Дубва.

E4•4704

F.A.Gareev, S.P.Ivanova, V.V.Pash kevitch

EQUILIBRIUM DEFORMATICINS
 β_{20} and β_{40} OF NUCLEI IN RARE EARTH AND TRANSURANIUM REGION: AND $\boldsymbol{\beta}_{40}$-DEPENDENCE OF SINGLE-PARTICLE CH AR ACTERISTICS

Submitted to $\boldsymbol{K} \Phi$

At present it is firmly established that the: nuclei of the rareearth ($150 \leq A \leq 190$) and transuranium ($2: 0 \leq A \leq 250$) regions possess a large static quadrupole deformation β_{30}. The rotational spectra and big electric quadrupole moments of these nuclei measured with a very high accuracy may be accountied for by assuming the existence of a large component $\beta_{20} Y_{20}(\theta)$ in the nucleus radius. The static deformation of the type $\beta_{2 ; 2}$ for the nuclei in the middle of the rare-earth and trunsuraniunt regions appears to be 0 while for the nuclei at the edges of these regions as well as in the "new" deformation region (near Fa) $\beta_{2 ; 2}$ may differ from zero $/ 1,2 /$. The problem is whether there exist deformations of higher multipolarity. The hexadecapole deformation was introduced in ref. $/ 3 /$ in the multipole expansion of the nuclear shape in order to explain the experimental intensities of alpha decay of even nuclei to the levels of the same rotational band of the daughter nucleus. The comparison of the results of theoretical calculations without the account of $\boldsymbol{\beta}_{40}$ with experiment leads to systematic disagreements:'by a factor of several times for $0^{+} \rightarrow 4^{+}$transitions and by a factor of some dozens of times, for $0^{+} \rightarrow 6^{+}$transi-
tions. The β_{20} and β_{40} values were determined by equating the theoretical and experimental probabilities for $0^{+} \rightarrow 2^{+}$and $0^{+} \rightarrow 4^{+}$ transitions. The theoretical analysis of alpha decay points to the necessity of introdiction of β_{40} but unfortunately it does not give the β_{40} value wit'? sufficient accuracy.

The study of the $\beta_{40} / 4-7 /$ effect on the cross section for nucleon, deuteron and alpha particle scattering with excitation of $2^{+}, 4^{+}, 6^{+}$and sometimes 8^{+}levels of rotational band of the ground state shows that the introduction of β_{40} changes very strongly the value and the shape of the differential cross sections $\sigma_{0^{+} \rightarrow 4}+$, $\sigma_{0}+\operatorname{la}^{+}$, . . . in favour of the agreement between theoretical and experimental cata. Apparently, the most convenient tool of determining the nu-lear shape is alpha particles since they are strongly absorbed by the nucleus and interact with it mainly on the nuclear surface $/ 6, \% /$.

The calculations of the equilibrium β_{20} and β_{40} values were performed in refs. $/ 8,9 /$ by the Nilsson scheme, adding to the interaction hamiltorian a term proportional to $\epsilon_{40} \mathrm{X}_{40}(\theta)$.

The aim of the present paper is the calculation of the equilibrium $\quad \beta_{20}$ and β_{40} by the Woods-Saxon potential schemes $/ 10,11 /$ and the study of the hexadecapole β_{40} deformation effect on the propirties of the single-particle states of deformed nuclei.

1. General Relations

We start froin the assumption that the nuclear surface can be represented in the form

$$
\begin{equation*}
\mathbf{R}(\theta)=\mathbf{R}_{0}\left[1+\beta_{0}+\beta_{20} \mathbf{Y}_{20}(\theta)+\beta_{40} \mathbf{Y}_{40}(\theta)\right] \tag{1}
\end{equation*}
$$

where R_{0} is the spherical nucleus radius, β_{0} is a constant introduced for conservation of the nuclear volume with changing deformation $/ 11 /$.

We determine the internal multipole moment of a rotational axially symmetric nucleus

$$
\begin{equation*}
Q_{\lambda}=2 z \sqrt{\frac{4 \pi}{2 \lambda+1}} \delta_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R(\theta)} r^{\lambda} Y_{\lambda 0}(\theta) \rho(\vec{r}) r^{:} d r d \theta . \tag{2}
\end{equation*}
$$

Let

$$
\rho(\vec{r})= \begin{cases}\rho_{0} & r \leq R(\theta \tag{3}\\ 0 & r>R(\theta)\end{cases}
$$

For the homogeneous constant distribution (3) the nuclear quadrupole moment is

$$
\begin{equation*}
Q_{2}=\frac{3 \mathrm{z} \mathrm{R}_{0}^{2}}{\sqrt{5 \pi}} \beta_{20}\left(1+0,38 \beta_{20}+0,97 \beta_{40}+0,57 \frac{\beta_{40}^{2}}{\beta_{20}}\right) . \tag{4}
\end{equation*}
$$

