ d = L
. 2p0 oo ' . 2p0 o1’ 2p0 xlo ' - 2p0 xll
- (14) Lo
e W) = -
TRy = Ld — [ g IV x,,p dp + fo I, X0p dp. ]
, 4p, l A » o~
The exact solution of eq. (13) reads
.FO = A (1 - d —-Y. b ) _ - . .
T (15)
P . ~1 ’ PR
I =A (c¢ +y.a-1y) : .



- Here A =(1-a)(1-d)= b.c and the constant y |is defined by "

S o , Lo PO e Lol
y = L e
I +a,+ ay o T 2 A S h
where- ‘ e o : B R '%.
Ap) = -t (Ap) T
\ao=£§—p-)fA cip dp ' a, =S-§-'—]—-)— J'A (1=a).d.p. dp
R . —vu A
(A )2 00 ,‘—l (17)
p B e
112 = —2—-— fO_A'. b. ¢ P dp

' For SlmpllCIty we have neglected here the contmbutlon of

the prmc1pa1 value of the mteg,ral (10) which was con51dered

'apprommately in the former paper of the au.thorj " An exact

, account. of it as well as ,the account of higher orders of Ap

require obviously the numerical solution of the systém (10). Since,
however,the integration out the energy shell chang,es alsb the =
SCattering, amplitude at small angies which is rﬁainly valid in -
this paper we should bear in mind the possibility of mtroducmg

- a correctlon in the elastic channel where it is more essenhal

[l

(see ref, : .
Inserting eq. (15) to eq. (9) and taking into account eq.(14)

v

we get the final form of the elastlc scattermg amphtude

i .
oo X, (1= — )+ x X, =Y X . . ’
00" 2p %11 T T, %ot K10 01 A
r00(6)={) JO(Pq) ——=F 1 p.dp e (18)

1
(1—-§—x )(1—2 X, ) + 2)(01)(!0
o Py Po

From this equation for a purely potential sca’cterlng, follows the
5/ |
x (p)
f(0) fJ(qp) p.dp .
£ i .
- oy (p)
5y x (P
'8

known result




o formt,lla ‘;ﬂ' PR ) : .
| AP e i&th:t("’) P e
- ﬁfoo('e) = f Jo(qp) e pdp o (19
Sl ares e SR S X ’(p) L et

3 Opt1ca1 Potent1a1 ;"g‘j#

oy

We obtam the optlcal potent1a1 comparmg, eq. (18) w1th the

vA‘The amphtude (19) corresponds to the solutlon of the Schroedm— 5 :

‘ ger equatlon w1th the potent1a1 ’

g Xde)
Uovt.(r').;?f—“ @

mri’ \/"—2_"""

in the nhig,h—e‘ne'r"g,.y, apprbximatién/ 5 . As a /resu'lt'fwe "obtai_n'

X (I=oim ) ) be X X = X
L oo i 2p ‘1 2p 01.°710" o1t -
.xopt = . ,. E 0 : . 0 . . (21)
’ l.‘ 1 ‘ ’ .
1 - e i ‘ . : S
- 2p X7 2p | Xor '

0

‘ThIS expressmn determmmg, the optical potential (see eq. (20)) ’4;7 .

is the main result of this paper, To explam the structure of the

’ optical potent1a1 we ‘write it for a simple case A p =0, Im X, =0.

nm-. .
(we recall that in the general case the functions X , are

complex/ /) ' Then y =0 e.nd after sxmple transformatlons-y;/e get

[

R T N 1 Xo1 Xy
RoX 0= Xoo "'Z;zxn ) 1 2 : o
: . ey X . g
T @
R 1 Xgy X ’ N
I X - L1 o1 10
Pt gy, 0 ,
Po 1+ — ¥ 2
4 + 11 i
Po

=— pdp - (20 ¢



4 Discissior
; The channel couphng potent1a1 x o1 enters ‘in (22) quad—
_ratxcally, since only two—partxcle correlatlons m the nucleus are
‘taken 1nto accountj / It is seen that the optxcal potent1a1 (21)
1s local in the approxxmatxon used, is complex and depends on
‘both the pro;ectxle energy and - the effectxve excxtatxon energy. The -
1magmary part of the potent1a1 (22) is’ completely due to the
’ mtroductlon of- the 1ne1ast1c channel and 1s larger in’ magnltude i
than the- second* term “of the. real par't. ' : :
" " Note that the 51gn of the 1mag1nary part of (22) corresponds .
to the absorptlon since Im Xom»t— flm , opt(p!l) di. and, conse- .
quently ImUp<0 .'  ‘ hAnL e
Now we clamfy quahtatxvely the role of: the effectlve exc1ta—
“:‘ti\on energy, A p in elastic scattemng of e1ectrons by nuc1e1. For

a . rough estxmatxon we wmte the amphtude (18) as
l.00(0) - f J.o(qp) X 00 (P) P dP =Y fo 'Jo,(q'P) 5(6'1v(P) 'P’ dp

In the case of uniform electric charge dlstrlbutlon the. first . term

is proportional to the form factor Eo (qR) = ( R)z( stqR cos g R )
qR* -
If we assume/ / that the tran51tlon den51ty is. pyy (r;R)’ = 3 Poo ('r,‘R), ’

where P oo 1s the charge den51ty in the ground state, then

:the second’ term is proportmnal to the form factor [%,(qR):- lT' (qR)

Now it is easy to. show that in thlS case the curves of
the squares of the form factors will be in the. "counter-phase",
This means that the factor y can lead to the diffractional cr'oss ‘
sectxon minima belng fxlled partxally. This 1mportant fact will. be ‘

further 1nvest1gated in more deta11 by numerical ca1culat10n.
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