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1. Introduction

In this paper we inveStigé.te a relaxation processes in tWo
weak.ly mteractmg subsystems, one of which is in the nonequilib-
rium sfate and the other 1s considered as a thermal bath, We are
interested in the problem of derivation of the k1netlc equahons for
‘a certam set of the average Values which characterize the non- o
equlhbrlum state of the system. As is known, the generahzed kinetic
equatlons, i.e, the equations for a certam set of the averages (e.g
. for the occupation numbers, spins and so on) describing the non-
equilibrium state of the system with small interaction have been -

" obtained by S.V.Peletminski and A.A.Yatsenko/ 1 and L.A,Pokrov-
/ / The problem of the system weakly coupled to the thermal
bath similar to that studied here has been con51dered in the paper
of L.A. Pokrovsk1/ / . It was assumed there that an external time-
dependent field acts on the non-equilibrium system. ‘ -

In the derivation of the kinetic equatlons we use the method
of the nonequ111br1um statistical operator developed by D.N, Zuba ~

re\/ - 5/. In the following section .we consider the construction 'of



the nonequilibrium statlstlcal operator and demve the kinetic equa_
* tion for the system weakly coupled to a thermal bath. ‘

It 1s shown, that the expression for the "collision term" has
the same form as in the generahzed kinetic - equa’aons [in papers/ H
but differs by that the states of the thermal bath are taken into
account in it, in the averagmg. In Section 3, on the basis of
the derived equations, in some approxxmatlon the equatlons simi-
lar in structure to the Redfleld’s type equatlons for the spin den-
sity matrix are obtained. The master equation has been obtained
for a particular case. As an example, in Section 4 we consider
the long1tudma1 nuclear spin- lattice relaxation problem- and .derive
the Gorter’s relatlon.

It should be noted that Redfield’s type equatlons have been
considered in paper/ / ~using the method of the nonequilibrium
stat;sfjl‘cal operator when on the nonequilibrium system acts an

external time-dependent field,

2. Construchon of the Nonequilibrium Statxstlcal Operator

and Derivation of the Kinetic Equations

. Let us consider the relaxatlon of a small subsystem weakly
interacting with a thermal bath The Harmltoman of the total system

is taken in the following form

CH=H, sH, v, v | | -. (1)
where +
: 1=§Eaaaaa
and
ViE o +

2/



Here Xy is the Hamiltonian of the small subsystem, and ﬂ; (-.,

ag are the ,creatien and  annihilation 'opera'éors of quasiparticles
in the small subsystem with energies. E, , V is the Hamiltonian
of the interaction between the small subsystem and the thermal
bath, X 2 is the Hamiltonian of the thermal bath, which we do not
write exp11c1t1y. The quantltles ®, g are the operators acting on
the thermal bath variables. We are interested in the kinetic stage.
of the nonequilibrium process in the system weakly coupled to a
‘thermal bath, ‘Therefore, we assume that the state of this s_ystem'
is determined completely by the set of averages <Paﬁ> =< a'z ag>
and the. state of the thermal bath by < H3> , where <...> deno-
tes the ‘statistical average with the nonequilibrium statistical ope- .
rator, whl_ch will be defined below., e

We shall follow the method of the nonequilibrium statistical

operatorj 4’_5/. Let us: introduce the quasiequilibrium distribution

-~ 8(t,0)

P'q(t) =e , | " : e

where 5(1,0)=0(t)+ Eﬁl’ B(O)Faﬁ(')*'ﬁ}{ 0)

- y - BH :
is the operator of the entropy and Q= fn Spe a.SB afaB A .

Here F aB (1) ~are the thermodynamic parameters conjugated with
<P .3> » B is the reciprocal temperature of the thermal bath, All
the operators are consldered in the Helsenberg representahon.

