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At present it is firmly established that the nuclei of the rare-
earth ( 150 <A < 190) and transuranium ( 220<A < 250) regions
possess a large static quadrupole deformation Biw . The rotational
spectra and big electric quadrupole moments of these nuclei measu-
red with a very high accuracy may be accounted for by assuming
the existence of a large component B20Y3 (6)  in the nucleus
radius, The static deformation of the type ﬁz;- 2 for the nuclei
in the middle of the rare-earth and trunsuranium regions appears
to be 0 while for the. nuclei at the edges of these regions as
well as in the "new" deformation region (near Ea ) By, s may

1, 2/. The problem is whether there exist deforma-

differ from zero
tions of higher multipolarity, The hexadecapole ileformation was in-
troduced in ref, 3 in the multipole expansion of the nuclear shape
in order to explain the experimental intensities of alpha decay of
even nuclei to the levels of the same rotational band of the daugh-
ter nucleus, The comparison of the resulis of theoretical calculati-
ons without the account of Be  with experirhent leads to syste-
matic disagreements: by a factor of several times for ot » 4% tran-

sitions and by a factor of some dozens of times: for o*- 6" transi-



tions, The B, &and B4 values were determined by equating
the theoretical and experimental probabilities for 0"+ 2 and ot~ 4"
transitions, The theoretical analysis of alpha decay points to the
necessity of introduction of B, but urﬁortunétely it does not give
the B, value with sufficient accuracy.
The study of the B,, -7/ effeét on the cross section for

nucleon, deuteron and alpha particle scattering with excitation of
2+, 4+, 6" and sometimes 8 levels of rotational band of the ground
state shows that the introduction of B, changes wvery strongly
the value and the sﬁape of the differential cross sections oy+, ,+ ,

Tot+ , 4+ y » o« « in favour of the agreement between theoretical
and experimental data. Apparently, the most convenient tool of
determining the nu:lear shape is alpha particles since they are
strongly absorbed by the nucleus and interact with it mainly on the
nuclear surface/ 6’-‘/.
The calculations of the equilibrium B,, and B, values

were performed in refs./ 8,9/ by

the Nilsson scheme, adding to the
interaction hamiltonian a term proportional to ¢, Y, (8) .
The aim of the present paper is the calculation of the equi-

librium B a0 and B, by the Woods-Saxon potential sche-
mes/ 10,11/ and the study of the hexadecapole B, deformation

effect on the properties of the single-particle states of deformed

nuclei.

1. General Relations

We start fron the assumption that the nuclear surface can be

represented in the form



R(6) =Ro[ 1 +Bo +B30 Y320(0) +PBuo Yeo (6) 1. (1)

where R, is the spherical nucleus radius, B, Iis a constant
introduced for conservation of the nuclear volume with changing

deformati on/1 1/.

We determine the internal multipple moment of a rotational

axially symmetric nucleus
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For the homogeneous constant distribution (3) the nuclear

quadrupole moment is
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The hexadecapole moment is
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In the case of the Saxon-Woods distribution

M

n(}') =

(6)

1+ exp( _ﬂﬂ_) i
a
using the relation/ 11/
n(r) =n(r) +3 S (r,2 B ) Y, (9) (7
A0 AN vo A0
we obtain
47 T A o 2
QA=2z\/W{ rocy (r,g B,o) r dr . (8)

It is seen from egs. (4) and (5) that the determination of the
B,, and B,, deformation parameters from the experimental
multipole moments becomes noticeably complicated even for the

distribution (3), while for (6) it needs cumbersome calculations,

2, Calculation of Equilibrium 8., and B, Values

The equilibrium deformations B,, and B, were calculated

by the Strutinsky method/ 12/. The total energy of the ground

state of an even-even nucleus is taken to be

60(Ba0:E40) = & urop (Bao 1B 40) + BE (Bao, Bao ) (9)
where & drop (Fqo0 By ) - liquid drop energy. In the expansion
of & drop into a series in powers of the deformation parameters

13/

Bz and B4 we take into account the following terms




(Byo 1By ) = 0,4u “20 +(~,114285 +0,076190u ) a,, +

drop

+(0,39183 — 04163%u)a +(- 0457144+034m58u)a a4, +

(10)
2 3
(0,629630 +0,370370 u) a,, +(-0,090538 ~0,065306 u) a,y a,, +
+(—0,2886%0 +0,23088u) agoaso ,
2 1 * A
A+ z
where aAO—( — I ) B o and u=1 —(—zg-:A)"(Z /A)
The shell correction to & drop consists of neutron and proton
terms
AE = AE(Z) +AE(N) (11)

and is determined by the one-particle energies as follows (e.g. for

A& (2)):

