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1. Introduction 

In ref/
1

/ an approach to the, nuclear rotation was developed 

based upon the assumption. that the Hamiltonian of a nucleus can 

be split into two parts - the Hamiltonian of a rigid rotor ( h ) 

and an operator ( H 1 ) describirg the intrinsic excitations. The 

spectra in real nuclei differ from those of the rigid rotor in two 

points: 

1). In the spectra of a nucleus one finds many levels with 

identical quantum numbers of the angular momentum. These sta

. tes belong to different rotational bands and in general corres-, 

pond to different values of the moment of inertia. 

2). The , bands in nuclei contain only a certain part of the 

. rigid rotor states. E.g. the K =" 0 bands of even-even nuclei are 

composed of I even . s~tes, a?d the values of in any band 

do not ·exceed some maximum value I max 

In this paper we ~ke the Elli~tt. mode/
2
/' to examine the 

theory formulated in ref./
1

/. In the mod~! the properties 1,2 of 

nuclear states are maintaine?, but all the moments of inertia are 

' equal and the energies of. stat~s with a pxed :.1 coi11cide. We 

show that all ·essential features of the theory may be left unchan-
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ged while describing the Elliott model along the· lines 

in ref/1/. . . 

We show also the way in which the Elliott model may be 

generalized to account for the coupling between rotation and 

intrinsic excitations. 

2. Multiplets of Broken SUa Symmetry 

Suppose that a number of nuclear eigenstates I 0 I may be· 
. ' 

labelled by the eigenvalues of SU.a , representation in such 

. a way that the energies of states are given by a simple function 

of. the eigenvalues. We define the latter by a Young pattern 

m--;--l (1) 

~ 
where the two integers p and q are such that 

0 = ( I + p ) ( I + q ) [ I + I/2 ( p + q ) ] 

of the Oa subgroup of SU 3 , and by the two eigenvalues I, M 

Following ref.f
2

/ we identify I , M with the quantum numbers of 

. -·the angular momentum" of a nuclear eigenstate. We distinguish bet:-. .. 
ween diffe.rent states with the same I , M by an additional quan-

tum number w the definition of which is given in rer/
3

/ and is . 

discussed in Appendix 1. In the following the two indices p, q 

are often represented by the symbol. JL • The other indices 

marking states within the representation JL are represented . by 

the symbol v 

We come _to the definition of a nuclear model assuming 

that the Hamiltoni~n II may be written. as in the formula 
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." " " " H=Ht + h(fl,v)=Ht+E(fl->p,v->v ); (2) 

'Where the quantity h depends on the. operators. ~, 17) corres-

pending to the eigenvalues ( J1. , v ) precisely in the same way 

as the energy of nuclear eigenstates E ·depends on the quan

tities (fl; v) 

" ... 
The structure of operators (Jl, v) in terms of , nucleon 

should be regarded as· unknown at this point 

and. the aim of the theory is to find the. nature of variables 

entering the collective Hamiltonian h • Hchving this in mind we 

are setting up a scheme, 'Where all essential information on h 

t . t . \ /l/ b t tr and on the eigensta es 1s represen ed as m. ref. , y he an-

sition operators 
v2 

Ev1 (J1.o)=IJ1.o ,v2><J1.0,vl (3) 

operating within the irreducible representation of SU
3 

The first problem in formulating the theory is to define 

a small number of elementary transition operators by means 

of which one could eventually find all the operators in eq. (3). 
E v' This is solved by taking linear combinations of v 'Which 

transform as basic state!:; __ of irreps of SU ·a 

+ v v 2 
R "'·~ c (J1.)E 

Jl, V V V VI V 2 V 
I 2 

(4) 

+ 
The commutators of R J1., v with the group generators entering 

/ 

h and defining the result of infinitesimal transformations are 

linear combinations of R + with . the same 11 , and the 
Jl,V 

weights of various v' are specified uniquelly by the group .indices , 
J.l' J.l • 
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, Assuming, as in rer/
1