The hexadecapole moment is

$$
\begin{equation*}
Q_{4}=\frac{1}{\sqrt{\pi}}=R_{0}^{4} \beta_{40}\left(1+1,32 \beta_{20}+0,72-\frac{\beta_{20}^{2}}{3_{40}}\right) \tag{5}
\end{equation*}
$$

In the case of the Saxon-Woods distribution

$$
\begin{equation*}
n(\vec{r})=\frac{n_{0}}{1+\exp \left(\frac{r-R(\theta)}{a}\right)} \tag{6}
\end{equation*}
$$

using the relation $/ 11 /$

$$
\begin{equation*}
\mathrm{n}(\overrightarrow{\mathrm{r}})=\mathrm{n}(\mathrm{r})+\sum_{\lambda=0} \mathrm{c}_{\lambda}^{0}\left(\mathrm{r}, \Sigma_{\nu} \quad \beta_{\nu 0}\right) \quad Y_{\lambda_{0}}(\theta) \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
Q_{\lambda}=2 z \sqrt{\frac{4 \pi}{2 \lambda+1}} \int_{0}^{\infty} r^{\lambda} c_{\lambda}^{0}\left(r, \sum_{\nu} \beta_{\nu 0}\right) r^{2} d r . \tag{8}
\end{equation*}
$$

It is seen from eqs. (4) and (5) that the determination of the β_{20} and β_{40} deformation parameters from the experimental multipole moments becomes noticeably complicated even for the distribution (3), while for (6) it needs cumbersome calculations.

2. Calculation of Equilibrium ' β_{20} and β_{10} Values

The equilibrium deformations β_{20} and β_{40} were calculated by the Strutinsky method $12 /$. The total energy of the ground state of an even-e!ven nucleus is taken to be

$$
\begin{equation*}
\mathcal{E}_{0}\left(\beta_{20}, \hat{F}_{40}\right)=\mathcal{E}_{\text {drop }}\left(\beta_{20}, \beta_{40}\right)+\Delta \mathcal{G}\left(\beta_{20}, \beta_{40}\right) \tag{9}
\end{equation*}
$$

where $\mathcal{E}^{\operatorname{drop}}\left(F_{20}, \beta_{40}\right)$ - liquid drop energy. In the expansion of \mathcal{G} drop into a series in powers of the deformation parameters β_{20} and β_{40} we take into account the following terms $/ 13 /$
$\mathcal{E}_{\text {drop }}\left(\beta_{20}, \beta_{40}\right)=0,4 u a_{20}^{2}+(-7,114285+0,076190 u) \alpha_{20}^{3}+$
$+(0,30183-0,416326 u) a_{20}^{4}+(-0,457144+0,342858 u) a_{20}^{2} a_{40}+$
$(0,629631+0,370370 \mathrm{u}) \stackrel{2}{a_{40}}+(-0,090538-0,065306 \mathrm{u}) \stackrel{3}{a_{20}} a_{40}+$
$+(-0,288600)+0,23788 u) \quad a_{20} a_{40}^{2}$,
where $a_{\lambda 0}=\left(\frac{2 \lambda+1}{4 \pi}\right)^{1 / 2} \beta_{\lambda 0} \quad$ and $\left.u=1-\frac{z^{2}}{\left(z^{2} ; A\right.}\right)_{\text {or. }},\left(z^{2} / A\right)_{o r}=45$.
The shell correction to \mathcal{E} drop consists of neutron and proton terms

$$
\begin{equation*}
\Delta \mathcal{E}=\Delta \mathcal{E}(\mathrm{Z})+\Delta \mathcal{E}(N) \tag{11}
\end{equation*}
$$

and is determined by the one-particle energies as follows (e.g. for $\Delta \mathcal{E}(\mathrm{Z})$:

$$
\begin{equation*}
\Delta \mathcal{E}(Z)=\mathcal{E}(Z)-\bar{\epsilon}(Z), \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{E}(Z)=\sum_{\mu} E(\mu) 2 V_{\mu}^{2}-\frac{\mathbf{c}_{p}^{2}}{G_{z}} \tag{13}\\
& \bar{\epsilon}(Z)=2 \int_{-\infty}^{\lambda} E \operatorname{E}(E) d E \tag{14}\\
& g(E)=\frac{1}{\gamma \sqrt{\pi}} \sum_{\nu} \exp \left[-\left(\frac{E-E \nu}{\gamma}\right)^{2}\right] \tag{15}\\
& y=5+10 \mathrm{MeV} .
\end{align*}
$$

In these expressions λ is the Fermi energy for "homogeneous" distribution of levels which is determined from

$$
\begin{equation*}
Z=2 \int_{\infty}^{\lambda} g(E) d E \tag{16}
\end{equation*}
$$

The pairing interaction constants G_{z} and G_{N} were chosen the same as in ref. $14 /$

$$
G_{z}=33 / A M e V, G_{N}=28 / A \mathrm{MeV} \quad \text { for nuclei of rare-earth and }
$$ transuranium regions. In eqs. (13) - (15) the summation is performed over all the single-particle levels of the Saxon-Woods potential which were calculated by diagonalization of the energy mat rix $/ 10,11 /$. The introduction of the term $\beta_{40} Y_{40}$ in the expansion (1) does not change, in principle, the method developed earlier in ref. $10,11 /$ for calculating the eigenenergies and eigenfunctions but essentially affects some of the one-particle characteristics of the nucleus (see $\oint 3,4$).