The nonequilibrium statistical operator of the total system 1s
constructed in the following yvay

P ]
-8(t,0

p(t) =e * . 3 : ‘ ‘ (3)



where v ) .. _ S
‘ m—c - [dr ectl (QG+t )+3P o0 )F (141 )+8:H /(l )

aB aBlaﬁ 1 21
is the "quasi-invariant" part of the operator of ‘the entropy and ¢
is ‘the infinitesimal quanhty, Wthh we lettend’ to zero, but only after
the thermodynamic limit "has been taken. ’l‘he parameters F B(x)
are ‘determined from the c_onditiohs/ 4-5/ ’

Pag>=<Pg >, B st e
where <;...> is the statistical averaging with the quasnequlhbmum
statistical operator Py .+ The fulfilment of the conditions (4) guaran-
tees the conservation of the normalization after taking the invariant
part. s

In the derwatlon of the kinetic equations we shall use the pen-
turbatlon theor'y in a "smallness interaction" and shall assume that
<P ag %»=0 while the other terms can be added to the' renormali-
zed energy of the subsystem. ,
The nonequilibrium statistical operator (3) can be rewritten as

= L(t)

p(1)=Q7 e TH® ‘ (5)
where
o et . ,
L(l)=c_f°:hxe {fﬁPaB(t!)FaB (t+t1)+/3}‘(=2 (tl)l (6.
and is the nermalizing factor,

Intergating in Eq. (6) by parts, we obtain



€t

Lm_zp F (t)+BX, —fdte "{ESP (1 OF (et )+

a'B aB B X -0 R ’,a'ﬁf aB 1 ' aB
( ) ' '

+SP )_ﬁil_”g}(z(t V1. ()
a'B aB ) a"l ’ X

For further considerations it is convenient to write p, as

p =p P, =Q_ e ' - ®

ere Rl =01 exp{;ﬁ PaB FaB(l)};Qzl=Spexp{-a§ PaBFaB(t)l,

p, =0;'1« expl-B X, 13 02-=Sp exp { -BH, 1,
L Rt

-t

P

We start from the kinetic equations for <[¢)z,8> m the impliclit form
d<Pq/3> ' . ; .
Thl.'dpaﬁ y H1> =i (EB-—Ea)<Pa,3>_- 1<[PaB,VV]>. (9)
and restrict ourselves to the second-order in interaction in calcu- /
latmg the right-hand side. of Eq. (9). To this end we must: obtain

p(t) in the first-order in V . ’I‘akmg into account these remarks .

we calculate

-



IF,gt+t ) - , . _+aF ;
iR, ~E )P (141, )mix —raBlt4ry)
at B a o a.b, a<Pa1}31>

x<[P )V )1>=i(EgE, OF (e, )1 5 Sragliery)
a B @ B 4B a<p > (10)

as Py

x(<® P ><® .. P L)
: a: a_a : aa apf o S5
1t 2 T22 2 1

Restricting ourselves to the linear terms in Eq. (10), we obtain

dF (t+t,) IE o (t+1,)
—L ~ =i(Bg=E OF (41, )=i 3 af Tt
| A
1 £ z;,,sl a< Pai51‘>'
‘ ' (11)
><{<<I>ala2 >q<l"ll-az>-<<l>ag»al >q<Pa2al>}=i(Eﬁ -E, )Faﬁ(’“l.)'

The q&antities, Pdﬁ(tl) and }(2 (t,)) in the first-order in in-
teraction have the form

P gl =—i(E ;-E, )P‘aﬁ(;l )_a[Baﬁ‘(zl),v t, )]
' : ' 12
Hol )==ilH (e, ),V (2,) 1. | : (12)

, Here and below all the operators are taken in the: interaction repL
resentation, v

Using Egs. (11) and (12) we find
' 0

€t
L(§)=A+i_f°°dtle ! [a‘% Paﬁ(tl)FaB(utl )+ BH,(t ), V(L )], (13)



Following / 3./ it is easy to chec}; that the expression » »
2 Pa,B(t )FaB (t+t )+8 }( isindependent of t, in the zero-order

in interaction and consequently is equal to A~ . Then for p(1)

in the linear approximation in interaction V we have

S e €y 1 Aa ' "CAA ‘
p(t):pCI -}-l %_{odtle Ofd)\e ALY (tl)]e . _‘5(14)
Now, using the -relation/ 3/ C
: —AA AA A
AA VANt c Ll M v e
1 dA ; .
-and inteprating in Eq. (14) over the A one cari easily show that
’ ‘ "o €t ‘ o :
p(l):pc«l —ifdier  [VQ,),p 1 . (15)

Finally, with the aid of Eq,(15) we obtain the kinetic equations for

L

<Paﬁ> in the forjm

d<P,g> o €Yy ' ey
_"'(EB E, )<Bg>=[die <[P g, VI V(tDI> . (16)