/,. the commutators [ H, R ;v·] being 
+ . . 

identical with [ h, R Jl.V ] one finds that. the different values of Jl 

do 'not mix in the formula 

+ '• + - + 
[ H • R Jl v ] = [ h • R Jl.V ] = ~, J w , R Jl.V (5) 

+ 
Since the operators R Jl y are linear combinations of the skew-

projecting operators (3) in the space of eigenstates of an irrep 

·of SU 3 they are determined completely by the projecting ?perator 

P = ~ .E vv ( Jl o) 
Jl 0 v (6) 

and the eight generators A ( i , j =l, 2, 3; ~ A = 0 ) , 
lj I II 

satisfy-

ing the commutation relations 

[Akl ,Aej 1 = 8 e1 A kj - 0ki Ae1 (7) 

'l'he operator in eq. ( 6) being obviously invariant under any 

. unitary transformation of states within the irrep Jl 0 is just 

one of the + 
R Jl.V operators; 

R + ( N = l) = p Jl 0 ( 8) 

(here and in eq. ( 9) N being the dimension of the representation 

Jl ). The operators 

+ 
R Ii 

3 
(N=8)=v'--A 1. 

2~ J 
(9) 

span the simplest nontrivial irrep of SUa (1,1). 'l'o complete 

the definition of the elementary trans.ition operators R tv we 
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write down the value ·af the normalization constant g 

chosen so· that 

The right value of g is 

2 2 
g=p +pq+q ;~-3(p+q). 

in ·eq. (9), 

(10) 

(11) 

Eqs. (7), (9) together with the formula for the model Hamil

tonian h determine the r.h.s. of eq. (5) which in the present 

approach substitutes the dynamic equation for the rotan operators 

in the earlier formulation {see eqs. (3.5) and (2.2), (2.4)) in the se

cond pap.er referr~d -to in/
1

/). We analyse this equation in the next 

two sections. A comment on .the nature of the transition operators 
. + . . . + 
R JL, v should 'be made here. Some of the a·perators R IJ , are 

. raising and lowering operators· in SU 3 • But in the ·basis where 

is a quantum number they couple many states of various rotatio-
. + 

nal bands. Thus the con~ept of R IJ is a generalization of the 

notion of a rotan operator similar to that given in the last section 
/1/ of· the second paper in ref. . • 

3. Transition Operators in the Elliott Model 

The Elliott model corresponds to the simplest way of breaking 

the SU 3 invariance of the Hamiltonian. If one associates with 

the generators A 11 in eq. (7) certain one.,.body operators then 

any twO-body scalar which operates within ·the representation of 

SU 3 is equivale~t to the total angular momentum. That is, the 

simplest form of h ·. is given by 
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h-a ... I2 
-"2"" 

... 

(12) 

where a is a constant and the components of I . are deter-

mined ·by the group generators 

A lj -A II = ; ; ( Ilk I k 
(13) 

c Ilk being the completely antisymmetric third-rank tensor. 

Another way of' writing eq. {12) is 

' 2 
h,;a(r-Q ),ar+h' (12') 

where r = '£ H~ 11 A 11 is the second-order Casimir operator . 

of the group and Q 2 "''£ 11 Q ~~ is a scalar composed ~f the com

ponentS of the tensor 

Q 11 = ~(All +All ); (13) 

The commutation. relations {7) imply definite commutation 

relations · between Q 
11 

op.erators. The Q Q interaction of eq. 

(12') in the many-body Hamiltonian and the commutation relations 

between the operators Q 
11 

lilj in the foundation of the Elliott 

model. This makes the commutation relation (5) an operator iden

tity in this case. It is easy to see that eq. (5) reduces to the 

dynamic equation of ref/1/ for the roton oper:ators R+C= 2 ,m 
+ . . . 

Indeed, the three of the operators R 11 are proportional to the 

angular · momentum operator 

.... + 
R 

3 .... 
v--P I 

2 g ll 0 
(14) 
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and therefore commute with the model Hamiltonian h • If the 

many.:.body Hamiltonian is a scalar, this. part of eq. (5) is trivial. 