The numeric:al values of the average field parameters are the following $/ 10 /$

Table 1

A	V_{0}	x	r_{0}	a	
181	43,4	0.37	1,26	0,63	
181	59,8	0.37	1,24	0,63	neutrons
protons					
237	46,4	0.38	1,26	0,63	neutrons
237	61	0.38	1,24	0,63	protons

In refs. $/ 10,11 /$ it is shown that the Saxon-Woods potential parameters are functional of the mass number A. Therefore in ref. ${ }^{\prime} 10$ ' the one-particle spectrum for nuclei of the rare-earth region was calculated for three zones with $A=155,165$, 181. Such a division made it possible to improve the description of the experimental one-particle levels of odd nuclei. The one-particle states characterized by certain quantum numbers are A-dependent. This is essential for the specroscopy of deforried nuclei. However, it is known that the account of this dependence little affects the equilibrium deformation values ${ }^{/ 12,15 /}$. In order to simplify calculations and economize computer time we have used the level scheme with $A=181$ for nuclei in rare-earth and with $A=237$ for those in transuranium regions. The calculations were performed for the rare-earth nuclei for the β_{40} values f.om -0.10 to 0.10 and for the transuranium nuclei from 0 to 0.10 with $\Delta \beta_{40}=0.02$ (what, of course, restricts the accuracy of the obtained equilibrium values of β_{40}).

The result of calculations of the equilibrium deformation are presented in Tables 2 and 3. It is seen that the β_{40} values equal zero only for nuclei ${ }^{170} \mathrm{Er},{ }^{172} \mathrm{Yb},{ }^{172,174} \mathrm{Hf}$, but for the remaining ones $\beta_{40} \neq 0$. The equilibrium values of the hexadecapole deformation $\quad \beta_{40}$ lie in the limit 0.06 to -0.06 in the transition from nuclei near Sm to those near 0 m and chanse from 0.085 to 0.025 in the transition from nuclei near Th to nuclei near Fm . It is interesting to analyse with what certi:ude we may say that $\beta_{40} \neq 0$. Figs. 2, 3 give the curves of the total deformation energy $\mathrm{E}\left(\beta_{20}=\beta_{20}^{\text {eq }}\right)$ as a function of β_{40}. A clear and rather deep minimum of E is observed.

Thus our calculations show that the equilibrium values of β_{40} for the nuclsi of the rare-earth and transuranium regions differ from zero. In ref. $/ 8,9 /$ the equilibrium ϵ_{20} and ϵ_{40} values were calculated by the Nilsson scheme and it was shown that $\epsilon_{40} \neq 0$. The question arises as to how to compare the equilibrium deformations of ϵ_{20} and ϵ_{40} in the Nilsson scheme and β_{20} and β_{40} in the :jaxon-Woods potential scheme. It seems to us that in order to establish the connection between $\beta_{\lambda_{0}}$ and $\epsilon_{\lambda_{0}}$ the equality of the quadrupole and hexadecapole moments in different one-particle schemes should be required. This way would be most justified from the physical point of view since the multipole moments of nuclei can be extracted from the experimental data (for example, fron the E λ-transition probabilities). But here one encounters some calculation difficulties. To avoid them in estimating the connection between $\beta_{\lambda_{0}}$ and $\epsilon_{\lambda_{0}}$ one requires that the equipotential surfe.ces be the same in both models. Then we obtain

$$
\begin{align*}
& \beta_{20}=\left[-\frac{2}{3} \epsilon_{20}+\frac{8}{7} \epsilon_{20}\left(\frac{\epsilon_{20}}{9}-\epsilon_{40}\right)\right] \sqrt{\frac{4 \pi}{5}} \\
& \beta_{40}=\left[-{ }_{40}+8 \epsilon_{20}\left(\frac{\epsilon_{20}}{35}-\frac{10}{77} \epsilon_{40}\right)\right] \sqrt{\frac{4 \pi}{9}} . \tag{17}
\end{align*}
$$