AE(D) =6() - (D) , (12)
where
2 02.
§(2) = B(w 2V, -—— (13)
€ (2 .2_£ E g(E) dE (19)

1 E~-Ey 2
BE) « —— % epl-(— y 1 (1)
yvm v y

y = 5 «+ 10 MeV




In these expressions A is the Fermi energy for "homogeneous"

distribution of levels which is determined from

z=2?g(E)dE . (16)

The pairing interaction constants G, and G, were chosen the
[14/

same as in ref,

Gz = 33/A MeV,(:‘:N =28/A MeV for nuclei of rare-earth and

transuranium regions, In egs. (13) -~ (15) the summation is perfor-
med over all the single-particle levels of the Saxon-Woods poten-
tial which were calculated by diagonalization of the energy mat -
rix/lo’ll/. The introduction of the term B ,Y,, in the expansion (1)
does not change, in principle, the method developed earlier in
ret‘./ 10,11/ for calculating the eigenenergies and eigenfunctions
but essentially affects some of the one-particle characteristics of
the nucleus (see § 3,4).

The numerical values of the average field parameters are the,

10/

following

Table 1

—— e = —— —— - - -

Vo % o  Q

43,4

1,26

0,63

181 neutrons
181 59,8 0.3} I,ZV 0,63 protons
237 46,4 0.3 1,26 0,63 neutrons
237 61 0.8 1,14 0,63 protons




In refs./lo’ll/ it is shown that the Saxon-Woods potential
paramelters are functional of the mass number A , Therefore in
ref;/lo’ the one-particle spectrum for nuclei of the rare-earth re-
gion was calculated for three zones with A =155, 165, 181. Such
a division made it possible to improve the description of the ex-
perimental one-particle levels of odd nuclei, The one-particle sta-
tes characterized by certain quantum numbers are A -dependent.
This is essential for the svecroscopy of deforried nuclei. Howe-
ver, it is known that the account of this dependence little affects

/12'15/. In order to simplify cal-

the equilibrium deformation values
culations and economize computer time we have used the level
scheme with A =181 for nuclei in rare-earth and with A =237
for those in transuranium regions., The calculations were performed
for the rare-earth nuclei for the B, +values from - 0,10 to 0,10
and for the transuranium nuclei from 0 to 0.10 with AB, = 0.02
(what , of course, restricts the accuracy of the obtained equilibrium
values of fB,, ).

The result of calculations of the equilibrium deformation are
presented in Tables 2 and 3., It is seen that the B, wvalues equal

172 Yb 172,174

zero only for nuclei 170 g . Hf | but for the remaining

ones 8 mq/ 0 . The equilibrium values of the hexadecapole deforma-
tion B4 lie in the limit 0,06 to - 0,06 in the transition from
nuclei near Sm  to those near 0s and change from 0,085 to

0.025 in the transition from nuclei near Th to nuclei near Fm |,
It is interesting to analyse with what certiude we may say

that Bm,‘ 0 . Figs. 2, 3 give the curves of tie total deformation

energy E(Bm-B;:) as a function of B, . A clear and rather

deep minimum of E is observed.



Thus our calculations show that the equilibrium values of

B for the nuclzi of the rare-earth and transuranium regions dif-

8
8,9/ the equilibrium ¢, and ¢, values

were calculated ky the Nilsson scheme and it was shown that

fer from =zero. In ref,

€079 0 . The question arises as to how to compare the equilib-
rium deformations of ¢,, and ¢, - in the Nilsson scheme and B2o
and B,, in the '3axon-Woods potential scheme, It seems to us
that in order to establish the connection between B,'\o and €20
the equality of the quadrupole and hexadecapole moments in diffe-
rent one-particle schemes should be required. This way would be
most justified fron. the physical point of view since the multipole
moments of nuclei can be extracted from the experimental data
(for example, from the EA -transition probabilities). But here one
encounters some calculation difficulties. To avoid them in estimat-
ing the connection between ﬂl\oand €0 ONe requires that the

equipotential surfe.ces be the same in both models, Then we obtain

€20

2 8 4n
ﬁzo_'[‘g“zo*"'-,"zo(g_"40)]\/_5"
(17)