The r.h.s. of the rem~ining equations are determined uniquelly 

.by the tensorial propen1,ies in 03 of the operators 

+ ' 3 
R = Y-- P,. Q m 

· &. 2 , m ••. 2g rO 
.'• (15) 

·where Q m are the components of the quadrupole operators Qll 

in eq. (13) written in the spherical basis: 

Q o ==-V .:- Qaa 'Q ±I= :!:(Qta -t_i Q 2a ) • 

I 
Q±2=-2(Q II-Q22 -t.i 2 Q 12 ), 

Introducing the operators I P ( p = 0, ±I) so that I 0 == I
3 

I t,t = :;: I/..;'2 (I 
1 

±ii 
2

) 

one obtains 

[ H , R ~=2 ,m] =-2"12 y' 6 ; (21m ,-p I 2m-p)l P Re:
2
.m_p

(16) + 
- 6R f==2,m I= a ~m,J mm'R t=2,m' 

This is precisely the. same equation as in ref/1/ for the rotan 

operator R t_ 2 • m 

. Eq. (16) are not sufficient to define the operators Q and R+. 

' This is related to the fact that the substitution 

• 

does not ~ffect eq. ( 16). The latter may be supplemented by 

subsidiary conditions 

9 
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' [ I 0 'Q .;, ] = ID· Q m . (18) 

as it is suggested ; in: ref/
1

/.' 

Following/1/ it. i~ easy to see that the microscopic. structure 

of the one-body operators Q m and the value 'of the moment of 

inertia j= = 1/a are given by the equationsx/ 
1 

<-I [ a: a l , I [II , Q 1 -a ~ J , Q , 111-> = 0, 
m m' mm m 

(19). 

<-11[1 ,Q ] -mQ 11->=0 • 
0 m m 

In eq. ( 18) the state 1- > may be chosen arbitrarily.; Th!s is 

because the moments of inertia or different bands coincide in the 

Elliott model. One cannot expect this feature of the. theory to be 

maintained in the more realistic cases. 

From the above formulae we conclude that the Elliott model 

may indeed be studied by using the raton operators. It is interes

ting to note that the well-known Thouless formula for the moment 

of inertia follows from eq. (19) if one takes the Hartree-Fock 

state for 1- > and substitutes 

~ m ,J mm ' Q m' 1-> by Jmoi-><-IQol->. 

• 
x7 Strictly speaking, these equations determine only the 

product Q ml- > which is sufficient to evaluate a • The procedu
re may be extended to obtain information on the other blocks of 
. Qm by taking into account more detailed subsidiary conditions. 
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" This may be a good approximation if the maximum value of I · 

in the._ band is bigx/. But this approximation f<;l.ilS to' reproduce 

the commutation relations between the R + operators ' ' 

+ ·•. ' .. -110 
[. R+ • ] v Re , =- P I 
- &2,m =2,m •·2 g' Jlo 

,(22mm'jlm+m') 
m+m 

(20) 

,, 
· (this commutator vanishes in the approximation which leads to 

the Thouless formt4a). Eq. (20) is a particular case of the recur

siam formulae allowing one to find an arbitrary · roton operator. 

Failing here the approximation may lead to errors in prescrip

tion of the transition rates (particularly between the states of dif-

. ferent· bands). In ref/4 / the three-dimensi~nal theory of nuclear 

rotation ·is suggested accounting for the terms in ::£ , J , Q , 1-> m mm m 

which are neglected in the above approximation • 

4. Way beyond the Elliott Model. Fitting of Energies 

in the SUa Multiplets 

Spectra of real nuclei deviate in many ways from tne 

rigid rotor formula/5/. Contrary to the predictions of the Elliott 

. model one does not find in the experiment even approximate de-
l 

generacy of states belonging to different bands but having the 

same value of I • The spacing between states does not 

follow the I (I + 1 ) rule and the coefficient before this term varies 

_ from one band to another. There exist two possibilities for the 

gener<?-lization of ~he model. The fit'~t one consists of. increasing 

the number . of transition operators appearing in the model Hamil-

x/ Our Preliminary estimates/
4

/ show that the errors in the 
moment of inertia which are due to this approximation are small. 
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tonian, i.e. of going to a larger group than SH3 • Enlarging the 

group one comes to more spacious· multiplets, all the members· of, 

which should be ·taken: into ·account. 'Thus, in a way~ the first 

possibility is just a step from one problem _to a more difficult one. 