In Fig. 4 the continuous lines are the equilibrium β_{40} values calculated by the Nilsson scheme, with coupling between shell N and $\mathrm{N} \pm 2 / 8 \mathrm{k} /$. It should be noted that this coupling for $\beta_{4} \mathbf{0}$ becomes even mcre important than for $\beta_{40}=0$. So, for example, the neglect of the couplings between shells \mathbf{N} and $N \pm 2$ leads to smaller values of β_{40} by a factor of two-three $/ 8 \mathrm{~b} /{ }^{-}$. In the same figures the dashed lines are the β_{40} values obtained in our calculations. We see that the results obtained in different approa-
ches are very likely. This is not suprising sirice, as was noted earlier, the calculations of the equilibrium deformations are not very sensitive to small changes in the single-particle schemes. Analogous calculations of the equilibrium deformations β_{40} by the Nilsson scheme were carried out earlier ir ref. $/ 8 \mathrm{a} /$ without the account of pairing, Coulomb forces and couplinys between shells N and $\mathrm{N} \pm 2$. Since the couplings betweer shells N and $\mathrm{N} \pm 2$. and Coulomb effects are balanced by the opposing effect of pairing, the results of ref. ${ }^{/ 8 a /}$ are very close to ours. Unfortunately, there is not a single physical phenomenon from which it would be possible to extract experimental values of β_{20} and β_{40}. However, sometimes it is possible to estimate the contrikution of β_{20} and
β_{40} taken separately, neglecting their interference term. For example, recently experiments on inelastic scaltering of alpha particles on even-even nuclei of the rare-earth region have been per. formed $/ 6,7 /$. A thorough analysis of the cross sections by the coupled channel method shows that the inclusior of β_{40} in eq.(1) strongly changes the form and the value of the scattering cross sections $\sigma_{0}{ }^{+} 4_{4}^{+}$and $\sigma_{0}{ }^{+} 6^{+}$improving the agreement between theory and experiment. The cross sections $\sigma_{0}+\rightarrow 4^{+}$and $\sigma_{0}+\log _{6}$ are very sensitive to the magnitude and the sign of β_{40} therefore this method of determination of β_{40} may be considered as reliable. Fig. 4 gives the experimentçll β_{40}; our calculations well agree with these data.

In ref. ${ }^{/ 17 /}$ the values of β_{40} and of the: deformation of higher multipolarities are supposed to be rather large for heavy nuclei. Our calculation are in agreement with these qualitative considerations. The β_{40} value for nuclei of the transuranium region is about 0.08 . The experimental β_{80} are determined less accu-
rately; their values are small (about - 0.02), therefore we have not considered the defor nation

The equilibrium β_{20} values calculated by us relate to the form of the common average nucleus field (nucleus plus coulomb one) and are smallex than the experimental $\beta_{30}^{\cdot 0 \times p}$ determined from the electric quadrupsle moments due to Coulomb excitation. In obtaining $\beta_{20}^{0 \times p}$ from $B(122)$ the contribution of β_{40} and of the interference term $\beta_{20} \beta_{40}$ are neglected. This $\beta_{20}^{\text {oxp }}$. value is defined by the charge densi:y distribution. On the other hand, our calculation results are in good agreement with quadrupole deformations extracted from the analysis of reactions (a, a^{\prime}) by the rare-earth nuclei $/ 6 /$. This fact points out that the nucleon and charge distribum tions of the nucleus are not necessarily the same.

In the general case the quadrupole moments of \mathbf{Q}_{2} nuclei should be calculatec by the microscopic model taking into account residual interactions. (Such calculations are performed in ref. $/ 9 /$ by the Nilsson scheme. The theoretical \mathbf{Q}_{2} are found to be smaller than the experimental ones by $10-20$ percent). However ${ }_{i}$ in ref. 2 it is shown that the ratio of the quadrupole moment of an axially symmetric ellipsoid with proton distribution (3) to the microscopic quadrupole moment s constant and equals unity within the accuracy of 5%. Therefore we have used eq. (8) to estimate the multipole moments with the Saxcin-Woods type proton distribution. The distribution parameters were taken the same as for the proton average field potential (seeTable 1). Although the theoretical \boldsymbol{Q}_{2} well reproduce the dependence of the quadrupole moments on the mass number A, the absolute Q_{2} are smaller than the experimental ones by 10-20\% (see Tatles 2,3).

The analysis of the calculated hexadecapole moments Q_{4} (see Tables 2,3) shows that the experimental discovery of enhanced

The investigation of these changes is important, since most observable one-quáısiparticle transitions are hindered with respect to asymptotic quantum numbers therefore the study of the probabilities of such transitions needs some improvement of the small wave function components.

Our calculations show that the energy spectrum is sensitive to the value of the hexadecapole deformation β_{40}. Fig. 5 gives a part of the neutron spectrum for $A=181$ at $\beta_{20}=0$ for different β_{40}. It is seen that the splitting of the states for $\beta_{40} \neq 0$ is such that for $\beta_{40}>0$ the lowest is the state with $\Omega_{\max }=13 / 2$, the next is the state with $\Omega_{\min }=1 / 2$, for $\beta_{40}<0$ these states have the highest energy. When β_{40} changes in the interval $-0,10 \leq \beta_{40} \leq 0,10$ the eigenvalue for the states with $\Omega=5 / 2$ is actually constant, while for the states with $\Omega=1 / 2, \Omega=13 / 2 \Delta E=2 \mathrm{MeV}$.

Fig. 6 represents the neutron energy spectrum at $\beta_{20}=0.214$ and Fig. 7 the proton spectrum ifor $\quad \beta_{20}=0.28$, with $A=181$ for different β_{40} in the interval $-0.10 \leq \beta_{40} \leq 0.10$. It is seen that with increasings $\left|\beta_{40}\right|$ the order of the levels as well as their local density chansje.