€ 10 4n
Bwﬂ" (- wt 8egl Tz)o_ T TR €a0 )] ‘/T

In Fig. 4 the continuous lines are the equilibrium B, va-
lues calculated by the Nilsson scheme, with coupling between shell
N and N2 /St/. It should be noted that this coupling for By 0
becomes even mcre important than for 8,= 0 . So, for example,
the neglect of the couplings between shells N and N + 2 leads

to smaller values of B,, by a factor of two—three/ Bb/. In the
same figures the dashed lines are the B,, values obtained in our

calculations, We :3ee that the results obtained .in different approa-

10



ches are very likely, This is not suprising sirce, as was noted
earlier, the calculations of the equilibrium deformations are not
very sensiti\.fe to small changes in the single-particle schemes,
Analogous calculations of the equilibrium deformations B by
the Nilsson scheme were carried out earlier ir r‘ef./sa without the
account of pairing ,Coulomb forces and couplinis between shells
N and N* 2 | Since the couplings betweer. shells N and N2,
and Coulomb effects are balanced by the opposing effect of pairing,
the results of ref.’/sa/ are very close to ours. Unfortunately, there
is not a single physical phenomenon from which it would be pos-
sible to extract experimental values of B,, and B,, . However,
sometimes it is possible to estimate the contrikution of B20 and
B, taken separately, neglecting their interfzrence term. For

example, recently experiments on inelastic scaltering of alpha par- ‘
ticles on even-even nuclei of the rare-earth region have been per-
formed/6'7/. A thorough analysis of the cross sections by the cou-
pled channel method shows that the inclusiori of 8 0 in eq.(1)
strongly changes the form and the value of the scattering cross
sections oo+, ,+ and %o+, ¢t improving the agreement be-

tween theory and experiment. The cross sections o + + and

> 4
T+ , o+ are very sensitive to the magnitude and the sign of
B, therefore this method of determination of B, may be consi-
dered as reliable. Fig. 4 gives the experimentzl B 0 3 our cal-
culations well agree with these data,

17/

higher multipolarities are supposed to be rather large for heavy

In ref., the values of B, ard of the: deformation of

nuclei, Our calculation are in agreement with these qualitative con-

siderations, The B, value for nuclei of the transuranium region

is about 0,08, The experimental B¢ @ore determined less accu-

11



rately; their values are small (about - 0.02), therefore we have not
considered the defor nation Beo

The equilibriur B, values calculated By us relate to the
form of the common average nucleus field (nucleus plus coulomb
one) and are smaller than the experimental ﬁ';oxp' détermined from
the electric quadrupole moments due to Coulomb excitation. In ob-
taining ﬁ;;p'from B(J2) the contribution of B,, and of the inter-
are neglected, This °xp.  value is defined

20
by the charge densi:y distribution. On the other hand, our calcula-

ference term B, B,
tion results are in good agreement with quadrupole deformations
extracted from the znalysis of reactions (a,a’} by the rare-earth
nuclei/ 6/ . This fact points out that the nucleon and charge distribu~
tions of the nucleus are not necessarily the same,

In the general case the quadrupole moments of Q, nuclei
should bei calculatec. by the microscopic model taking into account
residual interactions, (Such calculations are performed in ref./ of by

the Nilsson scheme, The theoretical Q2 are found to be smaller
Athan the experimentzl ones by 10-20 percent). However; in ref, 2

it is shown that the ratio of the quadrupole moment of an axially
symmetric ellipsoid ‘with proton distribution (3) to the microscopic
quadrupole moment s constant and. equals unity within the accuracy
of 5%. Therefore we have used eq. (8) to estimate the multipole mo-
ments with the Saxon-Woods type proton distribution., The distribu-
tion parameters wer= taken the same as for the proton average
field potential (seeTable 1). Although the theoretical @, well repro~
duce the dependence of the quadrupole moments on the mass num-
ber A , the absolute Q, are smaller than the experimental ones
by 10-20% (see Takles 23 ).

The analysis of the calculated hexadecapole moments Q,
(see Tables 2,3 ) shows that the experimental discovery of enhanced

12




The investigetion of these changes is important, since most
observable one-quesiparticle transitions are hindered with respect
to asymptotic quantum numbers therefore the ‘study of the probabi-
lities of such transitions needs some improven’lent of the small
‘wave function components.

Our calculations show that the energy spectrum is sensitive
to the value of the hexadecapole deformation Bao . Fig,5 gives
a part of the neutron spectrum for A = 181 at B, =0 for different

B4 - It is seen that the splitting of the states for 8,4 0 s
such that for B8, > 0 the lowest is the state with Q nax=13/2 ,
the next is the state with Q.= 1/2 | for B,<0 these states
have the highest energy. When g, changes in the interval
-0,10 < B,, < 0,10 the eigenvalue for the states with Q =572 g
actually constant, while for the states with @ = 1/2, Q=13/2 AE =2MeV.