. dt . —o° . -

The last term of the right-hand side of Eq. (16). can be 'cal;
bled the geﬁeralized "collision ' integral”, Thus we see that the col-- -
lision term for the system weakly éoupled to the thermal bath has
a convenient form of the double commutator as in the generalized
kinetic equatlons/ .2/ for the system with small interaction,

It should be emphasized, that the suggestlon about the model
form of the Hamxltoman 1s nonessenhal We shall start agam from
the Hamlltoman given by Eq. (1), in° which we do not specify al-
ready the form of X . and ¥V .. We assume that the state of the



nonequilibrium system is characterized completely by some set of
the average values <P, > - and the state of the thermal bath. by
<Hps We confine ourselves by such systems. for which [Hqu 1=
= gz"kEPZ ,.where ap- is some ¢ znumbers, Thén we assume
that <V > « =0, where <.. > denotes the statistical average

with the quasiequilibrium statistical opef‘ator

~1
P =0q exp{-fli Fk.(t)—ﬁﬂz }

and Fk (t) are the parameteré conjugated with <Pk>; . Following
the method used above in the derivation of ‘the equations (16),‘we
can obtain the generalized kinetié equations for <P,> with an
accuracy of the terms which are quadratic in interaction, in the

form

d<Pk>’ B [} @, . .
dt__=.ez “kZ<PZ>"_{f <[P VI, V()5 di, .  (16a)

In conclusion, we remark . that if one constructs the nonequilib-
rium statistical operator putting }{2 »H2+ V , which turns to the
+ Gibbsian canonical distribution in the limit, then one can obtain also

the equations (16) but in a more complicated way, *

3._Obtaining of the Master Egquation and the Redfield 's
Tvype Equations

In the previous section we have obtained kinetic equat1ons
for <Pq3> in a general form. QOur next task is to wmte the equa- -
tions (16) in an explicit form, We remark that Vi, )—Eﬁd’ B(t Da’ aB
“where

10



1 ;e ~iHge (Eg ~EB )¢,
e

‘Now, we calculate the double commutator in the mght—hand

side of Eq. (16)

P ’ . ¥ TR ®
<[I i V] V(tl)‘]>q' alEBl!<d>Bald>alBl(t )>< P /31

+<(I>B (t )(I)a a 35 PB/3> (<(I> Bﬂ(t:)>+<¢ iz(tl)‘(l(>/3/31>qx (17)v

l 1 1

x<PalBl> i,

where we réstricted‘ ourselves to the linear terms in‘ the concentra-
tion. of ‘the quasiparticles. ’
- The correlation functions <®, y: 0-33(')> and <<I> (O1

b1 azflz
are connected with its spectral mtensmes in the following y/

~1(W—~E_ =Ep )t .
it - Qg Bz

d’aiﬂl@azﬁz(t)i =_°f°Ja2B2'alBl(w)e dw

; (18)

- =~ o 1(m+gal—EBl)e ’
<’®al B, ( )(D%BQ = f Ja B a B(cu)e , do.

Substituting Eqs, (17) and (18) into Eq. (16) and taking into accotnt

the notations

JalBl,Ba l(w)

[ do —
= m—Eal+EBl+ic

7

=K gg,

aE L<<I> o )>qe' d‘1=i§l

11



and v i . ‘ i

0 = o~ . ) Ertl
B T A A T - A
g 1 » 1
=1 d - - .1 =K / )
I_L © JBBI.a‘a; (fm)[ Q—,EB+EB;|-ie w—Ea +E!z l-ie' } aB 'ai'Bi

one can rewrite the kinetic equations for <Pé/3> as

i<PaB>
dt

=i(E —-E, )<P
a a

8 /3>_2/3;lK/3/3f E"IB,1>+K:B1<PB1B>¥+

@9

The above result is similar in structure to the Re-:ifield equaf’
tion for the spin density m_atrix/7/ when the external time-dependent
field is absent.