It is known that in the scheme of the Saxon-Woods potential, in the approximation of ref. $/ 10 /$ there is a mixing of states with identical Ω and w th the main quantum numbers N and $N \pm$. Such a mixing takes place for any values of β_{20} and is small what is proved by experiment (e.g. N-forbidden β-transitions). It is more important near the quasiintersection levels. Very strong mixing of one-partizle states with identical Ω and quantum numbers N and $N \pm 2$ occurs in a narrow interval of β_{20} values ($\Delta \beta_{20}=0.001-0.005$). In this case the state having before quasiintersection the quantum number N, will have after in the quantum number $N \pm 2$. In ref. $/ 19 /$ one obtained the experimental
data which testify the existence of this fact. It is, clear that this effect can be observed only when the interval of β_{20}, where a strong mixing occurs, is not too small. The introduction of the hexadecapole deformation to the expansion (1) leads to the widening of this interval as compared to the calculations of ref. $/ 10 /$. Fig. 8 gives the structure of the wave function of the state $n\left(2 d_{3 / 2}\right)_{1 / 2}+$ for $A=157$ depending on β_{20} for $\beta_{40}=0$ (F.g. 8a) and $\beta_{40}=0.1$ (Fig. 8b). Fig. 8c shows the energies of the quasiintersecting levels at $\beta_{40}=0$ (dashed line) and $\beta_{40}=0.1$ (continuous lines), and Fig. 8d the decoupling parameters respectively. One can see that the closest approach of the quasiintersecting levels at $\beta_{40}=0$ is 0.04 MeV , at $\beta_{40}=0.1$ it is 0.25 MeV and the corresponding $\Delta \beta_{20}$ intervals are 0.001-0.005 and 0.03-0.05. Summarizing we may say that the introduction of β_{40} leads to the increase of both the β_{20} interval where there occurs a strong mixirg of two one-particle states and the energy interval of the closest approach of the quasiintersecting levels. The account of the quasiparticle-phonon interaction leads to the same effect $/ 20 /$.

4. Decoupling Parameters "a".

The very important characteristic of the one-particle states with $\Omega=1 / 2$ is the decoupling parameter " a " describing the connection between the rotational and internal motions of the nucleus in the first perturbation order. The parameter "c." enters the formula for the energy spectrum of the rotational bard with

$$
\begin{equation*}
E_{\text {rot. }}=\frac{h^{2}}{2 J}\left[I(I+1)+a(-1)^{I+1 / 2}(I+1 / 2)\right] \tag{18}
\end{equation*}
$$

and can be determned by means of (18) from the experimental data.

If the wave function of the one-particle state is determined in the ℓj representation then " a " has the following form

$$
\begin{equation*}
a=-\Sigma(-1)^{j+1 / 2}(j+1 / 2)\left|a_{n l j}^{\Omega=1 / 2}\right|^{2} . \tag{19}
\end{equation*}
$$

The comparison of the experimental "a" determined by means of eq. (18) and the theoretical ones calculated by eq. (19) is tentative. This is due to the fact that as is seen from (19), the decoupling parameter " \bar{i} ". is strongly affected by small changes in the structure of the weve function of the internal state. These changes are more essential for the coefficients $\begin{gathered}a_{n-1 / 2}^{\Omega} \ell_{j}\end{gathered}$ having large j. In addition it should be noted that the "a" for certain states (e.g. $1 / 2 \backslash 510]$ state) is very sensitive to small changes of the deformation parameter. The magnitude of "a" strongly depends on the average field parameters $/ 15 /$.

It is also important to know how definitely we may interpret an experimentally abserved state as the single-particle one. Most states for which the parameter "a" is experimentally determined are highly excited states and therefore may contain considerable admixture from the irteraction of quasiparticles with quadrupole and octupole vibrations of the core. For such states of importance is the account of the interaction of quasiparticles with phonons which decreases the absolute value of the decoupling parameter but conserves its sign" $/ 21 /$. Its influence on "a" for the ground and the lowest excited states is insignificant. However, as is shown in refs. $22,23 /$ it is necessary to take into consideration the spin polarization of the cors due to an odd particle. This effect especially strongly influences the states with the asymptotic quantum number $\Lambda=0 \quad / 22 /$. Even the sign of the decoupling parameter can alter
in this case, besides, eq. (18) for " a " is obtained in the first perturbation order and, as is shown in ref. ${ }^{/ 24 /}$, it iss not always valid. Therefore we will make the qualitative comparison of the theoretical and experimental "a".

In the all known one-particle schemes the decoupling parameter for the $1 / 2-[510]$ state is negative in the rare-earth region of nuclei. The available experimental data show that "a" for this state is here positive except ${ }^{161} \mathrm{Gd} / 19 /$. Faessler and Sheline have obtained a right value of "a" for ${ }^{183} \mathrm{~W} / 16 /$. It should be however noted that this result is perhaps a consequence of the neglect of the interaction between shells and of the influen=e of the quasidiscrete spectrum on the weakly bound states.