Fig.6 represents the neutron el-’lergy spectrum at Bao=0.214

and Rig,7 the prcton spectrum i for B,y =0.28, with A =181 for
different B, in ‘he interval -0,10 < B, < 0.10. 1t is seen
that with increasing |8 ,,] the order of the levels as well as their
local density change.

It is known tiat in the scheme of the Saxon-Woods potential,
in the approximaticn of ref./lo/there is a mixing of states with
identical @ and wth the main quantum numbers N and Nt2 ,
Such a mixing takes place for any values of ,320 and is small
what is proved by experiment (e.g. N -forbidden B ~transitions).

It is more important near the quasiintersection levels, Very strong
mixing of one-particle states with identical € and quantum num-
bers N and N2 2 occurs in a narrow interval of B,, values
( ABy = 0.001 - 0.005), In this case the state having before
quasiintersection the quantum number N | will have after in the

/19/

quantum number N 2 | In ref, one obtained the experimental

14




.data which testify the existence of this fact, It is, clear that this
effect can be observed only when the interval of Bzo,where a
strong mixing occurs,is not too small. The introduction of the he-
xadecapole deformation to the expansion (1) leads to the widening
of this interval as compared to the calculations of ref./lo/. Fig.8
gives the structure of the wave function of the state n(2ds/2) 1/2+
for A =157 depending on B, for Pw=0 (Fg.8a)and Buo=0.1
(Fig. 8b). Fig. 8¢ shows the energies of the quasiintersecting le-
vels at By=0 (dashed line) and B ,= 0.1 (continuous lines), and
Fig, 8d the decoupling parameters respectively, One can see that
the closest approach of the quasiintersecting levels at S ,,= 0

is 0.04 MeV, at B,= 0.1 it is 0.25 MeV and the corresponding ABy,
intervals are 0,001 - 0,005 and 0,03 - 0,05, Summarizing we may
say that the introduction of B, leads to the iicrease of both the
Bao interval where there occurs a strong mixirg of two one-par-
ticle states and the energy interval of the closest approach of

the quasiintersecting levels, The account of the quasiparticle-pho-

[20/

non interaction leads to the same effect .

4, Decoupling Parameters "a':

The very important characteristic of the one-particle states
with @ =1/2 is the decoupling parameter "a" aescribing the con-
nection between the rotational and internal motions of the nucleus
in the first perturbation order, The parameter "¢" enters the formu-

la for the energy spectrum of the rotational bard with

2

h

(1@ +1) + a(-1)1“/2(1 +1/2) ) (18)

rot.

15



and can be determned by means of (18) from the experimental
data,
If the wave function of the one-particle state is determined

in the ({j representation then "a" has the following form

ae -3 (-0 (i) N

!

. (19)

The comparison of the experimental "a" determined by means
of eq. (18) and the theoretical ones calculated by eq. (19) is ten-
tative. This is due to the fact that as is seen from (19),the decou-
pling parameter "&".is strongly affected by small changes in the

structure of the weve function of the internal state. These changes
Qx1/2
nri

In addition it should be noted that the "a" for certain states (e.g.

are more essential for the coefficients a having large j .
17271510 | state) is very sensitive to small changes of the defor-
mation parameter, The magnitude of "a" strongly depends on the
average field paratneters/15/.

It is also important to know how definitely we may interpret
an experimentally observed state as the single-particle one, Most
states for which the parameter "a" is experimentally determined are
highly excited stat>zs and therefore may contain considerable ad-i
mixture from the irteraction of quasiparticles with quadrupole and
octupole vibrations of the core. For such states of importance is
the account of the interaction of quasiparticles with phonons which
decreases the absolute value of the decoupling parameter but con-
serves its sign/zli. Its influence on "a'" for the ground and the
lowest excited states is insignificant, However, as is shown in

[22,23/ it is necessary to take into consideration the spin pola-

refs,
rization of the core due to an odd particle, This effect especially
strongly influences the states with the asymptotic quantum number

A=20 /22/. Even the sign of the decoupling parameter can alter

16




in this case, besides, eq. (18) for "a" is obtained in the first per-

24/

Therefore we will make the qualitative comparison of the theoreti-

turbation order and, as is shown in ref, , it is not always wvalid,

cal and experimental "a',

In the all known one-particle schemes the decoupling para-
meter for the 1/2-[510] state is negative in the rare-earth region of
nuclei, The available experimental data show that "a" for this state