We are going to explore . the possibility to parametrize the 

energies in SU 3 multiplets. Formally this is easily achieved by 

using the n operator ~f r'-ef/31 given by the formula . 

0 = ~ IJ Q ll I i. I l (21) 

According to ref/
3

/ the set of eigenvalues ((l), I, M ) of the 

operators . (0, I 2 
, I 0 ) specify completely the member of a g!yen 

su 3 multiplet.. It hence appears that the ene:rgies of states may 

be given by the finite series 

n . 

E(K,I)=E
0 
+~a. (I 0+0) ((i) (K,I))m 

. n,m n,m (22) 

where K distinguishes different eigenvalues of n correspon-

ding to the same I • The power m of (l) (K, I) may be kept 

smaller than the number of cases in which the same I,M quantum 

numbers appear in the multiplet. For the multiplets · (p, 0), ( 0, p) 

containing only one rotational band 

I 3 · 
(l) (I)=- 3 (p + 2 )I (I +0 (23) 

and eq. {22) reduces to the expansion in powers ofi(I +1). However,· 

for other multiplets eq. · (22) offers some new possibilities. For 

example the multiplet ( p , q) 

two bands/2/ 

with q = 2 and p -even contains 

12 
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K = 0 I I = 01 2 I 4 I ••• p 

K = 2 1 I. = 2 1 3 1 •• 1 p 1 p + 1 1 p + 2 =I max 

In this case one has 

w =- .!.. ( 2I + 1) l(I + 1) + 8 w ( K I I ) I 

6 max 
(24) 

Zvhere 

4I max +2 for odd 

8w 2I +1 + (-1) I 1-~ 
max {[(2Imax+l)+ (25) 

2 
+ I( I -1)] 

~ 
4 I (I- 1) (I -I ) I 1 for even I • _ 

~ax · 

Thus, the term in eq. (22) linear in w may account for 

the shift of the K"'2 rotational band and also for the distorsion 

in each of the bands. Fig. 1 gives an example of the fitting 
16 

of the part of 0 spectrum with the formula 

(26) 

16 

We see that the known states in 0 atributed usually 

_ to the multiplet (4.2) of ~ SU 3 follow reasonably well the 

. simple two-parameter formulax/. Therefore the reasonable choice 

for the model Hamiltonian in this parti~ular case corresponds to 

the formula 
/ 

x/We note that the experime-ntal energy of -the 6 + state 
may be reproduced much better by the __ formula (26) with Im,,r8 
(the corresponding multiplet being (6.2)). - · - -
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20 l (4) 

15 ~ 

I 
·ro + 

I 
5 

Fig. 1. 

4 

6 

6 
.3 -----

2 

4 (2) 
I 

5-----,- .I 

4 

.3 
4 
2 ) 

4 
2 

2 2 

0 0 

\.... 'V" 
~ 

exp. (4,2) (J,I) 
Exqr.rimental ?ata on the part of the excitation spectrum 
of 0 belongtng to the (4.2) and. (3.1) multiplets of SU 

3 
(the two columns on the left). On the right- the same spectrum 
as given by the two-parameter· formula (26) with a = 

0.191 MeV, b .. 0.059 MeV. 
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'· .. ": .. 42 
h=a'I +h'O (27)''; 

Now we are ready to start the microscopic analysis of the 

structure of operators entering the Hamiltonian (27) and the earlier 

formulae. To do this we write 

u· . Q 1 1- > = [ h • Q : 1 I - > m m 

(2) (28) 