Table 4 gives the calculated "a" for the $1 / 2^{-}[510]$ state with $A=181$ and $A=157$ for different β_{20} and β_{40}. It is seen that"a" changes sharply with changing β_{20} and β_{40} and for the equilibrium β_{20} and β_{40} the parameter " a " is positive. It turns out that the parameter "a" for certain states (for example, $\mathrm{p} 1 / 2^{+}[411]$, p $1 / 2^{-[541]}, n 1 / 2^{-[521]}{ }^{/ 25 /}$) little changes depending on β_{20} and β_{40}. Since the effect of the spin polarization of the core due to an odd particle on "a" is small for states with esymptotic quantum numbers $\Lambda=1$ and the interaction of quasipart cles with phonons decrease the absolute value of the decoupling parameter then the correlation between the one-particle estimates of "a" for $p 1 / 2^{+}[411]$, n $1 / 2^{-[521]}$ and $p 1 / 2^{-}[541]$ states and the experimental data is expected to be large.

As is known there is a quasiintersection of the $1 / 2^{+}[400]$ and $1 / 2^{+}[660]$ states at the beginning of the rare.earth region for neutrons and at the end for protons. In Fig. 8d the calculated "a" for the $n 1 / 2^{+}[400]$ and $n 1 / 2^{+}[660]$ are shown by the dashed line at $\beta_{40}=0$ and by the continuous line at $\beta_{40}=0.10$. It is seen that
at $\beta_{40}=0.10$ the quasiintersection interval $\Delta \beta_{20}$ essentially incream ses. The same i is for the proton $p 1 / 2^{+}[400]$ and $p 1 / 2^{+}[660]$ states.

Thus, the introduction of the hexadecapole deformation β_{40} to the expansion (1) noticeably changes certain one-particle characteristics of deformid nuclei (density of one-particle levels near the Fermi surface, decoupling parameters, deformation interval $\Delta \beta_{20}$ of strong mixing of quasiintersecting levels).

The calculctions of the equilibrium deformations β_{20} and β_{40} by the Strutinsky method for nuclei in the rare-earth and transuranium regions show that $\beta_{20} \neq 0$ and $\beta_{40} \neq 0$ and the equilibrium values of β_{20} and β_{40} obtained by us are in good agreement with the experimental data ${ }^{6}$ and with the results of similar calculations with the Nilsson scheme $/ 8,9 /$.

We thank Prof. V.G.Soloviev and Dr. N.I.Pyatov for useful discussions and Prof. V.M.Strutinsky for furnishing the computer's code for calculating the shell correction.

References:

1. S. Das Gupta, M.A.Preston. Nucl. Phys., 49, 401 (1963).
M.R.Gunye, S.Das Gupta and M.A.Preston. Phys. Lett., 13, 246 (1964).
D.A.Arseniev, L.A.Malov, V.V.Pashkevich, V.G.Soloviev. JINR Preprint E4-3703, Dubna (1968).
K.Kumar and M.Baranger. Nucl. Phys., A110, 529 (1968).
2. D.A.Arseniev, L.A.Malov, V.V.Pashkevich, A.Sobiszewski, V.G.Soloviev. J.IVR Preprint E4-3816, Dubna(1968).
3. P.O.Froman Kıl. Danske Vid Selsk. Mat.Fys.Skr., N.3, (1957). В.Г. Носов. ЖЕТФ, 33, 226 (1957).
4. R.C.Barret. Phys. Rev. Lett., 14, 115 (1965).
5. С.И. Дроздов. ЯФ, 1, 407 (1965).
6. D.L.Hendrie, N.K.Glendenning, B.G.Harvey, O.N.Jarvis, H.H.Duhm, J. Saudinos, I.Mahoney. Phys. Lett., 26B 127 (1968).
7. N.K.Glendenning. Preprint UCRL 17503, Berkeley California 1967. 8. a).K.Kjallquist. Nucl. Phys., 9, 1963 (1958/59).
K.Harada. Phys. Rev. Lett., 10, 80 (1964).
b). P.Moller, B.Nillson, S.G.Nilsson, A.Sobiczewski, Z.Szymanski, S.Wyceeh. Phys. Lett., 26B, 418 (1968).
S.G.Nilsson. Preprint UCRL 18355, Berkeley, C:alifornia, 1968.
8. I.L.Lamm. Nucl. Phys., A125, 504 (1969).
B.Nilsson. Nucl.Phys., A129, 445 (1969).
9. Ф.А. Гареев, С. . Иванова, Б.Н. Калинкин. Препргнт ОИЯИ Р4-3451, Дубна (1967): Известия АН СССР, сер. фиэ., 32, : 680, 1968. Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин, С.К. Слепнев, М.Г. Гинзбург. Препринт ОИЯИ Р4-3607, Дубна (1967).
10. Ф.А. Гареев, С.П. Иванова, Н.Ю. Ширикова. Сообцение ОИЯИ P4-4259, Дубна (1969).
11. В.М. Струтинский. Nucl. Phys., A95, 420 (1967); Nucl. Phys., A122, 1 (1968).
12. W.I.Swiatecki. Phys. Rev., 101, 651 (1966); Phys. Rev., 104, 993 (1956). Л. Уилетс. Теория ядерного делеіия. Атомиздат, 1967.
13. Л.А. Малов, В.Г. Соловьев, И.Д. Христов. ЯФ, 6, 186 (1967).
14. Б.Н. Калинкин. Докторская диссертация "Некоторые вопросы теории ядра и ядерных реакций:", Дубна (1968).
15. П.Э. Немировский, В.А. Чепурнов. ЯФ, 3, 998 (1965). A.Faessler and R.Sheline. Phys. Rev., 148. 1003 (1966). Röpper P. Zf. Phys., 195, 316 (1966). Rost E. Phys.Rev., 154, 994 (1967). В.В.Пашкевич, В.М.Струтинский. Препринт ОИЯИ Р2-3857, Дубна, 1968.
16. C.F.Bertsch. Phys. Lett., 26B2 130 (1968).
17. Ф.А. Гареев, Ј.Н. Калинкин, Н.И. Пятов, М.И. Черней. ЯФ, 8﹎ вып.2,305 (1968); Phys. Lett., 27B, 117 (1968). Ф.А. Гареев, С.П. Иванова, М.И. Чернеи. ЯФ, $\underline{9}$, вып. 2, 308 (1969).
18. a). R.K.Shelin $\supseteq, ~ M . I . ~ B e n n e t t ~, ~ I . M . D a w s o n, ~ V . S h i d a . ~ P h y s . L e t t ., ~$ 26B, 14 (1967).
b) P.O.Tjom, F3.Elbek. Mat.Fys.Medd.Vid.Selsk., 36, N. 8 (1967).
c) C.W.Reich, V.E.Banker. Proc. Int. Symp. Nucl. Str. Dubna U.S.S.R., Juy 4-11, 1968.
19. В.Г. Соловьев. Обзорный доклад, представленныћ на Международныи симпозиум по этруктуре ядра, Дубна, 1968. Л.А. Малов, В.Г. Соловьев, У.М. Файнер. Препринт ОИЯИ Е4-4224, Дубна (1968); препринт ОИЯУ $\mathrm{P} 4-4073$, Дубна (1988).
20. В.Г. Соловьев, П. Фогель, Г. Юнгклауссен. Препринт ОИЯИ E4-3051, Дубнє. (1866).
21. А.А. Кулиев, Н.И. Пятов. Препринт ОИЯИ Р4-4069, Дубна (1968). 23. А.С. Чернышев, Л.Г. Рапопорт. Тезисы докладов XIX ежегодного совещания по ядерғой спектроскопии и структуре атомного ядра, 1969г., Ереван, стр. 217.
22. М.И. Черней, Е.Д. Овсянников. Препринт ОИЯИ РЗ-4168, Дубна(1969). 25. Ф.А. Гареев. Кіндидатская диссертация. :"Одночастичные состояния деформированнıх ядер в реалистическом потенциале", Дубна, 1969.

Received by Publishing Department on September 11, 1969.

Table 3.
Equilibrium ralues β_{20}, β_{40}, quadrupole and hexadecapole moments respectively