If one can confine itself by the diagonal averages <Py, >

only, the last equation may be transformed to give

d<[:za> : .
———= ' P - K* P .
dt BKaGBB< BB> (Kaa+ aa )< aa>
where ‘
K =2 E_ -E =W
aa,BB ”J'aB,Ba( a | B) B—»a
and

Kaa+K¢;'=a 52”§JBa.aB(EB-—Ea )=%Wa—»ﬁ

12



Here LY R 'an.dW a»g @are the transition probabilities expressed
‘in the spectral inte}lsit'y’ terms, Using the properties of the spectral
intensities, it is easy to verify that the transition- probabﬂltles sa--

' tlsfy the relation of the detailed balance
-.BE
¥Bsa _ .

a-f8 e"ﬁ‘EB

w

Finally, we have

d<B,,> : ’
—_Ga. W P -3 W .
TR gra<Ppp> z asp < Pug > | (20)

This equation has the usual form of the master equation,

4, Longitudinal Nuclear Spin-Lattice Relaxation

As an example in this section we consider the problem of
Spin—lattice relaxation, .
Let us - conS1der the behaviour of a spin system with the Ha -
miltonian H weakly coupled by a time-independent perturbatlon -
V to a temper‘ature reservoir or a crystal lattice with the Hamllto-

nhian }{

The total Hamiltonian has the form

= Hg+Mo 4V, : (27)
z i -
where HS=_—a§i?l, , a=yH, and llz is the operator of the z -
component of the spin at the sitei , H, is the time-independent
external field apphed in the =z —du'ectlon, y is the gyromagnetic
coefficient, ) ‘

+ .
Now we introduce a,, and a,, the creation and annihila-
tion operators of the spin in the site i with _z -corhponent equal

to A, where _1 < <1 .

13



Then we have

and consequently}'( =2E = ’ E.=—al F‘olléwing
Sy A 1A AT
section 2 we write the Hamiltonian of the interaction as
V=S3 o ! o ®*
T TEa g A T STt

Here @, ™ are the operators acting’ only on the lattice variables.
In agreement with Eq. (8) we construct the quasiequilibrium

statistical operator
(229)-
where

: -1 - T . .
P, =0, exp | -BHL b, QL=Spexp{-B }('L |y

and

. ~N , ‘ sh — .a(‘2[+1) ‘
PS=.0S exP‘—Bs(l)HS }9 QS= h Bs(t) .

— 8

2

Here Bg is the récipro‘cal spin te'rﬁi)éraﬁgre and N is the total
number of spins in the system. .

V'I"he average values <n,) $= <al-;a A s> correspond to :the: équa—
tion (see Eq. (20)) -

14



'd<ﬂl)\> e N
—_——= 3 W ii)<r > ii
vdt PP (ii) nl# ' EW)H” (l‘l)<n“\>, (23)
where . . ;
A 1] [0} )
# ELAL ALt WA
- and ‘
W (ii)=2n ] ~ (E, =E ).
A (DM”_“ (DI“ A A u
- . i pm,
We remark that <ny >=<"A>=Qs e . Then we have
d<my> N - ‘
—2T 3w <n >~ 3IW <ny>.
di i n-+A u u Ay AT
Here
=1 .
Vg =WEW L, 00
and
_L .
W#_’)\_ NE{: L _’)\(n) -
. ) ,B(E#_-E)\) .
It is easily seen that W#_’A =e: Aot . Finally, for Bg
we find the equation
: Q(B-,Bs)(EA -E ) o
A ny =BsEy
d:Bs__ IP-%()\—#)W)‘-’#[I—E le
dt 2 2 (24)
Qg 3" n Qg
3
a a'BS

In the derivation of Eq. (24) we took into account that <I*> ~ = -
A. v
d<®>

de

B WO, 1 A

=-—l- = - —
a

dv 987 a di

z2 23
(<(I7) >=<Iv> ).

15



- In the high-temperature approximation we cbtain . ;

‘]Bs_ B-Bs ’ oot
where T, is the longitudinal time of the spin-lattice relaxation
2 L]
Lo 15 0w Moy
T1 2 % Kz :

)

The above expression is the well-known G—or{ter relation’ "',

Conclusion

The results of the preceding 'sectiohs show that the method
of the nonequ111br1um stat1st1ca1 operator is well applied to the stu-
~dy of the relaxation processes, Our consideration is simple enough
and it can be used in a number of concrete problems, We remark .
that in a 51m11ar way it is possible to obtaxn the Schridinger
type equation for the average amplitudes  <a, > and <a® e for the .
system weakly coulped to the thermal bath, This will be the topic

of our subsequent paper. .
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