=la':£,J ,Q ,+b' :£ 
m mm m m 'm" 

J , ,Q 
mm m 

, Q , II-> . 
m m 

Here J mm.' is given by eq. ( 16) and 

(2) 
J , 

m,m ,m 

= :£ v 5 (2 2 2) ( 2 2 1\-1) -{31{3. (29\ 
a{3 ,12 m m ~ a a m" -{3) l 

The state 1-;> may include any mixture of nuclear eigenstates . 

fr:om which the multiplet (4.2) is composed. If eq. (26) with the sa~e 

values of a and b 

choice of th~ state 1-> 
fits the energies of other multiplets the 

in eq. (28) is much less stringentx/. 

Comparing eqs. (15) and (28) we see that i~clusion of the 

operator 0· in the model Hamiltonian leads to the modification of 

the commutator [ h, Q m 1 which resembles very much the modifi-

. cation of the .random phase approximation equations for vibrations 

characteristic to the higher orders of this approximation. We are 

going to: find the practical solution of eg. (28) in future. 

xfwe note that the use of formula. (26) with fixed val~es 
'of ·a and b for the multiplets including states with I > 3a/b 
brings one to inverted rotational bands with negative values of the 
moment of inertia. 

. ,. .·. 
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Appendix 

Classification of States in the ·"Nuclear" SUa MulthJlets/2•3•7/ 

The natural basis for multiplets of SU 3 (the cartesian basis) 

corresponds to the reduction/6 , 7/ 

SU 3 "' S U 2 X U I • (A.1) .. 

In this .basis the states are labelled by eigenvalues of the two 

operators J 3 , M which are linear combinations of the gene-
... 2 

raters All in eq. (7) and also of the Casimir operator J of 

SU2 subgroup of SU 3 • The off-diagonal operators All are raising 

and lowering operators in this case and their successive appli~ 

cation to any particular state yields all the other states of the 

irreducible representation. 

The Cartesian basis is widely used in the elementary particle 

physics (see/
7

/ for .the reference) where there existS a close . 

relatioship between the isospin quantum nu~bers of particles and 

eigenvalues of the operators of S~ • One may not exclude the 

possibilitY that such multiplets appear also· in the nuc:lear physi~s 

(note that if this is the case they include states of different nuclei). 

However, such multiplets P,iffer essentially from those of the nuclear 

shell-model and particularly from the multiplets in the Elliott scheme. 

The latter are associated with another reduction of SU 2 ; namely 

s u ') 0 
3 3 

) 0. 
2 (A 1.2) 
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the generators of 0 3 being identified with the orbital · ~rt of the 
• ~ x/ 

angular momentum operator l 

In general the irreps of SU 3 are reducible in 0 3 , . the 

number of different states with the same I, M quantum numbers 

being given by the following rule/2
/. In the multiplet ( p, q) one 

finds different states with 

I =K,K+1 , .. K +max(p, q), (K;l 0) 

K = min( p, q), min ( p, q ) -2 , ... 1 or 0; 
(A. 3) 

I = p, p -2 , ... 1 , 0 (K = 0). 

• Note, that the physical meaning of the ~rameter K in eq. (A.3) 

is disputed in some papers (see, e.g., ref./
8

/). 

To distinguish between the states with the same values 

of I , M one may use the operatoj
3

/ 

0=lQ
1 

I
1

. 
lj j 

(A.4) 

x/The approach in Section 2,4 of this ~per takes from' the 
Elliott model .the classification of states. However, the meaning of 
operators is different here ( r being identified with the total 
angular momentum of an even nucleus and the microscopic struc
ture ,of the other generators of the group being an objective of the 
theory). 
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The eigenvalues of n ( Ol (i) (I,K)>=w (I,K) I (i) (I,K)>) 

are non-degenerate· and may be found from the equations 

det ( {3 ,'-wl> , )=0, 
qq qq (A.5) 

where (({3 . , )) is given by eqs. (66), (67) of r~f/3/. 
qq 
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