Nuclei	β_{20}	$\beta 40$	$\begin{aligned} & Q_{\lambda}^{\text {theor. }} \\ & 10^{-2 x} \mathrm{sm}^{2} \end{aligned}$	$\begin{aligned} & Q_{2} \exp _{x} \\ & 10^{-2 y} \cdot \sin ^{2} \end{aligned}$	$\begin{aligned} & Q_{Y}^{\text {theor }} \\ & 10^{-4 y_{m}} \end{aligned}$	Nuclei	β_{20}	$\beta 40$		$Q_{2}^{e x p} 10^{-2 t}{ }^{2}$	$Q_{4}^{t h e o p} \cdot 0^{2} \cdot r_{10} v$
Th ${ }^{224}$	O.I3	U.Ū'	0.0		2.3	$P u^{258}$	0.2I	0.08	I0.7	10.94+0.69	3.3
Th ${ }^{226}$	0.14	0.07	6.5	8.25 ± 0.46 *	2.4	$P u^{2 v o}$	0.22	0.08	II. 3	II. 30 ± 0.18 *	3.4
Th ${ }^{228}$	0.15	0.07	7.0	8.46 ± 0.45	2.5	Pu^{242}	0.23	0.075	I2.I	II. $82 \pm 0.51{ }^{\text { }}$	3.6
Th ${ }^{230}$	0.16	0.07	7.6	$8.91 \pm 0.45^{*}$	2.6	$P u^{26 V}$	0.24	0.07	I2.7		3.8
Th ${ }^{232}$	0.17	0.08	8.3	9.88土0.25*	2.7	Pu^{296}	0.25	0.06	I2.8		3.2
Th ${ }^{23 V}$	0.18	0.07	8.2	8.97 ± 0.56	2.5	Cm^{238}	0.2I	0.08	10.9		3.4
Th ${ }^{236}$	0.18	0.06	8.9		2.3	$\mathrm{Cm}^{2} \mathrm{~V}$	0.2I	0.075	II. 5		3.5
U^{228}	0.15	0.08	7.4		2.6	$\mathrm{Cm}^{2 V 2}$	0.23	0.075	I2.4		3.7
U^{230}	0.16	0.08	7.9	$9.46 \pm 0.69^{*}$	2.7	$\mathrm{Cm}^{2 v y}$	0.24	0.07	13.0	13.49 ± 0.74	3.8
U^{232}	0.17	0.08	8.5	9.48 ± 0.60 *	2.8	$\mathrm{Cm}^{2 \mathrm{~V}}$	0.24	0.065	I2.9		3.2
U^{234}	0.18	0.08	9.1	$9.77 \pm 0.38 *$	2.9	Cm^{268}	0.25	0.05	I3.6.		3.3
U^{236}	0.19	0.08	9.8	$10.36 \pm 0.44^{*}$	3.0	Cm^{250}	0.24	0.04	I2.7		2.5
U^{238}	0.20	0.075	10.4	10.52 ± 0.48	3.2	$C f^{2 W}$	0.24	0.07	I2.7	,	3.1
$U^{2 N 0}$						$C f^{246}$	0.25	0.065	13.4		3.3
	0.21	0.07	10.9		3.3	C^{248}	0.25	0.055	13.9		3.4
U^{272}	0.22	0.06	IO. 9		2.7	cf ${ }^{250}$	0.25	0.045	I3.8		2.7
						$C f^{25 Y}$	0.25	0.03	13.7		2.7
$P u^{234}$	0.19	0.085	9.6			$\mathrm{Fm}^{2 v}$	0.25	0.06	I4.2		3.4
					3.0	Fm^{250}	0.26	0.055	I4.6		3.6
$P u^{236}$			10.2			$F m^{250}$	0.26	0.05	I4.3		2.8
	0.20	0.085			3.2	$\begin{aligned} & F m^{252} \\ & F m^{25 y} \end{aligned}$	0.26 0.26	0.04 0.035	14.6 14.6		2.9 2.9
	telso	L. Gro		Nucl. Deta 1	(1965)21.	Fm^{256}	0826	0.025	I4.3		2.1

Decoupling parameter a for $1 / 2^{-} 510$ as a funotion β_{20} and β_{40}

$A=181$						
State	β_{40}	0,135	0,214	0,28	0,345	0,4I
I/2-5I0	0,I	0,45	0,08	-0,II	-0,29	-0,47
	0,08	0,40	0,05	-0,12	-0,28	-0,42
	0,06	0,37	0,04	-0,13	-0,26	-0,38
	0,04	0,36	0,03	-0,12	-0,24	-0,34
	0,02	0,36	0,03	-0,12	-0,22	-0,31
	0	0,38	0,04	-0,10	-0,21	-0,29
	-0,02	0,42	0,06	-0,09	-0,19	-0,27
	-0,04	0,49	0,09	-0,07	-0,17	-0,25
	-0,06	0,58	0,I2	-0,04	-0,15	-C,23
	-0,08	0,72	0,I6	-0,02	-0,13	-0,20
	-0, I	0,93	0,2I	0,02	-0,10	-0,17
$A=157$						
	0,I	0,91	0,44	0,I7	0,03	-0,28
	0,08	0,88	0,42	0,19	0,07	0,02
	0,06	0,86	0,4I	0,2I	Q,II	0,06
	0,04		0,43	0,24	0,15	0,10
	0		0,48	0,32	0,23	0,17

Fig.1. Nuclear surface as a function β_{20} and β_{40}.

Fig. 2. Curves of the total deformation energy as a function of β_{40}
for W.

Fig.3. Curves of the total deformation energy as a function of β_{10} for C and U .

Fig.4. Equilibrium β_{40} value, calculated by the Nilsson scheme (continuous lines) and equilibrium β_{40} value calculated by Woods-Saxon potential schemes (Dashed lires).

Fig.5. Part of the neutron spectrum for $A=181$ at $\beta_{20}=0$ for different $\beta_{s 0}$.

Fig.6. Neutron energy spectrum at $\beta_{20}=0.214$ for $A=181$.

Fig. 7. Proton energy spectrum at $\beta_{20}=0.28$ for $A=181$.

Fig. 8. Structure of the wave function of the state $n\left(2 d \quad d_{0}\right)_{1 / 2}+$ for $A=157$. depending on $a_{20}=\sqrt{4 \pi} \beta_{20}$ for $\beta_{40}=0$ (8 ba)

Fig. 8c. Energy of the quasiintersecting levels at $\beta_{40}=0$ (dashed lines) and $\beta_{40}=(1.1$ (continuous lines).

Fig.8d."ま"decoupling parameters.