181 Gdq /19/. Faessler and Sheline have

obtained a right value of "a" for %3 W /16/. It should be however

is here positive except

noted that this result is perhaps a consequence of the neglect of
the interaction between shells and of the influenze of the quasidis-
crete spectrum on the weakly bound states,

Table 4 gives the calculated "a" for the 1/2° [510 ] state
with A =181 and A =157 for different 320 and By . It is seen
that"a" changes sharply with changing ,820 and f,, and for th;-:a
equilibrium B,, and B, the parameter "a" is positive, It turns
out that the parameter "a" for certain states (for example, p1/2¥[411] |
p1/27[541] , n1/2 " [521] /25/) little changes dependiig on f8,, and
B, Since the effect of thevspih pola.rization of the core due to
an odd particle on "a" is small for states with esymptotic quantum
numbers A =t and the interaction of quasipart cles with phonons
decrease the absolute value of the decoupling parameter then the
correlation between the one-particle estimates of "a" for p1/2+[411] ,
n1/27[521] and p1/27(841] states and the experimental data is
expected to be large.

As is known there is a quasiintersection of the 17271400 1
and 1/27 [660] states at the beginning of the rare-.earth region for
neutrons and at the end for protons, In Fig, 8d the calculated "a"
for the n1/2¥1400] and'n1/2+[660] are shown by the dashed line at

B,,=0 and by the continuous line at B,=010 | It is seen that

17



at B,o= 0.10 the quasiintersection interval AB,, essentially increa~
ses, The same is for the proton p1/2*[400 ] and p 1271660 ] states.

Thus ., the introductior‘l of the hexadecapole deformation B,
to the expansion (1) noticeably changes certajn one-particle characte-
ristics of deformad nuclei (density of one-particle levels near the
Fermi surface, decoupling parameters, deformation interval A,
of strong mixing of quasiintersecting levels),

The calculetions of the equilibrium deformations g, and B
by the Strutinsky method for nuclei in the rare-earth and transura-
nium regions shcw that B,# 0 and B,,# 0 and the equilibrium
values of 320 and 340 obtained by us are in good agreement
with the experimental data‘6 and with the results of similar calcu-

8
lations with the Milsson scheme/ ’9/.
We thank Prof, V.G.,Soloviev and Dr, N.,IL.Pyatov for useful

discussions and Prof, V.M,Strutinsky for furnishing the computer's

code for calculating the shell correction,
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Tabdble

4

Decoupling parameter @ for 1/2” 510 as a funo:ion

Pao 2 $uo
A = 181
State Pa 0 (0,135 0,214 0,28 0,345 0,41
(-4
1/2” 510 0,1 0,45 0,08 -0,1I -0,29 -0,47
0,08 0,40 0,05 -0,I2 -0,28 -0,42
0,06 0,37 0,04 -0,13 -0,26 -0,38
0,04 0,36 0,03 -0,12 -0,24 -0,34
0,02 0,36 0,03 -0,I2 -0,22 -0,31
0 0,38 0,04 -0,I0 -0,21 -0,29
-0,02 0,42 0,06 -0,09 -0,I°9 -0,27
-0,04 0,49 0,00 -0,07 -0,I7 -0,25
-0,06 0,58 0,I2 -0,04 -0,I5 -C,23
-0,08 0,72 0,Ie -0,02 -0,13 -0,20
-0,I 0,93 0,21 0,02 -0,I10 -0,17
A= 157
o,I 0,°1 0,44 0,I7 0,03 -0,28
0,08 0,88 0,42 0,19 0,07 0,02
0,06 0,86 0,41 0,21 0,II 0,06
0,04 0,43 0,24 o,I5 0,I0
0 0,48 0,32 o,I7
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Fig.3. Curves of the total deformation energy as a function of 3,

for 00 and U ,
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Fig.4, Equilibrium B, Vvalue, calculated by the Nilsson scheme
(continuous lines) and equilibrium B,, value calculated by
Woods-Saxon potential schemes (Dashed lires).
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Fig.5. Part of the neutron spectrum for A =181 at B,=0 for dif-
ferent B, .
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Fig.6. Neutron energy spectrum at B8, = 0,214 for
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Fig.7. Proton energy spectrum
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at ﬂ’o = 0,28 for A =181,
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Fig.8, Structure of the wave function of the siate n(2d,/2 )i/2t
for A =157, depending on a; = i B for B,, =0 (8a)
and B, =0.1 ( 8b). "
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Fig.8c. Energy of the quasiintersecting levels at B8,,=0 (dashed lines)
and B,, =0.1 (continuous lines).
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Fig.8d, "aldecoupling parameters.
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